

Tasman Extension Project Environmental Impact Statement

APPENDIX H

## ROADTRANSPORTASSESSMENT

## DONALDSON COAL

Part of Gloucester Coal

# Tasman Extension Project <br> Road Transport Assessment 

30 March 2012

Prepared for Donaldson Coal Pty Ltd

## Tasman Extension Project <br> Road Transport Assessment

## Prepared for

## Donaldson Coal Pty Ltd

This report has been issued and amended as follows:

| Rev | Description | Date | Prepared by | Approved by |
| :---: | :--- | :--- | :---: | :---: |
| 0 | Draft for internal review | $19 / 07 / 2011$ | PJD | KJH |
| 1 | Draft for client review | $26 / 07 / 2011$ | PJD | KJH |
| 2 | Revised Project scope - advance | $13 / 02 / 2012$ | PJD | KJH |
| 3 | Draft for review | $02 / 03 / 2012$ | PJD | KJH |
| 44 | Draft for client review | $14 / 03 / 2012$ | PJD | KJH |
| 5 | Final | $30 / 03 / 2012$ | PJD | KJH |

## Halcrow

Suite 20, 809 Pacific Highway, Chatswood, NSW 2067 Australia Tel +61 294104100 Fax +61 294104199
www.halcrow.com/australasia

## Contents

1 Introduction ..... 1
2 Existing and Proposed Coal Mine Operations ..... 3
2.1 Existing Operations at the Tasman Underground Mine ..... 3
2.2 The Proposed Project ..... 9
2.3 Future Road Transport Assessment Scenarios ..... 11
3 Background Road Transport Conditions ..... 13
3.1 Road Hierarchy ..... 13
3.2 Existing Road Network ..... 14
3.3 Historic Annual Average Daily Traffic on RMS Roads ..... 17
3.4 Hunter Expressway ..... 18
3.5 Cumulative Traffic Sources ..... 19
3.6 Road Safety Review ..... 23
3.7 Existing Traffic Volumes and Composition ..... 26
3.8 Existing Travel Times ..... 34
3.9 Existing Levels of Service ..... 35
3.10 Existing Operation of Intersections ..... 38
3.11 Bus Routes ..... 41
4 Future Road Transport Conditions ..... 42
4.1 Non-Project Traffic Changes ..... 42
4.2 Project Traffic Generation ..... 45
4.3 Future Daily Traffic Volumes ..... 49
4.4 Peak Hour Project Traffic Generation ..... 52
4.5 Future Midblock Levels of Service ..... 53
4.6 Future Peak Hour Operation of Intersections ..... 55
4.7 Project Coal Haulage Travel Characteristics ..... 60
4.8 Buses ..... 60
4.9 Car Parking ..... 60
4.10 Road Safety ..... 61
4.11 Oversize Vehicles ..... 61
5 Conclusions ..... 62

## List of Tables

Table 2.1 - Estimated Existing Typical Weekday Daily Traffic (vehicles/day) ..... 8
Table 2.2 - Estimated Existing Typical Saturday Daily Traffic (veh/day) ..... 8
Table 3.1 - Historic Annual Average Daily Traffic Data 1980 to 2004 ..... 17
Table 3.2 - Daily Two Way Traffic Forecast in 2031 (vehicles/day) ..... 19
Table 3.3 - Existing Daily Two Way Traffic Volumes (vehicles/day) ..... 29
Table 3.4 - Existing Peak Hour Two Way Traffic Volumes (vehicles/hour) ..... 30
Table 3.5 - Existing Traffic Composition ..... 31
Table 3.6 - Estimated Distribution of Surveyed Daily Mine Traffic (vehicles/day) ..... 32
Table 3.7 - Estimated Weekday Peak Hour Tasman Mine Traffic (vehicles/day) ..... 33
Table 3.8 - Travel Time Survey Vehicle Speeds Summary (kilometres per hour) ..... 35
Table 3.9 - Levels of Service on Two Way Two Lane Roads ..... 36
Table 3.10 - Existing Peak Hour Levels of Service at Maximum Coal Haulage ..... 37
Table 3.11 - Surveyed Peak Hour Traffic at Intersections February 2012 (vehicles/hour) ..... 39
Table 3.12 - Level of Service Criteria ..... 40
Table 3.13 - Existing Intersection Conditions (Surveyed February 2012) ..... 40
Table 4.1 - Base Case Daily Two Way Traffic Forecast (vehicles/day) ..... 42
Table 4.2 - Forecast Daily Two Way Background Traffic Growth Factors ..... 43
Table 4.3 - Daily Background (Non-Tasman Mine) Traffic Volumes (vehicles/day) ..... 44
Table 4.4 - Estimated Distribution of Tasman/Project Vehicle Trips (vehicles/day) ..... 49
Table 4.5 - Daily Traffic Volumes - No Project (veh/day) ..... 50
Table 4.6 - Future Two Way Daily Traffic With Project (veh/day) ..... 51
Table 4.7 - Tasman's Contribution to Total Traffic with the Project ..... 52
Table 4.8 - Estimated Weekday Peak Hour Tasman Mine Traffic Generation ..... 53
Table 4.9 - Tasman Mine Vehicle Trips During Weekday Peak Hours (vehicles/hour) 53 ..... 53
Table 4.10 - Estimates of Midblock Levels of Service ..... 54
Table 4.11 - George Booth Drive-John Renshaw Drive Operating Conditions ..... 56
Table 4.12 - George Booth Drive-New Project Access Operating Conditions ..... 57
Table 4.13 - John Renshaw Drive-Donaldson Access Operating Conditions ..... 58
Table 4.14 - Haulage Truck Annual Travel Characteristics ..... 60

## List of Figures

Figure 1 - Regional Location
Figure 2 - Aerial Photograph of the Project Area and Surrounds
Figure 3 - Key Roads and Facilities in the Vicinity of the Pit Tops
Figure 4 - Project Location, Road Network and Relevant Traffic Survey Locations

## List of Attachments

Attachment A. RTA Crash Data ..... A. 1
Attachment B. Traffic Survey Results ..... B. 1
Attachment C. Project Traffic Scenarios ..... C. 1

## References

Black Hill and Tall Paddock Concept Plan Environmental Assessment, Coal and Allied Industries Limited (2011)

Coal and Allied Industries Limited Lower Hunter Lands Project - Black Hill and Tank Paddock Traffic and Transport, Hyder Consulting Pty Ltd (2010)

Guide to Traffic Generating Developments, NSW Roads and Traffic Authority (2002)
Guide to Traffic Management Part 3: Traffic Studies and Analysis, Austroads (2009)
Highway Capacity Manual, Transportation Research Board (2000)
Lower Hunter Transport Needs Study Technical Paper 4 Traffic Analysis, Hyder Consulting Pty Ltd (2008)
Road Design Guide, NSW Roads and Traffic Authority (1996)
Road Transport Protocol for Coal Haulage from The Tasman Mine to The Bloomfield Coal Receival, Donaldson Coal Pty Ltd (2009)
Tasman Extension Project Socio-Economic Assessment, Gillespie Economics (2012)
Traffic Impact Assessment for Proposed Ammonium Nitrate Emulsion Production Facility at Orica's Tecbnology Centre at Ricbmond Vale, Transport and Urban Planning Pty Ltd (2009)

Traffic Volume Data Hunter and Northern Regions, NSW Roads and Traffic Authority (2004)

## 1 Introduction

This report has been prepared on behalf of Donaldson Coal Pty Ltd (Donaldson Coal) and presents the results of an assessment of the road transport implications of a proposal to extend underground mining operations at the Tasman Underground Mine (Tasman) for an additional operational life of 15 years beyond its current anticipated cessation of mining operations at approximately the end of $2014^{1}$. The annual run-ofmine (ROM) coal production from Tasman would increase from 975,000 tonnes per annum (tpa) to 1.5 million tonnes per annum (Mtpa), and proposed changes to access arrangements would reduce the distance travelled by coal haulage vehicles on public roads by 6 km (return trip). The proposed development is known as the Tasman Extension Project (the Project).

This study has been undertaken with reference to the traffic and transport components of the Director General's environmental assessment requirements for the Project, which require:

## Traffic \& Transport - including:

- a detailed economic justification of transporting coal on public roads, including assessment of the costs and benefits of alternative transport methods;
- an assessment of potential traffic impacts on the capacity, efficiency and safety of the road network; and
- a description of the measures that would be implemented to maintain and/or improve the capacity, efficiency and safety of the road network in the surrounding area over the life of the project.

The economic aspects of the above are addressed separately in Gillespie Economics (2012) (Appendix M to the Main Report of the Environmental Impact Statement).

The assessment has been prepared in accordance with the New South Wales (NSW) Roads and Traffic Authority's (RTA) (2002) Guide to Traffic Generating Developments, and where relevant, makes reference to the RTA's (1996) Road Design Guide.

[^0]An appreciation of the existing traffic situation around Tasman can be gained by examining the existing road network, traffic volumes on the existing road network, traffic generated by the existing transport activity at the mine, observed growth in background traffic, safety aspects of the road system, and expected changes to the road system. These aspects are discussed in this report, along with potential impacts from the Project.

The remainder of the report is set out as follows:

- Section 2 describes the existing and proposed operating characteristics of Tasman.
- Section 3 describes the existing road transport conditions on the road system around the mine.
- Section 4 assesses the potential impacts of the Project.
- Section 5 presents the conclusions of the investigation.


## 2 Existing and Proposed Coal Mine Operations

### 2.1 Existing Operations at the Tasman Underground Mine

Tasman is an underground coal mining operation owned and operated by Donaldson Coal. It is located approximately 20 kilometres (km) west of the port of Newcastle, NSW, in the Newcastle Coalfield. Donaldson Coal also operates the nearby Donaldson Open Cut Mine and Abel Underground Mine within the Newcastle Coalfield. The location of Tasman in its regional context is shown on Figure 1 of this report. Vehicular site access to the mine pit top is from George Booth Drive as shown in Figure 1.

The existing Tasman pit top off George Booth Drive comprises ROM coal handling infrastructure, administration facilities, worker amenities and stores buildings, workshop compound and associated mine infrastructure.

Tasman operates 24 hours per day, seven days per week. Mining is currently occurring within the Fassifern Seam in accordance with the existing Development Consent (DA 274-9-2002).

### 2.1.1 Coal Haulage

ROM coal produced at Tasman is transported by public and private roads to the Bloomfield Coal Handling and Preparation Plant (Bloomfield CHPP) where the coal is processed before being transported by rail to Newcastle (Figure 2). The movement of coal by road is restricted to between 7.00 am and 10.00 pm Monday to Friday. No coal is transported on weekends or public holidays.

The coal is transported by truck along the private Tasman access road, then northwards along George Booth Drive, eastwards on John Renshaw Drive and then north on the private Donaldson access road to the Bloomfield CHPP. Empty trucks return along the same route. A Road Transport Protocol (Donaldson Coal, 2009) sets out details of the coal haulage between Tasman and the Bloomfield CHPP. The Protocol defines the haul route, the maximum number of movements and the haulage hours, and includes a Code of Conduct for drivers.



DCL-09.01 EIS AppRT 104D

The existing Road Transport Protocol restricts the number of loaded trucks leaving Tasman to a maximum of 12 loaded trucks per hour, and maximum 118 per day. Thus, a maximum of 236 truck trips are allowed each day to move coal from Tasman to the Bloomfield CHPP. A trip is a one way movement, so a loaded truck leaving Tasman and travelling to the Bloomfield CHPP generates one trip, and the returning empty truck also generates one trip.

### 2.1.2 Employees

Tasman employs 110 full time personnel, who work on a rostered shift basis on weekdays, as follows:

- Daytime shift 6.30am to 4.30 pm : 33 employees.
- Afternoon shift 2.30 pm to $10.30 \mathrm{pm}: 27$ employees.
- Night shift 9.30pm to 7.30am: 25 employees.
- Rostered off:

25 employees.

On weekends, the shifts are as follows:

- Night shift 9.30pm Friday to 7.30am Saturday:
- Saturday daytime shift 6.30 am to 4.30 pm :
- Saturday afternoon shift 2.30 pm to 10.30 pm :
- Night shift 9.30pm Saturday to 7.30am Sunday:
- Sunday daytime shift 6.30 am to 4.30 pm :
- Sunday afternoon shift 2.30 pm to 10.30 pm :
- Night shift 9.30pm Sunday to 7.30 am Monday:

25 employees.
33 employees.
4 or 5 employees.
4 or 5 employees.
4 or 5 employees.
4 or 5 employees.
25 employees.

Donaldson Coal has advised that employees typically travel by car, with an average of 1.1 people per car. Thus, 85 employees would travel to and from the mine on a typical weekday, generating 154 vehicle trips per day. On Saturdays and Sunday, employees would generate 94-96 and 41-45 vehicle trips per day respectively.

Donaldson Coal has provided information regarding the residential locations from which employees travel to Tasman. Based on these locations, the following distribution of employees' trips on the surrounding road system has been determined:

- 76 percent (\%) George Booth Drive south of Tasman;
- $10 \%$ George Booth Drive North and John Renshaw Drive West;
- $9 \%$ George Booth Drive North and Buchanan Road North; and
- $5 \%$ George Booth Drive North and John Renshaw Drive East.


### 2.1.3 Deliveries and Visitors

In addition to employees and coal haulage trucks, delivery and visitor vehicles arrive each weekday, including:

- Suppliers' visits;
- Couriers delivering small parts;
- Semitrailers delivering stone dust (typically weekly);
- B-doubles delivering roof bolts and mesh modules (generally weekly);
- Semitrailers delivering conveyor equipment (typically four times a year); and
- Other small trucks delivering vent tubes or removing vent tubes for repair.

The distribution of delivery and visitors vehicles has been estimated as below, and it is estimated that approximately $20 \%$ of delivery and visitor trips are made by heavy vehicles:

- 70\% George Booth Drive south of Tasman;
- $10 \%$ George Booth Drive North and Buchanan Road North;
- 10\% George Booth Drive North and John Renshaw Drive East; and
- $10 \%$ George Booth Drive North and John Renshaw Drive West.

On an average weekday, it is estimated that around 60 delivery and visitor vehicles arrive and depart to and from the site, generating around 120 vehicle trips per day.

### 2.1.4 Total Tasman Underground Mine Daily Traffic Generation

Table 2.1 summarises the existing average weekday daily traffic generation of Tasman, based on the typical volumes of traffic generated by the various mine activities as discussed above.

| Table 2.1 - Estimated Existing Typical Weekday | Daily Traffic (vehicles/day) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Heavy Vehicles |  | Light Vehicles |  | Total |
|  | Coal | Deliveries | Employees | Deliveries |  |
| Tasman Mine Access |  |  |  |  |  |
| Existing off George Booth Dr | 150 | 24 | 154 | 96 | 424 |
| George Booth Drive |  |  |  |  |  |
| South of Existing Mine Access | 0 | 17 | 116 | 67 | 200 |
| North of Project Mine Access | 150 | 8 | 38 | 28 | 224 |
| John Renshaw Drive |  |  |  |  |  |
| East of Donaldson Access | 0 | 3 | 8 | 9 | 20 |
| West of Donaldson Access | 150 | 3 | 8 | 9 | 170 |

Tasman is therefore expected to generate around 424 vehicle trips per day on an average weekday, based on average daily coal haulage. When coal haulage is at its maximum of 236 vehicle trips per day, the total generation of Tasman would be expected to increase to about 510 vehicle trips per day, assuming that the number of visitors and deliveries remains typical on such days.

On weekends, the only traffic generated by the mine is employee traffic, as there are generally no deliveries or visitors and there are no coal haulage trucks. Table 2.2 summarises the existing daily traffic generation of the Tasman Underground Mine on Saturdays, being the busier of the two weekend days, based on the typical traffic generation discussed above, and the maximum number of employees expected to be on the site.

Table 2.2 - Estimated Existing Typical Saturday Daily Traffic (veh/day)

| Road and Location | Heavy Vehicles |  | Light Vehicles |  | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Coal | Deliveries | Employees | Deliveries |  |
| Tasman Mine Access | 0 | 0 | 96 | 0 | 96 |
| Existing off George Booth Dr | 0 |  |  |  |  |
| George Booth Drive | 0 | 0 | 73 | 0 | 73 |
| South of Existing Mine Access | 0 | 0 | 23 | 0 | 23 |
| North of Project Mine Access | 0 |  |  |  |  |
| John Renshaw Drive | 0 | 0 | 5 | 0 | 5 |
| East of Donaldson Access | 0 | 0 | 5 | 0 | 5 |
| West of Donaldson Access |  |  |  |  |  |

On a Saturday, the Tasman Underground Mine is therefore expected to generate around 96 vehicle trips per day.

### 2.2 The Proposed Project

### 2.2.1 Description of the Project

The main activities associated with the development of the Project would include:

- continued underground mining of the Fassifern Seam using a combination of total and partial pillar extraction methods within Mining Lease (ML) 1555;
- underground mining of the West Borehole Seam using a combination of total and partial pillar extraction methods;
- production of ROM coal up to 1.5 M tpa;
- development of a new pit top facility, associated ROM coal handling infrastructure and intersection with George Booth Drive;
- development of ventilation surface infrastructure;
- continued transport of Fassifern Seam ROM coal from the existing Tasman pit top to the Bloomfield CHPP via truck on public and private roads to approximately 2015 (inclusive);
- transport of West Borehole Seam ROM coal from the new pit top to the Bloomfield CHPP via truck on public and private roads;
- progressive development of sumps, pumps, pipelines, water storages and other water management equipment and structures;
- ongoing exploration activities;
- ongoing surface monitoring, rehabilitation and remediation of subsidence effects; and
- other associated minor infrastructure, plant, equipment and activities.

Further description is provided in Section 2 (Project Description) of the Main Report of the Environmental Impact Statement.

### 2.2.2 Road Transport Aspects of the Project

Key aspects of the Project which relate directly to potential road transport implications are summarised below.

## Life of Mine

The mining life of Tasman would be extended to allow for an additional 15 years of mining to Year 2029.

## Access Road

- A new private road would be provided for the new pit top, with construction of a new intersection on George Booth Drive approximately 3km north-west of the existing access road.
- The new access road intersection with George Booth Drive would be constructed as a single lane roundabout, forming the fourth leg of the existing intersection of George Booth Drive with the Daracon Quarry access road.


## Coal Haulage

- Increase in coal road transport movements from Tasman to the Bloomfield CHPP as a direct result of the increased ROM coal production from 975,000tpa to 1.5 Mtpa .
- Transport of ROM coal would continue from the existing pit top during 2013, and coal transport would commence from the new pit top in 2014. Both pit tops would be used simultaneously in 2014 and the start of 2015, after which the existing pit top would be decommissioned.
- Existing maximum transport of up to 4,000 tonnes ( $t$ ) of ROM coal per day prior to commissioning of the Hunter Expressway, expected in late 2013.
- Increase in the maximum transport rate to up to 6,200 t of ROM coal per day following commissioning of the Hunter Expressway, expected in late 2013.
- Movement of coal by road to be restricted to 7.00 am to 10.00 pm Monday to Friday, and 7.00 am to 6.00 pm on Saturdays. No coal transport by road on Sunday or public holidays.
- Saturday coal haulage would be limited to a maximum of 50 truck departures per day, for a maximum of 26 Saturdays per year.


## Waste Rock Haulage

- In 2013 the Project construction activities at the new pit top would produce waste rock from the excavation of the box cut, general site earthworks and development of the underground drift.
- This material would be used on-site as construction fill or temporarily stockpiled onsite for subsequent off-site transportation.
- Over a period of approximately one year a proportion of the waste rock material produced by the excavations would be trucked off-site for disposal at the Donaldson Open Cut, using the same haulage contractor, trucks and haulage route as for the transport of ROM coal.


## Workforce

- Increase in light vehicle traffic generation as a direct result of the increase in employees from 110 to approximately 150 full time on-site personnel.
- Increase in light vehicle traffic generation associated with a construction workforce, which would comprise up to 20 personnel per day in 2013 .


## Deliveries and Visitors

- Increase in visitors and delivery of consumables directly resulting from increased ROM coal production and on-site activity.


### 2.3 Future Road Transport Assessment Scenarios

The Project would extend the life of Tasman by 15 years to 2029. Construction of the new pit top would occur in 2013, which would be the peak period for construction traffic generation, including the movement of waste rock from the Project to the Donaldson Open Cut using the haul route. The Project would commence prior to the opening of the Hunter Expressway in late 2013, which is expected to have a significant impact on traffic conditions on the public road components of the coal haulage route, in particular on George Booth Drive (i.e. a significant decrease of over $90 \%$ in two-way traffic). The assessment which follows considers the following scenarios, which represent key stages in the Project:

- Construction of New Pit Top (2013). This scenario involves existing coal haulage from the existing pit top at Tasman to Bloomfield CHPP and return of empty vehicles, existing operational workforce and delivery movements to and from the existing pit top, construction waste rock movement from the new pit top to the Donaldson Open Cut and return of empty vehicles, and general construction vehicle movements to and from the new pit top area. This scenario conservatively assumes
that this activity would occur prior to the opening of the Hunter Expressway. It represents the year during which peak construction activity would occur simultaneously with existing Tasman operational traffic.
- Peak Traffic Generation (2017). Under this scenario, all future operational traffic associated with Tasman would use the new pit top access and the existing pit top would be decommissioned simultaneously. This scenario represents peak traffic generation and coal transport solely from the new pit top access road, and assumes that the Hunter Expressway is open. For the purpose of assessment it has been assumed that decommissioning would occur in 2017 (i.e., in approximately 5 years' time), although it may occur somewhat earlier or later than this in practice.
- Maximum Background Traffic Growth (2029). This scenario assumes all operational traffic associated with Tasman would use the new pit top access road, and maximum background growth in background traffic over the life of the Project. In practice it is anticipated that the traffic generation in the final Project year would be lower than in previous years, as coal production and deliveries would be tapering off. However, to be conservative, this scenario includes continued transport of coal at the maximum rate, and continued deliveries at the same rate as during peak production. The scenario assumes these occur at the same time as maximum background growth in traffic unrelated to Tasman.


## 3 Background Road Transport Conditions

An appreciation of the existing road transport conditions can be gained by examining the road network, existing traffic volumes, past growth in traffic volumes, and the safety history of the locality. These aspects are discussed below.

### 3.1 Road Hierarchy

It is usual to classify roads according to a road hierarchy, in order to determine their functional role within the road network. Changes to traffic flows on the roads can then be assessed within the context of the road hierarchy. Roads are classified according to the role they fulfil and the volume of traffic they should appropriately carry given their classification. There are various classification systems used by local authorities and the Roads and Maritime Services (RMS) (formerly the RTA). The RMS has set down the following guidelines for the functional classification of roads:

- Arterial Road - typically a main road carrying over 15,000 vehicles per day (vehicles/day) and fulfilling a role as a major inter-regional link (over 1,500 vehicles per hour [vehicles/hour]).
- Sub-arterial Road - defined as secondary inter-regional links, typically carrying volumes between 5,000 and 20,000 vehicles/day ( 500 to 2,000 vehicles/hour).
- Collector Road - provides a link between local roads and regional roads, typically carrying between 2,000 and 10,000 vehicles/day ( 250 to 1,000 vehicles/hour). At volumes greater than 5,000 vehicles/day, residential amenity begins to decline noticeably.
- Local Road - provides access to individual allotments, carrying low volumes, typically less than 2,000 vehicles/day ( 250 vehicles/hour).

In recent years the RMS has adopted a classification system relating to funding purposes. It defines roads as:

- State Roads - performing an important state function for which the RMS funds $100 \%$ of the maintenance cost. State roads are essentially arterial roads.
- Regional Roads - roads performing a significant regional function and for which the RMS and Council contribute $50 \%$ each towards maintenance. Regional roads are essentially sub-arterial roads.
- Local Roads - roads performing a local or collector function and for which the Council funds $100 \%$ of the maintenance cost.


### 3.2 Existing Road Network

The existing road network in the vicinity of the Tasman Underground Mine is shown in
Figure 1 of this report, and is described below.

George Booth Drive (Main Road 527) is a State Road which provides a link between Edgeworth and Buchanan. It has an interchange with the F3 Freeway where northbound freeway traffic may exit to a roundabout on George Booth Drive, and George Booth Drive traffic may enter the freeway southbound. To the north and west of the freeway, George Booth Drive typically has a single travel lane in each direction, with some overtaking lanes in both directions.

To the west of the F3 Freeway, George Booth Drive typically has centre linemarking and a posted speed limit of 80 kilometres per hour $(\mathrm{km} / \mathrm{h})$. The speed limit reduces to $60 \mathrm{~km} / \mathrm{h}$ for about 400 m on the approach to the intersection with John Renshaw Drive. There are some lower advisory speeds on some bends, notably an advisory speed of $45 \mathrm{~km} / \mathrm{h}$ on George Booth Drive on its approaches to the intersection with Richmond Vale Road.

George Booth Drive has some sections of steep grades to the west of the Tasman access road. Travelling northwards from Tasman towards John Renshaw Drive, George Booth Drive slopes downwards towards its crossing of Blue Gum Creek, then climbs steeply, where an overtaking lane is provided. This is the steepest section of George Booth Drive between Tasman and John Renshaw Drive.

George Booth Drive provides access to a number of private properties, with the majority of these accesses being located in the section between Richmond Vale Road and John Renshaw Drive.

The intersection formed between the Tasman access road and George Booth Drive is a seagull intersection, with dedicated deceleration lanes for vehicles turning into the mine, and dedicated acceleration lanes for vehicles turning out of the mine.

The existing Daracon Quarry has an access off George Booth Drive located at the proposed intersection of the new Tasman pit top access road with George Booth Drive. This intersection is currently a tee intersection with an "AUR" type right turn treatment, which provides a second lane for through vehicles on George Booth Drive to pass around a vehicle slowing to turn right into the Daracon Quarry access road. An "AUL" type left turn treatment is provided for the left turn from George Booth Drive into the Daracon Quarry access road, which provides a deceleration lane for left turn vehicles, allowing through traffic to pass a slowing vehicle. Separate left and right turn lanes are provided in the Daracon Quarry access road, and vehicles turning left into George Booth Drive are provided with an acceleration lane prior to a merge into the through lane of George Booth Drive, which allows the turning vehicles to increase speed to that of the through vehicles on George Booth Drive, minimising their impact on through traffic conditions.

The intersection formed between George Booth Drive and John Renshaw Drive is a roundabout, with single approach and departure lanes on George Booth Drive and John Renshaw Drive west, and two approach and departure lanes on John Renshaw Drive east.

John Renshaw Drive (Main Road 588) is a State Road which provides a link between the F3 Freeway-Weakleys Drive intersection at Beresfield and Kurri Kurri. Between Beresfield and George Booth Drive, John Renshaw Drive typically has a single travel lane in each direction, with centre linemarking and a posted speed limit of $100 \mathrm{~km} / \mathrm{h}$.

John Renshaw Drive has several long straight sections, with gentle grades and large radius bends. The intersection formed between the Donaldson access road and John Renshaw Drive is a seagull intersection, with dedicated deceleration lanes for vehicles turning into the mine, and dedicated acceleration lanes for vehicles turning out of the mine. Vehicles turning right out of the access road are not required to merge with the through traffic, rather turning into a dedicated lane. These two lanes merge to a single lane over 1 km to the west of the intersection.

Construction work is presently underway to construct the Hunter Expressway Buchanan interchange with John Renshaw Drive, to the east of the George Booth Drive intersection. John Renshaw Drive has been partially diverted, and its planned final layout is described in Section 3.4.

Road Works were undertaken at a number of locations on the public roads as a component of the development of Tasman, in accordance with its consent conditions, including:

- Construction of the seagull type intersection at the George Booth Drive/Tasman access road intersection;
- Construction of an auxiliary climbing lane on the westbound carriageway on George Booth Drive from Blue Gum Creek to the west for a distance of 1200 metres ( m );
- Construction of an auxiliary climbing lane on the eastbound carriageway of George Booth Drive over a distance of between 1200 m to 2800 m from the proposed mine access;
- Construction of an auxiliary climbing lane on the eastbound carriageway of John Renshaw Drive to the east of George Booth Drive for a distance of 1200 m ;
- Construction of sealed passing lanes on George Booth Drive at each property access between Richmond Vale Road and John Renshaw Drive; and
- Widening of the road shoulders on George Booth Drive between the Tasman access road and John Renshaw Drive.

It is noted that the consent also required upgrading of the intersection of John Renshaw Drive and George Booth Drive to a seagull type intersection or an alternative configuration as determined by the RTA. The intersection was upgraded to a roundabout, as described above.

### 3.3 Historic Annual Average Daily Traffic on RMS Roads

The RMS publishes traffic volume data at selected locations on its roads. Available data on roads in the vicinity of Tasman was collated. Table 3.1 presents historic Annual Average Daily Traffic (AADT) data for the RMS's surveyed locations in the local area, and shows how changes in daily traffic volumes have occurred on these roads over that period. It should be noted that the AADT represents the average number of axle pairs (rather than vehicles) passing in both directions during a 24 hour period, estimated over a period of one year.

Table 3.1 - Historic Annual Average Daily Traffic Data 1980 to 2004

| Location | $\mathbf{1 9 8 0}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 8}$ | $\mathbf{1 9 9 0}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 8}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 4}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| East of Richmond Vale Road | 2,410 | 3,100 | 3,091 | 3,382 |  | 4,166 | 4,533 | 4,404 | 4,821 |
| South of John Renshaw Drive | 2,570 | 3,440 | - | - | - | - | - | - | - |
| John Renshaw Drive |  |  |  |  |  |  |  |  |  |
| West of George Booth Drive | 8,700 | 9,580 | 11,058 | 15,438 | 16,730 | 11,602 | 13,215 | 13,011 | 16,241 |
| East of George Booth Drive | 6,880 | 7,110 | 8,390 | 15,299 | $\mathbf{-}$ | - | 8,689 | 7,144 | 11,657 |
| West of F3 Freeway | 5,500 | 7,510 | 7,005 | 9,773 | - | - | 20,217 | 22,228 | 28,020 |

The historic AADT volumes show that while traffic has generally increased over time, there was a distinct decrease in volumes on John Renshaw Drive between 1992 and 1995. Volumes on both John Renshaw Drive west of George Booth Drive and George Booth Drive east of Richmond Vale Road declined slightly between 1998 and 2001. These changes are probably attributable to the opening of the Palmers Road to Minmi section of the F3 Freeway in December 1993, and the opening of the Minmi to John Renshaw Drive section in late December 1998. Considering their significance in the road network, the opening of these sections of the freeway would have had widespread implications for the movement of vehicles in the region.

### 3.4 Hunter Expressway

The Hunter Expressway is currently under construction, and upon completion in late 2013, will provide a 40 km dual carriageway connection between the F3 Freeway and New England Highway at Branxton. It will include interchanges at the F3 Freeway, Buchanan, Kurri Kurri, Loxford, Allendale, and Branxton.

The Hunter Expressway interchange at Buchanan is presently under construction. The Buchanan interchange will be a two lane, grade separated elliptical roundabout, where the Hunter Expressway passes under John Renshaw Drive. John Renshaw Drive will be realigned to join the north and south facing ramps and to cross the Hunter Expressway on two two-lane bridges. Buchanan Road, which presently intersects with John Renshaw Drive some 400 m to the east of the George Booth Drive roundabout, will be realigned with a bridge over the Hunter Expressway to form a fourth leg of that roundabout. This work on and near John Renshaw Drive is partially completed.

The Hunter Expressway will run approximately parallel to George Booth Drive between the F3 Freeway and John Renshaw Drive, and is thus expected to significantly impact upon traffic conditions on both George Booth Drive and John Renshaw Drive.

The traffic analysis undertaken for the Lower Hunter Transport Needs Study examined a number of options for the F3 to Branxton link, including the then-approved route along a new road corridor between the F3 Freeway at the Newcastle Link Road interchange near Seahampton, and the New England Highway west of Branxton.

The study reported the daily traffic changes attributable to the Hunter Expressway on selected routes in the Lower Hunter, including both George Booth Drive and John Renshaw Drive for the year 2031 (Table 3.2). The daily traffic was compared with a base case, in which the Hunter Expressway is assumed to not be constructed. The study did not model the implications of the Hunter Expressway immediately upon opening, or in the short term.

Table 3.2 - Daily Two Way Traffic Forecast in 2031 (vehicles/day)

| Location | Base Case | Hunter Expressway | Change |
| :--- | :--- | :---: | :--- |
| John Renshaw Drive west of F3 Freeway | 36,600 | 34,600 | $-2,000$ |
| George Booth Drive west of F3 Freeway | 11,600 | 800 | $-10,800$ |

Source: Hyder, 2008

The results demonstrate that in 2031, the model predicts that the Hunter Expressway would result in a moderate decrease of around $5 \%$ in two way traffic on John Renshaw Drive, and a significant decrease of over $90 \%$ in two way traffic on George Booth Drive.

RMS has advised that the function of George Booth Drive is expected to change with the opening of the Hunter Expressway. As yet, a decision has not been reached regarding the future management of the road.

### 3.5 Cumulative Traffic Sources

### 3.5.1 Ammonium Nitrate Emulsion Production Facility

Approval has been granted for an Ammonium Nitrate Emulsion (ANE) production facility at Orica's Technology Park on Echidna Drive at Richmond Vale. An assessment of the potential traffic implications of the ANE Production Facility was prepared by Transport and Urban Planning Pty Ltd (2009).

Traffic generated by the approved ANE Production Facility includes transport of raw materials from the Orica facility at Kooragang Island and from Sydney, water deliveries from the local area, and transport of ANE product to locations predominantly in the Hunter Valley. Prior to the opening of the Hunter Expressway, raw materials transport uses John Renshaw Drive and George Booth Drive. Product distribution uses George Booth Drive between Echidna Drive and John Renshaw Drive, and John Renshaw Drive west of George Booth Drive.

Following the opening of the Hunter Expressway, all transport of raw materials to the site and all deliveries of ANE product from the Production Facility will use the Hunter Expressway to the Buchanan Interchange, then John Renshaw Drive and George Booth Drive to Echidna Drive.

Construction of the ANE Production Facility was planned to commence in 2010. Production was planned to commence in 2011 with 125,000 tpa product manufactured, increasing incrementally and reaching a maximum tonnage of 250,000 tpa of ANE product in approximately 2023. The facility would operate 24 hours per day, seven days per week, and the highest traffic generation is anticipated to occur on weekdays, as a significant proportion of deliveries would occur during weekday working hours. Orica intends to implement a Traffic Management Protocol and Code of Conduct for Drivers operating heavy vehicles to and from the Technology Centre to minimise the potential for associated traffic impacts.

## Weekday Orica Site

- Prior to construction of the ANE Production Facility, 566 vehicle trips per day (512 light, 54 heavy).

Additional Weekday ANE Production Facility

- Construction -106 vehicle trips per day ( 100 light, 6 heavy).
- Year 2011 - 70 vehicle trips per day ( 20 light, 50 heavy).
- Year 2013 - 80 vehicle trips per day ( 20 light, 60 heavy).
- Year 2018 - 100 vehicle trips per day ( 20 light, 80 heavy).
- Year 2023-120 vehicles per day (20 light, 100 heavy).

Additional AM and PM Peak Hour ANE Production Facility

- Construction - 40 vehicle trips per hour.
- Year 2011 - 14 vehicle trips per hour (6 light, 8 heavy).
- Year 2013-16 vehicle trips per hour ( 6 light, 10 heavy).
- Year 2018-18 vehicle trips per hour (6 light, 12 heavy).
- Year 2023-22 vehicle trips per hour (6 light, 16 heavy).

The assessment undertaken by Transport and Urban Planning Pty Ltd found that the traffic conditions in George Booth Drive and at the adjacent intersections would remain satisfactory to good with the additional Orica traffic.

As the Project traffic surveys were undertaken in 2011, some Orica ANE traffic movements would have been captured in the baseline traffic survey results (refer to Section 3.7.1). Donaldson has advised that construction of the ANE Production Facility is complete and therefore the operation of the facility can be assumed to be a cumulative traffic source for the Project.

While it is likely that the higher Orica construction movements (i.e. up to 40 vehicle trips per hour) were captured in the Project baseline surveys, for the purposes of this assessment it has been assumed that the predicted 2011 Orica ANE movements (i.e. 14 vehicle trips per hour) were captured in the baseline surveys.

### 3.5.2 Other Existing Local Cumulative Traffic Sources

Two other potential sources of local cumulative traffic generation have been identified in the vicinity of Tasman. These are the Daracon Quarry, which can use access roads on either George Booth Drive or John Renshaw Drive via Old Buttai Road (heavy vehicles primarily using Old Buttai Road), and the Pace Farm, which has an access onto George Booth Drive between John Renshaw Drive and Richmond Vale Road.

Existing light and heavy vehicle movements associated with these local commercial enterprises form part of the existing surveyed baseline traffic, where relevant. Due to the potential interaction of the Daracon Quarry access on George Booth Drive and the new Project pit top traffic, turning surveys were undertaken at this location (refer Section 3.10.1).

### 3.5.3 Lower Hunter Lands Project - Concept Plan

Coal and Allied Industries Limited has submitted a Concept Plan for the Black Hill Development area, which is located southwest of the intersection of John Renshaw Drive and F3 Freeway (Figure 3). While this proposal is only at a Concept Plan stage, the traffic documentation provided in support of the application (Hyder, 2010) indicates that it would potentially be a major contributor to future through traffic volumes on John Renshaw Drive, having access via a new signalised intersection on John Renshaw Drive to the east of the Donaldson access road.


It is noted that the Statement of Commitments for Black Hill (Coal and Allied, 2011) indicates that further detailed traffic modelling to meet RMS requirements would be undertaken for each subsequent Development Application, should the Concept Plan be approved. As the Project would contribute only very small traffic volumes on John Renshaw Drive to the east of the Donaldson access road (refer Section 4.2.7), it is unlikely that the Project would have any material impact on the Black Hill traffic modelling. However, future increases in through traffic on John Renshaw Drive would potentially increase delays to vehicles turning into and out of the Donaldson access road intersection (Section 4) and this should be considered in any traffic studies completed in support of future Development Applications for Black Hill.

### 3.6 Road Safety Review

Validated crash data was obtained from RMS Hunter Region for the most recent five year period of final data available, being from 1 July 2005 to 30 June 2010. The data is presented in Attachment A.

The data is based on crashes reported to the Police, and included George Booth Drive between the F3 Freeway and John Renshaw Drive, and John Renshaw Drive between New England Highway at Beresfield and the township of Kurri Kurri. There were 186 reported crashes in the study area, which included four fatal crashes, 88 injury crashes, and 94 non-injury tow-away crashes. The RMS data nominates speed as a factor in 45 of the accidents, and fatigue as a factor in 17 of the accidents.

### 3.6.1 George Booth Drive (excluding its intersection with John Renshaw Drive)

A review of the locations of the crashes along George Booth Drive indicates that crashes tended to occur in clusters, although there was not any one location where a significant grouping of accidents occurred. Of the 55 crashes on George Booth Drive, the following are noted:

- $29(53 \%)$ identified speed as a contributing factor.
- $8(15 \%)$ identified fatigue as a contributing factor.
- $21(38 \%)$ occurred on a wet road surface.
- 17 (31\%) occurred during rain.
- $22(40 \%)$ occurred in darkness.
- $35(64 \%)$ were single vehicle crashes.
- $46(84 \%)$ crashes were not at an intersection.
- $25(45 \%)$ were single vehicle crashes in which a vehicle left the carriageway or lost control on a curve.
- $9(16 \%)$ were head-on crashes unrelated to overtaking manoeuvres.
- $6(11 \%)$ were rear-end crashes.
- $6(11 \%)$ were single vehicle crashes in which a vehicle left the carriageway or lost control on a straight section of road.
- 1 fatal crash occurred, involving a pedestrian lying or sitting on the carriageway in darkness.
- 28 crashes ( $51 \%$ ) were non-casualty.
- 3 crashes ( $6 \%$ ) involved articulated trucks.

Review of George Booth Drive accident data indicates that speed is a significant factor in a large proportion of the crashes which have occurred over recent years. This has resulted in a significant number of single vehicle crashes where a driver has lost control of the vehicle and left the carriageway. While overtaking opportunities are provided along parts of George Booth Drive, only one crash was directly related to an overtaking manoeuvre.

### 3.6.2 Jobn Renshaw Drive (including its intersection with George Booth Drive)

A review of the locations of the crashes along John Renshaw Drive indicates that crashes tended to be spread along its length, rather than in clusters as was noted on George Booth Drive. However, there was a notable grouping of accidents at and near the roundabout at John Renshaw Drive/F3 Freeway/Weakleys Drive.

Of the 131 crashes on John Renshaw Drive, the following is noted:

- $16(12 \%)$ identified speed as a contributing factor.
- $9(7 \%)$ identified fatigue as a contributing factor.
- $25(19 \%)$ occurred on a wet road surface.
- $17(13 \%)$ occurred during rain.
- $23(18 \%)$ occurred in darkness.
- $26(20 \%)$ were single vehicle crashes.
- $65(50 \%)$ crashes were not at an intersection.
- $42(32 \%)$ were rear-end crashes.
- $21(16 \%)$ were at an intersection between vehicles on adjacent approaches.
- $11(8 \%)$ were single vehicle crashes in which a vehicle left the carriageway or lost control on a straight section of road.
- $10(8 \%)$ were between vehicles turning in parallel lanes (i.e. side swipe).
- $8(6 \%)$ were single vehicle crashes in which a vehicle left the carriageway or lost control on a curve.
- 3 fatal crashes occurred, one involving a pedestrian walking on the carriageway in darkness, one involving a single car leaving the carriageway on a bend in rain and darkness and hitting a utility pole, and one involving a motorcycle pulling out to overtake being hit by a car travelling in the opposite direction. Speed was identified as a contributing factor in the latter two fatal crashes.
- 66 crashes $(51 \%)$ were non-casualty.
- 10 crashes ( $8 \%$ ) involved articulated trucks.

The review of John Renshaw Drive indicates that the most prevalent type of crash occurred between vehicles travelling in the same direction, i.e. rear end crashes, lane change crashes and side swipe (same direction) crashes. Together these accounted for $55(42 \%)$ of the crashes. Speed and fatigue were less often identified as contributing factors in the crashes on John Renshaw Drive.

### 3.6.3 Donaldson Coal Complaints Data

Donaldson Coal also provided data on reported incidents involving their vehicles. Between June 2007 and February 2012, 41 complaints were recorded which directly involved a coal haulage truck on John Renshaw Drive or George Booth Drive. No crashes involving coal trucks were reported.

- 31 complaints involved coal falling from trucks or rocks being thrown up by trucks and either hitting a following vehicle or landing on the carriageway;
- 8 complaints involved the behavior of a truck driver; and
- 2 complaints regarded truck noise (same complainant).

The eight complaints regarding driver behaviour are summarised below:

- 19 September 2007 truck driving without fog lights;
- 28 September 2007 at the end of dual carriageway (John Renshaw Drive) a truck forced three vehicles onto wrong side of the road;
- 24 January 2008 car driver had to brake heavily to avoid truck pulling out from the side of John Renshaw Drive;
- 14 February 2008 truck half on wrong side of the road at the Tasman access road;
- 9 March 2009 truck driver on the phone pulled out from Donaldson and out across road without indicating, forcing car off the road;
- 18 August 2009 trucks travelling in convoy (general issue, not specific incident);
- 8 February 2010 trucks travelling too close to car at speed on John Renshaw Drive; and
- 2 June 2010 truck driver did not use passing lane on George Booth Drive.


### 3.7 Existing Traffic Volumes and Composition

### 3.7.1 Project Traffic V olume Surveys

Traffic survey data has been collated on roads around Tasman. At each location, hourly traffic volumes were recorded by direction, and the classification of vehicles was also undertaken using the Austroads (2004) Vehicle Classification System, which is included in Attachment B with the traffic survey results.

The surveys were conducted over one week at the following locations (Figure 4):

Site 1 Tasman access road;
Site 2 George Booth Drive south of John Renshaw Drive; and
Site 3 John Renshaw Drive west of the Donaldson access road.


The surveys were conducted over the week of 19 May to 25 May 2011, however due to a data error, only the data from John Renshaw Drive were available for that period. The three surveys were repeated during July 2011, which was partly during the school holidays. To gauge the impacts of school holidays on traffic conditions, the results from the two surveys on John Renshaw Drive were compared. This comparison indicated that the average daily total volume was $3 \%$ higher outside school holidays than during the school holidays. This small variation is well within the day-to-day variations in traffic volumes expected on roads of this nature, noting also that during the surveys, George Booth Drive and John Renshaw Drive were both carrying "atypical" traffic loads associated with construction activity for the Hunter Expressway and Buchanan Interchange. It is expected that the activity on the Tasman access road would not be impacted by school holidays. In the context of the roads under investigation, for which midblock conditions are the main factor determining traffic conditions (rather than intersection capacity), the minor effect of the school holidays on background traffic is considered to be very low, and unlikely to make any significant difference to the assessment which follows.

Nevertheless, to ensure a robust assessment, the remainder of this report uses the following base condition volumes:

- John Renshaw Drive - as surveyed in May 2011;
- George Booth Drive - July 2011 surveyed volumes increased by $3 \%$ to account for school holiday effects; and
- Tasman access road - as surveyed in July 2011.


### 3.7.2 Existing Traffic Volumes 2011

The daily volume results of the traffic surveys are summarised in Table 3.3, and full results are presented in Attachment B.

Table 3.3 - Existing Daily Two Way Traffic Volumes (vehicles/day)

|  | Tasman Mine Access | George Booth Drive | John Renshaw Drive |
| :--- | :---: | :---: | :---: |
| Monday | 522 | 8,531 | 9,310 |
| Tuesday | 444 | 8,954 | 10,286 |
| Wednesday | 414 | 9,299 | 9,914 |
| Thursday | 393 | 9,337 | 10,304 |
| Friday | 333 | 9,250 | 10,249 |
| Saturday | 94 | 6,135 | 6,835 |
| Sunday | 44 | 4,638 | 5,254 |
| Average Weekday | 421 | 9,074 | 10,013 |

It is noted that, in comparison to the 2008 survey results of Transport and Urban Planning Pty Ltd (2009), the survey results at Site 2 (George Booth Drive south of the John Renshaw Drive intersection) indicate significant growth in total traffic movements from late 2008 to mid-2011. It is likely that much of this growth is attributable to the Hunter Expressway construction traffic.

Average weekday conditions are clearly distinct from weekend days on all the surveyed roads, with Saturday and Sunday daily volumes on the public roads being less than $70 \%$ and around $50 \%$ respectively of the average weekday daily volume.

Tasman generated an average of 421 vehicle trips per day on the weekdays, noting that this varied between 333 and 522 vehicle trips per day over the surveyed weekdays. On Saturday, Tasman generated 94 vehicle trips per day.

Table 3.4 summarises the peak hour traffic volumes, noting that the morning peak hour results are for the busiest hour before midday, and the evening peak hour results are for the busiest hour after midday. They do not necessarily occur at the same time at the three locations or at the same time each day.

Table 3.4 - Existing Peak Hour Two Way Traffic Volumes (vehicles/hour)

|  | Tasman Mine Access |  | George Booth Drive |  | John Renshaw Drive |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AM Peak | PM Peak | AM Peak | PM Peak | AM Peak | PM Peak |
| Monday | 41 | 47 | 772 | 898 | 785 | 829 |
| Tuesday | 42 | 40 | 798 | 927 | 853 | 948 |
| Wednesday | 31 | 43 | 805 | 893 | 799 | 974 |
| Thursday | 41 | 40 | 813 | 939 | 857 | 902 |
| Friday | 35 | 24 | 776 | 943 | 784 | 889 |
| Saturday | 19 | 17 | 543 | 524 | 583 | 563 |
| Sunday | 6 | 9 | 439 | 461 | 457 | 485 |
| Average Weekday ${ }^{\text {A }}$ | 38 | 34 | 790 | 917 | 810 | 904 |

${ }^{\text {A }}$ The peak hour on the Average Weekday may not be the average of the individual peak hours Monday to Friday due to peaks occurring during different hours on different days.

The results indicate that the average weekday peak hour traffic volumes are typically between $8 \%$ and $10 \%$ of the daily total. This is within the typical range of between $8 \%$ and $12 \%$.

On the average weekday, the on-street peak hours on George Booth Drive occurred between 6.00 am and 7.00 am , and between 4.00 pm and 5.00 pm . The on-street peak hours on John Renshaw Drive occurred between 7.00am and 8.00 am , and between 4.00 pm and 5.00 pm . It is noted however that on John Renshaw Drive, the survey data shows a distinct increase in traffic during the two hour period from 6.00am to 8.00am compared with the hours before and after. There was very little difference between the volume surveyed between 6.00 am and 7.00 am of 799 vehicles per hour, and that surveyed between 7.00 am and 8.00 am of 810 vehicles per hour. The average weekday morning peak hour on the Tasman access road occurred between 6.00 am and 7.00 am , and the evening peak hour between 4.00 pm and 5.00 pm .

### 3.7.3 Traffic Composition

The surveys described in Section 3.7.1 also provided data on the composition of traffic on the key roads. Light vehicles include motorcycles, cars, vans, 4WDs, and utes (including those towing a trailer or caravan). Heavy vehicles include single unit trucks and buses with two to four axles and articulated vehicles such as semi-trailers, rigid trucks with trailers and B-doubles.

Table 3.5 summarises the composition of the traffic on the average weekday over the survey period.

Table 3.5 - Existing Traffic Composition

| Road and Location | Vehicles |  | Percent |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Light | Heavy | Light | Heavy |
| Average Weekday |  |  |  |  |
| Tasman Mine Access | 249 | 172 | 59.1 | 40.9 |
| George Booth Drive | 8,188 | 885 | 90.2 | 9.8 |
| John Renshaw Drive | 8,777 | 1,234 | 87.7 | 12.3 |
| Saturday |  |  |  |  |
| Tasman Mine Access | 94 | 0 | 100.0 | 0.0 |
| George Booth Drive | 5,832 | 302 | 95.1 | 4.9 |
| John Renshaw Drive | 6,514 | 307 | 95.5 | 4.5 |

It is noted that, including the existing Tasman coal haulage trips, the percentage of heavy vehicles was within expectations for similar roads on both George Booth Drive and John Renshaw Drive, noting that rural roads typically carry around $10 \%$ heavy vehicles. It is noted that while the proportion of heavy vehicles remain reasonably stable for each of the weekdays on the public roads, it varied on the Tasman access road. On the surveyed Friday, the proportion of heavy vehicles was $30.3 \%$ of the daily traffic, and on the surveyed Wednesday, it was $49.0 \%$ of the daily traffic.

### 3.7.4 Components of Surveyed Mine Traffic

The contribution of Tasman to the surveyed traffic volumes on the surrounding roads has been calculated based upon the typical weekday and Saturday profiles of traffic presented in Section 2.1, and is presented in Table 3.6. The number of coal truck trips on each day during the survey week was provided by Donaldson Coal.

Table 3.6 - Estimated Distribution of Surveyed Daily Mine Traffic (vehicles/day)

| Road and Location | Heavy Vehicles |  | Light Vehicles |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coal | Deliveries | Employees | Deliveries |  |
| Average Weekday |  |  |  |  |  |
| Tasman Mine Access |  |  |  |  |  |
| Existing | 149 | 24 | 154 | 94 | 421 |
| George Booth Drive |  |  |  |  |  |
| South of Existing Mine Access | 0 | 17 | 116 | 66 | 199 |
| North of Project Mine Access | 149 | 7 | 38 | 28 | 222 |
| John Renshaw Drive |  |  |  |  |  |
| East of Donaldson Access | 0 | 3 | 8 | 9 | 20 |
| West of Donaldson Access | 149 | 3 | 8 | 9 | 169 |
| Saturday |  |  |  |  |  |
| Tasman Mine Access |  |  |  |  |  |
| Existing | 0 | 0 | 94 | 0 | 94 |
| George Booth Drive |  |  |  |  |  |
| South of Existing Mine Access | 0 | 0 | 71 | 0 | 71 |
| North of Project Mine Access | 0 | 0 | 23 | 0 | 23 |
| John Renshaw Drive |  |  |  |  |  |
| East of Donaldson Access | 0 | 0 | 5 | 0 | 5 |
| West of Donaldson Access | 0 | 0 | 5 | 0 | 5 |

Comparison of the traffic generation of Tasman as described in Table 3.6 with the total surveyed traffic and composition in 2011 (Table 3.3 and Table 3.5) indicates the following for the key coal haulage route:

- On George Booth Drive at Site 2 North of the Tasman access (Figure 4), Tasman contributes less than $3 \%$ of the surveyed total traffic, including approximately $18 \%$ of the surveyed heavy vehicle traffic.
- On John Renshaw Drive at Site 3 West of the Bloomfield CHPP (Figure 4), Tasman contributes less than $2 \%$ of the surveyed total traffic, including approximately $12 \%$ of the surveyed heavy vehicle traffic.

This indicates that on the existing average weekday, Tasman makes only a small contribution to total traffic flows on these roads, and that coal haulage trucks are not the dominant source of heavy vehicles on these roads.

With Tasman coal haulage at the maximum permitted rate of 236 trips per day, the contribution of Tasman to heavy vehicle traffic would increase to approximately $25 \%$ of total heavy vehicles on George Booth Drive (Site 2) and $18 \%$ of total heavy vehicles on John Renshaw Drive (Site 3).

### 3.7.5 Total Tasman Underground Mine Peak. Hour Traffic Generation

The contribution of Tasman to the surveyed traffic volumes on the surrounding roads during the typical on-street peak hours has been estimated based upon the profiles of heavy and light traffic each hour on the Tasman access road, and the likely spread of trips made by the various users of the access road throughout the day. It is noted that the surveyed flows suggest that the traffic is spread over more time than the shift change times would suggest, i.e. there is less "peaking" of traffic at the shift changeover times as employee arrival and departure times are spread out.

Table 3.7 summarises the existing traffic generation of Tasman during the on-street peak hours on a weekday, based on the surveyed and maximum permitted traffic generated by the various mine activities as discussed above. This assumes that the maximum permitted 12 loaded trucks departing Tasman would be matched by 12 empty trucks returning during the same hour. It is noted that coal haulage does not occur prior to 7.00 am (Section 2.1.1) however as a conservatively robust assessment of the possible impacts of the Project, the on-street peak period is being considered.

Table 3.7 - Estimated Weekday Peak Hour Tasman Mine Traffic (vehicles/day)

| Road and Location | Heavy Vehicles |  | Light Vehicles |  | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | Coal | Deliveries | Employees | Deliveries |  |
| Survey Average Weekday | 149 | 24 | 154 | 94 | 421 |
| Daily | 5 | 5 | 28 | 0 | 38 |
| AM Peak | 12 | 0 | 17 | 5 | 34 |
| PM Peak |  |  |  |  |  |
| At Maximum Coal Haulage | 236 | 24 | 154 | 96 | 510 |
| Daily | 24 | 5 | 28 | 0 | 57 |
| AM Peak | 24 | 0 | 17 | 5 | 46 |
| PM Peak |  |  |  |  |  |

Comparison of the daily and peak hourly results in Table 3.7 indicates that the surveyed Tasman peak hour traffic was approximately $8-9 \%$ of the daily total traffic, and would
comprise some $9-11 \%$ of daily traffic should maximum daily coal haulage occur together with maximum coal haulage during the peak hours.

### 3.8 Existing Travel Times

A survey of vehicle travel times along the haul route was conducted in May 2011. The survey recorded travel times along the public road sections of the haul route in both directions between 7.00 am and 10.00 pm . The survey vehicle typically travelled at the speed of the general traffic, following slower vehicles as needed, with some sample runs recording the speed of coal haulage trucks.

Travel times were recorded at six locations along the route, which are shown on Figure 4, and located as follows:
A. Tasman access road intersection
B. Existing Daracon Quarry access road approximately 3km west of Tasman
C. Orica access road approximately 1 km farther west of that
D. Richmond Vale Road intersection
E. Roundabout at George Booth/John Renshaw
F. Donaldson access road intersection

The results of the travel time survey are presented in Attachment B, in terms of average and approximate 85th percentile travel speeds over each road section. The 85th percentile speed is the speed below which $85 \%$ of the traffic travels. It is noted that the number of sample speeds recorded is not sufficient to report the 85th percentile speed accurately, however those reported in Table 3.8 are over all vehicles surveyed, and may be considered to be representative of the 85th percentile speed. Typically, the 85th percentile speed is around the posted speed limit. It should be noted that the survey vehicle drivers found it difficult to survey the coal haulage trucks, as the truck drivers tended to pull over to allow the survey vehicle to pass. Coal truck drivers were not informed of the presence of the survey vehicles to ensure that driver behaviour was typical. The number of coal trucks surveyed on each section varied from two to five, thus it is not feasible to calculate the 85th percentile speed from the available data.

Table 3.8 - Travel Time Survey Vehicle Speeds Summary (kilometres per hour)

|  | Distance <br> (m) | Speed <br> Limit | All Vehicles |  | CoalTrucksAverageSpeed | General Traffic |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Average <br> Speed | $\qquad$ |  | Average <br> Speed | 85th Percentile Speed |
| Tasman to Donaldson |  |  |  |  |  |  |  |
| Tasman to Daracon | 3,010 | 80 | 62.3 | 71.4 | 57.6 | 63.4 | 71.2 |
| Daracon to Orica | 1,080 | 80 | 72.4 | 80.1 | 70.9 | 72.1 | 78.9 |
| Orica to RVale Rd | 1,770 | $80^{\text {A }}$ | 75.0 | 79.5 | 70.9 | 75.6 | 79.2 |
| RVale Rd to Rndbt | 2,760 | $80^{\text {A }}$ | 64.8 | 70.9 | 59.3 | 66.3 | 71.0 |
| Roundabout to CHPP | 8,060 | 100 | 81.5 | 88.9 | 75.0 | 83.5 | 90.2 |
| Total | 16,680 |  | 73.1 | 80.4 | 67.7 | 74.4 | 80.7 |
| Donaldson to Tasman |  |  |  |  |  |  |  |
| CHPP to Roundabout | 8,060 | 100 | 79.5 | 84.1 | 76.2 | 80.0 | 84.4 |
| Rndbt to RVale Rd | 2,760 | $80^{\text {A }}$ | 72.0 | 76.1 | 67.3 | 72.5 | 76.3 |
| RVale Rd to Orica | 1,770 | $80^{\text {A }}$ | 75.9 | 82.0 | 78.4 | 75.7 | 77.9 |
| Orica to Daracon | 1,080 | 80 | 75.0 | 78.6 | 77.5 | 74.6 | 77.1 |
| Daracon to Tasman | 3,010 | 80 | 66.8 | 71.5 | 61.5 | 68.1 | 72.6 |
| Total | 16,680 |  | 75.0 | 79.6 | 71.8 | 75.5 | 79.5 |

A Note advisory speed $45 \mathrm{~km} / \mathrm{h}$ near Richmond Vale Rd, and $60 \mathrm{~km} / \mathrm{h}$ limit on George Booth Dr near
roundabout
Of note for future trucking from the new pit top, the loaded coal haulage trucks took an average of 188 seconds ( 3.1 minutes) to travel along George Booth Drive from the Tasman access road intersection to the Daracon Quarry access intersection. The empty trucks took an average of 176 seconds ( 2.9 minutes) to travel the return distance from the Daracon Quarry access intersection to Tasman.

### 3.9 Existing Levels of Service

The Austroads (2009) Guide to Traffic Management Part 3: Traffic Studies and Analysis provides guidelines for the capacity of two lane, two-way rural roads, which in turn, refers to the Transportation Research Board's (2000) Highway Capacity Manual (which is known as HCM 2000). The capacity of a road is defined as the maximum hourly rate at which vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under the prevailing roadway, traffic and control conditions. The capacity of a single traffic lane will be affected by factors such as the pavement width and restricted lateral clearances, the presence of heavy vehicles and grades.

Level of Service is defined as a qualitative measure describing the operational conditions within a traffic stream as perceived by drivers and/or passengers. A Level of Service definition generally describes these conditions in terms of factors such as speed and travel time, freedom to manoeuvre, traffic interruptions, comfort, convenience and safety. Level of Service A provides the best traffic conditions, with no restriction on desired travel speed or overtaking. Level of Service B to D describes progressively worse traffic conditions. Level of Service E occurs when traffic conditions are at or close to capacity, and there is virtually no freedom to select desired speeds or to manoeuvre in the traffic stream. The service flow rate for Level of Service E is taken as the capacity of a lane or roadway.

HCM 2000 and Austroads (2009) present a guide to the Levels of Service attained under various traffic volume demands on two way, two lane roads. This assumes a nominal capacity of 3,200 passenger car equivalents per hour ( $\mathrm{pc} / \mathrm{hr} \mathrm{)} \mathrm{for} \mathrm{the} \mathrm{two} \mathrm{way} \mathrm{flow}$. heavy vehicle is equivalent to a number of passenger car equivalents, with the adjustment factor being dependent upon local conditions. The Levels of Service are presented in Table 3.9, and their equivalent volume/capacity ratio is also presented.

Table 3.9 - Levels of Service on Two Way Two Lane Roads

| Level of Service | Maximum Volume per Hour | Maximum Volume/Capacity |
| :---: | :---: | :---: |
| A | 490 | 0.15 |
| B | 780 | 0.24 |
| C | 1,190 | 0.37 |
| D | 1,830 | 0.57 |
| E | 3,200 | 1.00 |

Source: HCM 2000, Capacity $=3,200 \mathrm{pc} / \mathrm{hr}$

An approximation of the capacity of the travel lanes on the surveyed roads can be made by considering adjustment factors given by Austroads (2009) for lane widths, lateral clearances, and heavy vehicles. The nominal capacities of the surveyed roads were calculated, and the resulting Levels of Service during the average weekday peak hour are presented in Table 3.10.

Table 3.10 - Existing Peak Hour Levels of Service at Maximum Coal Haulage

|  | Capacity <br> (vehicles/hour) | Volume <br> (vehicles/hour) | Volume/Capacity <br> Ratio | Level of <br> Service |
| :--- | :---: | :---: | :---: | :---: |
| Weekday 6.00 to 7.00am |  |  |  |  |
| Thasman Mine Access | 1,257 | 57 |  |  |
| George Booth Drive | 2,322 | 809 | 0.05 | A |
| John Renshaw Drive | 2,842 | 818 | 0.35 | C |
| Weekday 4.00 to 5.00pm |  |  |  | C |
| Tasman Mine Access | 1,252 | 46 | 0.04 | A |
| George Booth Drive | 2,550 | 929 | 0.36 | C |
| John Renshaw Drive | 2,886 | 905 | 0.31 | C |
| Saturday Peak |  |  |  |  |
| Tasman Mine Access | 3,200 | 19 | 0.01 | A |
| George Booth Drive | 2,746 | 543 | 0.20 | B |
| John Renshaw Drive | 3,048 | 583 | 0.19 | B |

A Coal haulage does not occur prior to 7.00 am , however for the purpose of this assessment, is
conservatively included in the on-street peak hour

It is noted that the calculated capacities are influenced by the surveyed proportion of heavy vehicles during the peak hour under investigation. When the proportion of heavy vehicles is reduced, the total number of vehicles able to be carried on the road is increased, and vice versa. The calculated "capacity" of the road therefore differs between the morning and evening peak hour conditions due to the differences in the contribution of heavy vehicles to total volumes.

This is a general assessment for planning purposes only, rather than a detailed assessment of the particular characteristics of these roads. Most notably, it does not take into account the presence of the existing overtaking lanes, which improve the Level of Service along a route. It assumes that coal haulage occurs at the maximum rate during the peak hours, i.e. 12 loaded trucks departing Tasman, which are assumed to be matched by 12 empty returning vehicles during the same hour.

This general assessment suggests that the Levels of Service experienced on these roads are satisfactory during the weekday and Saturday peak hours.

### 3.10 Existing Operation of Intersections

Intersections are typically the critical locations in the road network, due to the need for conflicting movements to occupy the same road space. The operation of key intersections relevant to the Project is discussed in this section.

### 3.10.1 Project Intersection Traffic Surveys

Surveys of vehicle turning movements were undertaken on Thursday 2 February 2012 between 6.00 am and 9.00 am , and between 3.00 pm and 6.00 pm at the intersections of:

- George Booth Drive with the Daracon Quarry access road;
- George Booth Drive with John Renshaw Drive;
- John Renshaw Drive with Buchanan Road; and
- John Renshaw Drive with the Donaldson access road.

These time periods were surveyed to quantify traffic conditions at the intersections during the on-street peak periods determined through the traffic volume surveys (refer Section 3.7.2). The latter two surveys included only the movements into and out of the minor road, with estimates of through movements being made by reference to adjacent intersections.

It is noted that during the survey period, work was being undertaken on the Hunter Expressway Buchanan interchange, which would be expected to influence traffic conditions, particularly in the vicinity of Buchanan Road and the roundabout at George Booth Drive and John Renshaw Drive. Daracon Group has indicated that the Daracon access road was being used by Hunter Expressway construction traffic at the time of the surveys. Such influences would tend to result in increased traffic volumes due to construction traffic, and thus the surveyed conditions are considered to be busier than would otherwise be expected.

The peak hour results of those surveys are summarised in Table 3.11, noting that the peak hours at the different intersections did not occur during the same time period. The intersections of John Renshaw Drive with George Booth Drive and Buchanan Road have been considered together as a single intersection with regard to identifying the peak hour, in consideration of their proximity and the plan to reconstruct this as a
four way intersection as part of the Hunter Expressway project (Section 3.4). The full survey results are presented in Attachment B.

Table 3.11 - Surveyed Peak Hour Traffic at Intersections February 2012 (vehicles/hour)

| Road | Location | AM Peak | PM Peak |
| :--- | :---: | :---: | :---: |
| Donaldson Access Road and John Renshaw Drive | $6.00-7.00 \mathrm{am}$ | $4.00-5.00 \mathrm{pm}$ |  |
| Donaldson Access Road | North of John Renshaw Drive | 120 | 106 |
| Daracon Quarry Access Road and George Booth Drive | $7.30-8.30 \mathrm{am}$ | $4.45-5.45 \mathrm{pm}$ |  |
| Daracon Access Road | East of George Booth Drive | 24 | 22 |
| George Booth Drive | South of Daracon Quarry Access | 985 | 1,202 |
|  | North of Daracon Quarry Access | 997 | 1,206 |
| George Booth Drive, John Renshaw Drive and Buchanan Road | $7.45-8.45 \mathrm{am}$ | $4.45-5.45 \mathrm{pm}$ |  |
| Buchanan Road | North of John Renshaw Drive | 547 | 624 |
| George Booth Drive | South of John Renshaw Drive | 809 | 1,031 |
| John Renshaw Drive | West of George Booth Drive | 1,436 | 1,830 |
|  | East of George Booth Drive | 1,247 | 1,405 |
|  | East of Buchanan Road | 768 | 887 |

Note: includes effects of Hunter Expressway construction traffic

### 3.10.2 Existing Intersection Operation

The operation of the intersections was analysed using SIDRA Intersection, an analysis programme which determines characteristics of intersections operating conditions including the degree of saturation, average delays, and levels of service. The degree of saturation, or $x$-value, is the ratio of the arrival rate of vehicles to the capacity. The operating characteristics can be compared with the performance criteria set out in Table 3.12. It is noted that average delay per vehicle is expressed in seconds per vehicle and is measured for the movement with the highest average delay at roundabout and priority intersections such as those surveyed.

Table 3.12 - Level of Service Criteria

| Level of Service | Average Delay per <br> Vehicle <br> (seconds/vehicle) | Traffic Signals, Roundabout | Give Way and Stop Signs |
| :---: | :---: | :---: | :---: |
| A | less than 14 | Good operation | Good operation |
| B | 15 to 28 | Good with acceptable delays and spare capacity | Acceptable delays and spare capacity |
| C | 29 to 42 | Satisfactory | Satisfactory, but accident study required |
| D | 43 to 56 | Operating near capacity | Near capacity and accident study required |
| E | 57 to 70 | At capacity; at signals, incidents will cause excessive delays. Roundabouts require other control mode | At capacity, requires other control mode |
| F | $>70$ | Extra capacity required | Extreme delay, traffic signals or other major treatment required |

The results of the analysis are presented in Table 3.13, noting that the reported average delay is for the movement with the highest average delay per vehicle at these three intersections.

Table 3.13 - Existing Intersection Conditions (Surveyed February 2012)

| Intersection | Morning Peak Hour |  |  | Evening Peak Hour |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X-value | AD | LOS | X-value | AD | LOS |
| George Booth Drive and <br> John Renshaw Drive | 0.60 | 17.0 | B | 0.57 | 18.1 | B |
| George Booth Drive and | 0.34 | 71.8 | F | 0.44 | 47.6 | D |
| Daracon Quarry Access <br> John Renshaw Drive and <br> Donaldson Access | 0.25 | 17.9 | B | 0.25 | 16.3 | B |

AD = Average Delay per Vehicle (seconds per vehicle) worst movement
LOS $=$ Level of Service

The results indicate that the three intersections currently operate at satisfactory levels of service, with the exception of the Daracon Quarry access road intersection. The modelling suggests that vehicles turning right into or out of the Daracon Quarry access road can experience long delays. It is noted that these delays are experienced by only a small number of vehicles per hour, and that the overtaking lane in George Booth Drive can allow vehicles turning right out of the Quarry to conduct a de facto staged turn
which is not included in the SIDRA model. Through traffic on George Booth Drive in both directions experiences little or no delay at the intersection.

It is noted that Level of Service $C$ suggests that a review of accidents at an intersection may be warranted. The crash record review (refer to Section 3.6) found that there were no crashes reported at the Daracon Quarry intersection during the five years investigated.

### 3.11 Bus Routes

George Booth Drive is not used by any regular public bus services. Hunter Valley Buses operates Route 267 between Wallsend and West Wallsend. This route occasionally operates on George Booth Drive westwards to Seahampton.

Hunter Valley Buses operates two school buses each school day, one in the morning, and one in the afternoon. They travel along Buchanan Road, John Renshaw Drive, George Booth Drive and Richmond Vale Road to near Sheppeard Drive. The morning bus 252 travels empty southbound along the route, turning left into George Booth Drive at approximately 7.45 am . The school route then starts at Sheppeard Drive, and travels back to Buchanan Road, turning right into John Renshaw Drive at approximately 8.01 am . This bus picks up near Sheppeard Drive, and at one location on George Booth Drive. In the afternoon, the loaded bus travels the same route, turning left into George Booth Drive at 4.00 pm . It drops students near Sheppeard Drive, and at one location on George Booth Drive at 4.10 pm , then returns empty to Buchanan Road.

Rover Coaches operates Route 160 between Cessnock and Kurri Kurri, which uses John Renshaw Drive.

## 4 Future Road Transport Conditions

The traffic expected to be generated by the Project and the resulting future traffic conditions on the surrounding road network under the three future scenarios described in Section 2.3 are discussed in this chapter.

### 4.1 Non-Project Traffic Changes

Irrespective of the Project, changes to traffic conditions can be expected on both George Booth Drive and John Renshaw Drive. These changes would be the result of natural growth in traffic, and most significantly, the opening of the Hunter Expressway expected in late 2013 (refer to Section 3.4).

The historic AADT data for George Booth Drive and John Renshaw Drive (refer to Section 3.3) indicate that daily traffic volumes have generally increased over time, with decreases which are likely to have been the result of the opening of new sections of the F3 Freeway. Considering the changes in traffic conditions resulting from those "one off" changes to the road system, it is difficult to use the historical growth figures to predict future traffic volumes. Furthermore, the opening of the Hunter Expressway is also expected to have a material impact on traffic volumes on George Booth Drive and John Renshaw Drive, as discussed in Section 3.4.

Hyder (2008) presents traffic forecasts on George Booth Drive and John Renshaw Drive, for the base case conditions, i.e., without the Hunter Expressway (Table 4.1). The 2006 forecasts are compared with RMS count data, noting that the forecasts are average weekday vehicles per day, while the counts are axle pairs.

Table 4.1 - Base Case Daily Two Way Traffic Forecast (vehicles/day)

| Location | Count | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 2 6}$ | $\mathbf{2 0 3 1}$ |
| :--- | ---: | ---: | ---: | ---: | :--- |
| John Renshaw Dr west of F3 Freeway | $7,962^{\text {A }}$ | 10,200 | 23,000 | 32,200 | 36,600 |
| John Renshaw Dr west of George Booth Dr | $16,241^{\text {B }}$ | 19,100 | 30,700 | 37,700 | 42,300 |
| George Booth Dr west of F3 Freeway | $4,821^{\text {B }}$ | 4,600 | 8,600 | 10,200 | 11,600 |

[^1]Interpolating between the 2006 and 2016 forecasts in Table 4.1, it is evident that even taking into account the differences in the locations between the Project traffic surveys and the Hyder forecasts, the forecasts do not closely match the existing conditions on John Renshaw Drive or George Booth Drive.

In order to estimate future traffic volumes, the percentage rate of growth from the Hyder (2008) forecasts has therefore been used to develop adjusted base case forecasts from 2011 for the scenario years in this assessment.

As discussed in Section 3.4, the opening of the Hunter Expressway is expected to result in a moderate decrease of around $5 \%$ in two way traffic on John Renshaw Drive, and a significant decrease of over $90 \%$ in two way traffic on George Booth Drive, based on the 2031 forecasts prepared by Hyder. In the absence of more detailed forecasts, these percentage decreases have been applied to the adjusted base case forecasts to reflect the impacts of the opening of the Hunter Expressway in 2013.

Table 4.2 summarises the resulting growth factors to be applied to the measured 2011 traffic volumes to reflect the combined effects of increases in traffic resulting from general growth and decreases in traffic resulting from the opening of the Hunter Expressway at the end of 2013. The 2013 factors below refer to prior to opening of the Hunter Expressway.

Table 4.2 - Forecast Daily Two Way Background Traffic Growth Factors

| Year | John Renshaw Dr <br> West of F3 Freeway | John Renshaw Dr <br> West of George Booth Dr | George Booth Dr <br> West of F3 Freeway |
| :--- | :---: | :---: | :---: |
| Year 2011 | 1.000 | 1.000 | 1.000 |
| Year 2013 | 1.154 | 1.093 | 1.121 |
| Year 2017 | 1.362 | 1.192 | 0.092 |
| Year 2029 | 1.984 | 1.536 | 0.115 |

A Prior to opening of the Hunter Expressway

It is noted that based on the Hyder assessment, the resulting growth rates on John Renshaw Drive west of F3 freeway would be greater than those west of George Booth Drive.

The higher rates have been used in the assessment which follows, noting that the difference between these rates is quite significant over time: the higher rate suggests a nearly doubling of volumes by 2029 , while the lower rate suggests slightly more than a $50 \%$ increase. The Hyder (2008) forecasts, on which these growth rates are based, included large potential employment generating developments off John Renshaw Drive to the east of the Bloomfield CHPP. Although details of traffic generation and distribution from that modelling are not presented in the Hyder (2008) report, it is considered likely that significantly more of the traffic from these developments would travel to and from the east than the west. The Hyder (2008) forecast for John Renshaw Drive west of the F3 Freeway is therefore likely to include significant volumes associated with these employment land sites, whereas the forecast for John Renshaw Drive west of George Booth Drive is likely to have included lesser volumes to/from these sites. The Hyder (2008) forecasts may therefore overestimate the future increases in traffic on John Renshaw Drive between George Booth Drive and these future development sites.

Table 4.3 presents the forecasts of background average weekday and Saturday daily traffic on the surrounding roads, i.e., excluding all traffic associated with Tasman. This includes the effects of background growth in traffic described above, together with the predicted additional operational traffic generated by the ANE Production Facility on Echidna Drive (refer Section 3.5).

Table 4.3 - Daily Background (Non-Tasman Mine) Traffic Volumes (vehicles/day)

|  | Year 2011 | Year 2013 | Year 2017 | Year 2029 |
| :---: | :---: | :---: | :---: | :---: |
| Average Weekday |  |  |  |  |
| George Booth Drive |  |  |  |  |
| South of Existing Mine Access | 8,852 | 9,925 | 810 | 1,021 |
| North of Project Mine Access | 8,852 | 9,925 | 810 | 1,021 |
| John Renshaw Drive |  |  |  |  |
| West of Donaldson Access | 9,843 | 11,367 | 13,409 | 19,560 |
| Saturday |  |  |  |  |
| George Booth Drive |  |  |  |  |
| South of Existing Mine Access | 6,112 | 6,853 | 559 | 705 |
| North of Project Mine Access | 6,112 | 6,853 | 559 | 705 |
| John Renshaw Drive |  |  |  |  |
| West of Donaldson Access | 6,830 | 7,888 | 9,317 | 13,574 |

Excludes traffic associated with Tasman.

### 4.2 Project Traffic Generation

### 4.2.1 Project Pit Top W orks Employees

The pit top works include the construction of the new pit top and decommissioning of the existing pit top.

Construction of the new pit top would take place in 2013 and 2014, and would employ 20 contractors. Construction would take place between 7.00 am and 6.00 pm , with all contract employees present on the site. For the purposes of the assessment, it is estimated that the approach and departure routes of the construction employees would be similar to those of the existing employees (refer to Section 2.1.2). Conservatively, it is assumed that there would be no car pooling of construction employees, who would thus generate 40 vehicle trips per day. These would all be light vehicles, and would travel to and from the new pit top access road location.

Decommissioning of the existing pit top has been assumed to take place in 2017, and is estimated to employ similar numbers of personnel as the construction works. These employees would travel to and from the existing pit top access road.

### 4.2.2 Project Pit Top Works Deliveries and Visitors

Construction activity associated with the pit top construction and decommissioning would generate some additional deliveries (e.g. additional potable water, fuel, equipment and general consumables) and visitor vehicles above existing levels. For the purpose of this assessment, it is assumed that deliveries and visitors associated with the pit top construction activity in 2013 would be in the order of 65 vehicle trips per day. Deliveries and visitors associated with the decommissioning activity (2017) would be lower, at around 30 vehicle trips per day.

### 4.2.3 Project Waste Rock. Transport

Construction of the new pit top would generate waste rock, which is proposed to be transported off-site to the Donaldson Open Cut site using the existing coal haul route. This would occur during 2013, and would take place on weekdays between 7.00 am and 6.00 pm .

The maximum of trips generated by waste rock haulage and coal haulage combined (refer to Section 4.2.4) would be 236 vehicle trips per day, which is the existing maximum number of trips permitted for coal transport. This assessment assumes that waste rock transport would generate half of this combined maximum, or up to 118 heavy vehicle trips per day between the new pit top access and the Donaldson access road.

Combined with the coal haulage trucks (refer to Section 4.2.4), a maximum of 20 truck departures per hour is proposed, which would generate up to 40 heavy vehicle trips per hour, assuming the loaded truck trips are matched by empty return trips during the same hour.

### 4.2.4 Project Coal Haulage

The movement of coal and waste rock (refer to Section 4.2.3), between Tasman and the Donaldson access road would generate a combined maximum of 236 heavy vehicle trips per day during 2013, prior to the opening of the Hunter Expressway.

This assessment assumes that coal transport would generate half of this combined maximum, or up to 118 heavy vehicle trips per day between the existing pit top access and the Donaldson access road. Combined with the waste rock haulage trucks (refer to Section 4.2.3), a maximum of 12 truck departures per hour is proposed, which would generate 24 heavy vehicle trips per hour in 2013, assuming loaded truck trips are matched by empty returning vehicles within the same hour.

Following completion of the construction work for the new pit top and the opening of the Hunter Expressway, the transport of coal would increase to a maximum of 178 truck loads per day ( 356 truck trips per day). A maximum of 20 truck departures per hour has been adopted, which would generate 40 heavy vehicle trips per hour, assuming loaded truck trips are matched by empty returning vehicles within the same hour.

The existing pit top would remain in use until 2015, and the new pit top would be brought into use from 2014. During 2014 and 2015, the trucks being used to haul coal would use both the existing access and the new access to George Booth Drive.

On weekdays, coal truck movements would be restricted to the hours of 7.00 am to 10.00 pm . On Saturdays, coal truck movements would be limited to a maximum of 50 departures per day, and Saturday trucking would be limited to the hours of 7.00 am to 6.00 pm , on a maximum of 26 Saturdays per year.

### 4.2.5 Project Operational Employees

The number of operational employees would remain at 110 full time personnel until 2013, and would then increase to approximately 150 employees from 2014 and beyond. The opening of the Hunter Expressway is not likely to impact significantly on the distribution of most employee trips on the road network. Employees travelling to and from Kurri Kurri and Cessnock regions would be likely to have a faster trip on the Hunter Expressway to the Buchanan Interchange rather than along John Renshaw Drive. Employees travelling to and from the east would not be as likely to use the Hunter Expressway, as they would have to travel a substantially longer distance westwards to the Buchanan Interchange then back to Tasman along George Booth Drive, where George Booth Drive from the east would be quicker despite its lower speed environment. For this assessment, it is therefore assumed that the distribution of employee trips on the road network would remain similar to the existing situation, with the exception that employees to and from Kurri Kurri and Cessnock region (approximately $9 \%$ of total employees) would transfer to the Hunter Expressway from John Renshaw Drive. It is assumed that the level of car pooling would remain the same as the existing situation. It is further assumed that shift times and the relative number of employees per shift would remain the same as existing, i.e. on a typical weekday, 34 of the 151 employees would be rostered off, and the 117 employees remaining would generate some 212 vehicle trips per day.

On the Saturdays when coal haulage occurs, this would be done to reduce stockpiled coal. One additional employee would be required on the site to drive the front end loader, however there would be little variation to the existing number of employees. Due to the significantly lower background traffic and Tasman generated traffic on Saturdays (and Sundays), weekdays are more relevant to the following traffic assessment (and particularly intersection performance). Notwithstanding, daily traffic generation analysis has been undertaken for Saturdays to demonstrate the much lower traffic volumes that would occur.

The existing pit top would remain in use until 2015, and the new pit top would be brought into use from 2014. During 2014 and 2015, operational employees would use both the existing and the new accesses to George Booth Drive.

### 4.2.6 Project Operational Deliveries and Visitors

With the increase in coal production, it is anticipated that there would be a corresponding increase in the number of delivery and visitor trips. This assessment conservatively assumes that the $50 \%$ increase in maximum coal transport per day would result in a $50 \%$ increase in the number of delivery and visitor trips.

Deliveries and visitors are therefore anticipated to generate some 180 vehicle trips per day after 2014, of which $20 \%$ would be heavy vehicles.

During 2014 and 2015, operational deliveries and visitors would use both the existing and the new accesses to George Booth Drive.

### 4.2.7 Total Project Traffic Generation

The total volume of traffic generated by the Project for each of the three scenarios discussed in Section 2.3 is presented in Table 4.4, which includes a comparison with the existing Tasman traffic. A breakdown of the trips by the various Project activities for each scenario is provided in Attachment C.

Table 4.4 - Estimated Distribution of Tasman/Project Vehicle Trips (vehicles/day)

|  | Year 2011 | Year 2013 | Year 2017 | Year 2029 |
| :--- | ---: | :---: | :---: | :---: |
| Average Weekday |  |  |  |  |
| Tasman Mine Access | 424 | 392 | 70 | 0 |
| Existing | 0 | 223 | 748 | 748 |
| New |  |  |  |  |
| George Booth Drive | 200 | 275 | 338 | 287 |
| South of Existing Mine Access | 224 | 340 | 480 | 461 |
| North of Project Mine Access |  |  |  |  |
| John Renshaw Drive | 20 | 29 | 34 | 29 |
| East of Donaldson Access | 170 | 265 | 390 | 385 |
| West of Donaldson Access |  |  |  |  |
| Saturday | 96 | 0 | 0 | 0 |
| Tasman Mine Access | 0 |  | 196 | 196 |
| Existing | 73 | 73 | 73 |  |
| New | 23 | 23 | 123 | 73 |
| George Booth Drive | 5 | 5 | 5 | 123 |
| South of Existing Mine Access | 5 | 5 | 105 | 5 |
| North of Project Mine Access |  |  |  | 105 |
| John Renshaw Drive |  |  |  |  |
| East of Donaldson Access |  |  |  |  |
| West of Donaldson Access |  |  |  |  |

Assumes coal and waste rock haulage at maximum rates

As shown in Table 4.4, the estimated Project contribution to total movements on John Renshaw Drive east of the Donaldson access road is very low and does not warrant any further assessment in this report.

### 4.3 Future Daily Traffic Volumes

### 4.3.1 Future Daily Traffic Volumes - No Project

Without the proposed Project, Tasman would continue operating for a period. Should this occur, there would be traffic implications following its closure, in order to decommission the facilities. For the purpose of this analysis, it has been assumed that it would generate similar volumes of traffic as anticipated for the decommissioning of the existing pit top under the Project conditions in 2017.

Table 4.5 presents the forecasts of average weekday and Saturday daily traffic on the surrounding roads, assuming that the Project does not proceed, and that Tasman ceases mining operations approximately at the end of 2014. This includes the effects of background growth in traffic described above, together with the additional traffic generated by the ANE Production Facility on Echidna Drive (refer Section 3.5) and decommissioning activity in 2017.

Table 4.5 - Daily Traffic Volumes - No Project (vehicles/day)

|  | Year 2011 | Year 2013 | Year 2017 | Year 2029 |
| :--- | ---: | ---: | ---: | :---: |
| Average Weekday |  |  |  |  |
| Tasman Mine Access | 510 | 510 | 70 | 0 |
| Existing | 0 | 0 | 0 | 0 |
| New |  |  |  |  |
| George Booth Drive | 9,052 | 10,125 | 861 | 1,021 |
| South of Existing Mine Access | 9,162 | 10,235 | 829 | 1,021 |
| North of Project Mine Access |  |  |  |  |
| John Renshaw Drive | 10,099 | 11,623 | 13,414 | 19,560 |
| West of Donaldson Access | 96 |  |  |  |
| Saturday | 0 | 06 | 0 | 0 |
| Tasman Mine Access |  | 0,185 | 6,926 | 559 |
| Existing | 6,135 | 6,876 | 559 | 0 |
| New |  |  |  | 705 |
| George Booth Drive | 6,835 | 7,893 | 9,317 | 13,574 |
| South of Existing Mine Access | 6 |  |  |  |
| North of Project Mine Access |  |  |  |  |
| John Renshaw Drive |  |  |  |  |
| West of Donaldson Access |  |  |  |  |

Note: assumes maximum coal haulage rate until closure of Tasman Underground Mine

Thus, without the Project, the most significant change in traffic volumes would occur on George Booth Drive as a result of the opening of the Hunter Expressway in late 2013.

### 4.3.2 Future Daily Traffic Volumes - With Project

Table 4.6 summarises the daily traffic volumes expected on the surrounding roads with the proposed Project, assuming that coal haulage takes place at the maximum rates proposed.

Table 4.6 - Future Two Way Daily Traffic With Project (veh/day)

|  | Year 2011 | Year 2013 | Year 2017 | Year 2029 |
| :---: | :---: | :---: | :---: | :---: |
| Average Weekday |  |  |  |  |
| Tasman Mine Access |  |  |  |  |
| Existing | 510 | 392 | 70 | 0 |
| New | 0 | 223 | 748 | 748 |
| George Booth Drive |  |  |  |  |
| South of Existing Mine Access | 9,052 | 10,200 | 1,148 | 1,308 |
| North of New Mine Access | 9,162 | 10,265 | 1,290 | 1,482 |
| John Renshaw Drive |  |  |  |  |
| West of Donaldson Access | 10,099 | 11,632 | 13,799 | 19,945 |
| Saturday |  |  |  |  |
| Tasman Mine Access |  |  |  |  |
| Existing | 96 | 96 | 0 | 0 |
| New | 0 | 0 | 196 | 196 |
| George Booth Drive |  |  |  |  |
| South of Existing Mine Access | 6,185 | 6,926 | 632 | 778 |
| North of New Mine Access | 6,135 | 6,876 | 682 | 828 |
| John Renshaw Drive |  |  |  |  |
| West of Donaldson Access | 6,835 | 7,893 | 9,422 | 13,679 |

Note: assumes maximum waste rock and coal haulage rates

Comparing the average daily volumes with and without the Project (Table 4.5 and Table 4.6) it is evident that the background growth in traffic and the changes in traffic resulting from the opening of the Hunter Expressway would be more significant than the traffic generated by the Project.

Table 4.6 demonstrates that when coal haulage occurs on a Saturday, the resulting traffic volumes on the surrounding roads would remain well below the average weekday volumes.

Comparing Table 4.4 and Table 4.6, the contribution of Tasman traffic to total traffic on the haul route on George Booth Drive and John Renshaw Drive can be determined (Table 4.7).

Table 4.7 - Tasman's Contribution to Total Traffic with the Project

| Location | Year 2011 | Year 2013 | Year 2017 | Year 2029 |
| :--- | :---: | :---: | :---: | :---: |
| Average Weekday |  |  |  |  |
| George Booth Drive | $2.4 \%$ | $3.3 \%$ | $37.2 \%$ | $31.1 \%$ |
| John Renshaw Drive | $1.7 \%$ | $2.3 \%$ | $2.8 \%$ | $1.9 \%$ |
| Saturday |  |  |  |  |
| George Booth Drive | $0.4 \%$ | $0.3 \%$ | $18.0 \%$ | $14.9 \%$ |
| John Renshaw Drive | $0.1 \%$ | $0.1 \%$ | $1.1 \%$ | $0.8 \%$ |

Assumes haulage at maximum permitted rates

Tasman would therefore generally make only a small contribution to the total traffic on the roads. In 2017, when peak coal haulage occurs, the Project contribution to total traffic on George Booth Drive would be around $37 \%$ on weekdays, however this increase in contribution is a function of the total traffic volumes on George Booth Drive declining by a very large margin due to the opening of the Hunter Expressway. This is shown in Table 4.6, which indicates that with the Project in 2029, average weekday volumes on George Booth Drive would be expected to be around $16 \%$ of the existing traffic.

With regard to heavy vehicles and assuming coal haulage at the maximum rate, George Booth Drive would presently carry some 972 heavy vehicles per day north of Tasman, of which 243 would be associated with Tasman. Assuming that the proportion of background heavy vehicles, i.e. those not associated with Tasman, would remain at its existing level, in 2017 with the Project and maximum coal haulage, George Booth Drive north of Tasman would be expected to carry 439 heavy vehicles per day, of which 372 vehicles per day would be associated with Tasman. The contribution of Tasman to overall heavy vehicle volumes would increase, however the total number of heavy vehicles on George Booth Drive would be less than half the existing number.

### 4.4 Peak Hour Project Traffic Generation

The estimated traffic generation of the Project during the weekday on-street peak hours is summarised in Table 4.8. Additional details regarding the derivation of these volumes and the underlying assumptions are provided in Attachment C. As the Saturday Project traffic would be significantly lower than the average weekday Project traffic, and background Saturday traffic would also be lower, the Saturday peak hour does not require assessment. It follows that if the average weekday peak hour conditions are
satisfactory, the Saturday peak hour conditions (when coal haulage occurs at lower rates and workforce movements are less) would also be satisfactory.

Table 4.8 - Estimated Weekday Peak Hour Tasman Mine Traffic Generation

| Year | Daily | AM | PM |
| :--- | :---: | :---: | :---: |
| 2011 | 510 | 57 | 46 |
| 2013 | 615 | 71 | 53 |
| 2017 | 818 | 96 | 77 |
| 2029 | 748 | 86 | 72 |

Assumes coal and waste rock haulage at maximum rates

The estimated distribution of Tasman traffic during the weekday on-street peak hours is presented in Table 4.9.

Table 4.9 - Tasman Mine Vehicle Trips During Weekday Peak Hours (vehicles/hour)

|  | Year 2011 |  | Year 2013 |  | Year 2017 |  | Year 2029 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | AM | PM | AM | PM | AM | PM | AM | PM |
| Tasman Mine Access | 57 | 46 | 45 | 35 | 11 | 5 | 0 | 0 |
| Existing | 0 | 0 | 26 | 18 | 86 | 72 | 86 | 72 |
| New |  |  |  |  |  |  |  |  |
| George Booth Drive | 25 | 17 | 35 | 21 | 42 | 28 | 35 | 24 |
| South of Existing Mine Access | 32 | 30 | 36 | 32 | 55 | 49 | 52 | 48 |
| North of New Mine Access |  |  |  |  |  |  |  |  |
| John Renshaw Drive | 26 | 25 | 27 | 26 | 44 | 42 | 43 | 42 |
| West of Donaldson Access | 26 |  |  |  |  |  |  |  |

Assumes coal and waste rock haulage at maximum rates

### 4.5 Future Midblock Levels of Service

The impact of the future traffic volumes with and without the Project on Levels of Service during the average weekday peak hours has been reviewed, and the results are summarised in Table 4.10. Full results are presented in Attachment C. Again it is noted that this is a general assessment only, which assumes a single travel lane in each direction and does not take the positive impacts of overtaking lanes into account, which act to reduce the interaction between vehicles and improve the Level of Service.

Table 4.10 - Estimates of Midblock Levels of Service

|  | No Project |  | With Project |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 6.00 to 7.00am ${ }^{\text {A }}$ | 4.00 to 5.00 pm | 6.00 to $7.00 \mathrm{am}^{\text {A }}$ | 4.00 to 5.00 pm |
| Existing Mine Access Rd |  |  |  |  |
| 2011 | A | A | - | - |
| 2013 | A | A | A | A |
| 2017 | A | A | A | A |
| New Mine Access Rd |  |  |  |  |
| 2013 | - | - | A | A |
| 2017 | - | - | A | A |
| 2029 | - | - | A | A |
| George Booth Drive |  |  |  |  |
| 2011 | C | C | - | - |
| 2013 | C/D | D | D | D |
| 2017 | A | A | A | A |
| 2029 | A | A | A | A |
| John Renshaw Drive |  |  |  |  |
| 2011 | C | C | - | - |
| 2013 | C | C | C | C |
| 2017 | D | D | D | D |
| 2029 | E | E | E | E |

Assumes coal and waste rock haulage at maximum hourly rates
${ }^{\text {A }}$ Coal haulage and waste rock haulage would not occur prior to 7.00 am , however for the purpose of this assessment, is conservatively added to the on-street peak hour.

The table demonstrates that while Levels of Service on George Booth Drive and John Renshaw Drive can be expected to decline as background growth continues, the Project traffic would have no impact on the predicted Levels of Service on George Booth Drive and John Renshaw Drive. This is to be expected given that the Project is predicted to only contribute some $2 \%$ of total traffic in 2029 on John Renshaw Drive and that the total traffic volumes on George Booth Drive would be much lower than the existing levels due to the opening of the Hunter Expressway.

It should be noted that the higher of the two growth factors suggested by Hyder (2008) has been applied to arrive at these estimates. Should this higher growth eventuate, measures may be required to address the capacity of John Renshaw Drive in the future, regardless of whether or not the Project proceeds, however as noted above, it is considered likely that the growth rates used may overestimate the growth in traffic on John Renshaw Drive between George Booth Drive and Black Hill.

### 4.6 Future Peak Hour Operation of Intersections

The peak hour operation of the key intersections has been assessed using SIDRA Intersection, to determine what influence the forecast changes in traffic conditions could be expected to have on their operating conditions. It is noted that no information is available regarding forecasts of the effects of the Hunter Expressway and background traffic growth on peak hour turning movements at any of the intersections. The forecast increases in daily traffic volumes would not necessarily result in a similar proportional increase in peak hourly traffic. However in the absence of detailed forecasts of hourly conditions, the analysis which follows assumes that the hourly background traffic increases (or decreases) over time would be at the same rate as daily background traffic increases.

Further, the analyses which follow assume that the busiest hours for traffic generated by the Project would coincide with the busiest hours surveyed at the intersections in February 2012 (Section 3.10.1). This will tend to result in an overestimate of future traffic volumes, and thus conservatively high estimates of future delays and low estimates of spare intersection capacity.

### 4.6.1 George Booth Drive, John Renshaw Drive and Buchanan Road

The roundabout at the intersection of George Booth Drive and John Renshaw Drive is planned to be altered with the construction and opening of the Hunter Expressway. Buchanan Road will be realigned to form a fourth northern leg to the roundabout. The Hunter Expressway Alliance general arrangement plans of the future layout of the roundabout indicate that George Booth Drive is to remain with a single approach and a single departure lane; Buchanan Road is proposed to have a single departure lane and double approach lanes over a length of approximately 130 m ; John Renshaw Drive is to have two approach and two departures lanes on both its approaches, narrowing to a single lane in each direction approximately 90 m to the west of the roundabout. The roundabout would have two circulating lanes on its northern and southern sides, and single circulating lanes on the eastern and western sides. The speed limit on all approaches is to be $60 \mathrm{~km} / \mathrm{hr}$.

As the existing intersection turning movement surveys were conducted during the atypical construction period of the Hunter Expressway, it is expected that the surveyed volumes are higher than would otherwise have been expected. The results at the intersections of John Renshaw Drive with George Booth Drive and Buchanan Road are expected to have been significantly impacted, given their proximity to the construction work.

Given the levels of uncertainty resulting from both the extent to which construction traffic affected the survey results, and the lack of information on the implications of the opening of the Hunter Expressway on peak hour conditions and intersection turning movements, it is not considered that any reasonable degree of accuracy can be assured regarding forecasting of future turning movements at the future intersection of George Booth Drive and John Renshaw Drive and Buchanan Road. The redesign of this intersection, together with the Buchanan Interchange, were undertaken with the objective to provide sufficient demand for the long term.

To review the general future operation of the intersection, it has therefore been considered with regard to the spare capacity available during the peak times once the intersection upgrades have been undertaken (Table 4.11).

Table 4.11 - George Booth Drive-John Renshaw Drive Operating Conditions

|  | Surveyed February 2012 |  | 2012 |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Volumes Upgraded $^{\mathbf{B}}$ |  |  |  |
| X-value | 0.60 | 0.57 | 0.54 | 0.47 |
| Average Delay | 17.0 | 18.1 | 14.6 | 16.3 |
| Level of Service | B | PM Peak | AM Peak | PM Peak |
| Effective Intersection Capacity (vehicles) | 3,063 | 3,920 | 3,456 | 4,852 |
| Demand (vehicles) | 1,839 | 2,245 | 1,874 | 2,301 |
| Spare Capacity (vehicles) | 1,224 | 1,675 | 1,582 | 2,551 |

A Three way roundabout excluding Buchanan Road
${ }^{B}$ Four way roundabout including Buchanan Road

The results demonstrate that under the existing, albeit atypically high, traffic demands, the new roundabout would provide significant additional capacity during both the morning and evening peak hours. Table 4.9 indicates that the greatest increases in peak hour Tasman traffic generation would occur in 2017, at which time, the Project would contribute 54 and 49 vehicles through the intersection during the morning and evening peak hours respectively. It is estimated that during the surveys, Tasman contributed some 13 and 18 vehicles during the morning and evening peak hours respectively. The additional traffic through the intersection in 2017 as a result of the Project would therefore be in the order of 30 to 40 vehicles, assuming coal haulage occurs at the maximum rate permitted. This is a very small portion of the spare capacity available, and of the total traffic through the intersection.

The roundabout has been designed to accommodate the longer term demands following completion of the Hunter Expressway, and the Project's contribution to those demands would be very low.

### 4.6.2 George Booth Drive, New Project Access and Daracon Quarry Access

The proposed roundabout at the intersection of George Booth Drive with the Daracon Quarry access road and the Tasman new pit top access road would have single approach and departure lanes on all four legs, with a single circulating lane. The operation of the proposed roundabout has been assessed with estimated turning movements with the Project traffic for the future years. This assumes that the peak hour through traffic on George Booth Drive would increase and decrease at the same rate as the daily traffic forecast rates (Table 4.2).

Table 4.12 - George Booth Drive-New Project Access Operating Conditions

|  | Morning Peak Hour |  |  | Evening Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X-value | AD | LOS | X-value | AD | LOS |
| Year 2013 | 0.44 | 21.5 | B | 0.52 | 17.9 | B |
| Year 2017 | 0.07 | 14.8 | B | 0.12 | 15.7 | B |
| Year 2029 | 0.07 | 14.8 | B | 0.09 | 15.7 | B |

The results demonstrate that the intersection can be expected to operate at good levels of service during the morning and evening peak hours with the Project, and the morning peak hour performance for vehicles turning right out of the Daracon Quarry would be improved. It is noted that the largest portion of the average delays reported
above are associated with the time taken to negotiate the roundabout, rather than waiting for a suitable gap in the traffic stream.

The roundabout would have spare capacity for additional traffic should the Daracon Quarry alter their access arrangements to increase use of the George Booth Drive access in the future. As a test of capacity for increased movements in and out of the Daracon Quarry, the proposed roundabout was assessed for 2029, but assuming that there would be 200 heavy vehicles turning left and right into and out of Daracon Quarry, i.e. a total of 800 heavy vehicles. Under this scenario, the roundabout would operate at Level of Service C, and would still retain spare capacity.

### 4.6.3 John Renshaw Drive and Donaldson Access

The existing layout of the intersection of John Renshaw Drive and the Donaldson Access would be retained. This is a "seagull" intersection with a storage lane in John Renshaw Drive for vehicles waiting to turn right into Donaldson, and a staged crossing for vehicles turning right out of Donaldson prior to joining the westbound traffic stream in John Renshaw Drive.

The operation of the intersection has been assessed using SIDRA, assuming no changes are made to layout of the intersection, and that coal haulage from Tasman to the Bloomfield CHPP occurs at the maximum hourly rate, matched by an equal number of empty trucks returning during the same hour (Table 4.13). It is noted that the assessment overestimates the number of trucks turning into and out of the access road, as given the uncertainty in the number of Tasman trucks using the access during the surveyed peak hour, the maximum number of coal trucks permitted in an hour has been added to the surveyed turning movements.

Table 4.13 - John Renshaw Drive-Donaldson Access Operating Conditions

|  | Morning Peak Hour 7-8am |  | Evening Peak Hour 4-5pm |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X-value | AD | LOS | X-value | AD | LOS |
| Year 2012 | 0.25 | 32.2 | C | 0.25 | 20.1 | B |
| Year 2013 | 0.27 | 34.6 | C | 0.27 | 21.4 | B |
| Year 2017 | 0.33 | 50.2 | D | 0.33 | 27.3 | B |
| Year 2029 | 0.56 | $>100$ | F | 0.47 | 44.1 | D |

[^2]The results demonstrate that the peak Project traffic in the short to medium terms would be readily accommodated by this intersection. Should the high rate of traffic growth forecast by Hyder (2008) eventuate, excessive delays may result at the intersection of John Renshaw Drive and the Donaldson access in the long term, assuming that coal haulage occurs at the maximum rate during the on-street peak hours. These delays would be to vehicles turning right out of Donaldson against the heavy eastbound flows. Through traffic on John Renshaw Drive would not be impacted by the small increase to turning movements in and out of the Donaldson access.

It is reiterated that the analysis is considered to be conservative, assuming high peak hour growth on John Renshaw Drive, combined with maximum coal haulage being matched by an equal number of trucks in the reverse direction during the same hour, and also coinciding with the peak hour background traffic (as discussed in Section 2.3, in practice coal haulage and delivery traffic is expected to be dropping off in the final years of the Project, however this assessment assumes it remains constant at maximum rates). However, this may potentially represent a traffic growth scenario that could eventuate with the development of the Black Hill site to the east of the Bloomfield CHPP, should it proceed.

The Project would have only a minor contribution to the intersection operating conditions reported in Table 4.13, as it would increase peak hour through volumes on John Renshaw Drive by only a small number of trips, primarily associated with the additional employees travelling to and from Tasman. The number of Project trucks turning in and out of Donaldson at peak times would also be relatively low.

It is noted that Level of Service C suggests that a review of accidents at an intersection may be warranted. The crash record review (Section 3.6) found that there were no crashes reported at the Donaldson access road intersection during the five years investigated.

Given the level of uncertainty in the traffic forecasts at this intersection, it is recommended that the operation of this intersection be monitored periodically to determine whether any measures are required to address delays experienced by vehicles turning in or out of the Donaldson access road.

### 4.7 Project Coal Haulage Travel Characteristics

The relocation of the pit top access from its existing location would decrease the overall distance travelled by Tasman traffic to and from the north, and increase the distance travelled to and from the south. This would reduce the time and distance travelled by the coal haulage trucks on the public roads.

The impacts of the Project on annual Vehicle Kilometres of Travel (VKT) and annual Vehicle Hours of Travel (VHT) for the haulage trucks are presented in Table 4.14.

Table 4.14 - Haulage Truck Annual Travel Characteristics

|  | Existing | Maximum | Proportion of <br> Existing |
| :--- | ---: | ---: | ---: |
| Coal per Year (tonnes) | 975,000 | $1,500,000$ | $154 \%$ |
| Haulage Truck Trips per Year | 55,714 | 85,714 | $154 \%$ |
| Vehicles Kilometres Travelled per Year | 929,314 | $1,171,714$ | $126 \%$ |
| Vehicle Hours of Travel per Year | 13,340 | 16,179 | $121 \%$ |

The results demonstrate that due to the proposed relocation of operations to the new pit top on George Booth Drive, the proposed $54 \%$ increase in the coal haulage truck trip generation would result in only a $26 \%$ increase in travel distance and $21 \%$ increase in travel time associated with coal haulage.

### 4.8 Buses

The small traffic increases resulting from the Project are unlikely to have any measurable impact on the existing school bus services on George Booth Drive (Section 3.11) prior to opening of the Hunter Expressway. Following the opening of the Hunter Expressway, traffic volumes on George Booth Drive would decline, and thus there would a reduced probability of interaction between school buses and general traffic on George Booth Drive. Considering the shift times, the peak times for Project traffic generation would not necessarily coincide with the movement of school buses on George Booth Drive.

### 4.9 Car Parking

Car parking would be provided on-site to meet the expected demands.

### 4.10 Road Safety

In 2006, Donaldson undertook various upgrading works at the private driveways on George Booth Drive on the haulage routes. These upgrading included shoulder widening to provide a 3.5 m wide through lane and 3.0 m wide shoulder, with driveways adjacent to the shoulder widening adjusted to suit the widened pavement and sealed, and driveways opposite the shoulder widening sealed.

During recent consultation, a number of landholders who have private driveways on George Booth Drive expressed further concerns regarding their access to and from George Booth Drive with the continuing presence of haulage trucks on the route.

Donaldson Coal has commissioned a driveway safety review of the private driveway accesses on George Booth Drive between John Renshaw Drive and Richmond Vale Road. As a result of that review, Donaldson Coal will commit to further upgrade works on this section of George Booth Drive as may be deemed necessary. Such works may include additional widening of shoulders and improved signage, and are outlined in the Main Text of the Environmental Impact Statement.

### 4.11 Oversize Vehicles

A number of oversize vehicle movements would be generated on an occasional basis during the life of the Project. These oversize vehicle movements would be associated with the transport of mining equipment and infrastructure to and from the Project.

Although the number of oversize vehicle movements associated with the Project is anticipated to be small, the requirement for each proposed oversize vehicle movement would be reviewed and alternative transport options, such as rail, would be considered prior to the movement.

The proposed route for any oversize vehicles would be negotiated with RMS and relevant local councils on a case-by-case basis. All oversize loads would be transported with the relevant permits obtained in accordance with Operating Conditions: specific permits for oversize and over-mass vehicles and loads (RTA, 2007), and any other licences and escorts as required by the regulatory authorities.

## 5 Conclusions

- On an average weekday, Tasman currently contributes less than $3 \%$ of the total traffic on George Booth Drive and less than $2 \%$ of the total traffic on John Renshaw Drive.
- At the existing maximum haulage rate, Tasman can currently contribute up to $25 \%$ of heavy vehicles on George Booth Drive and $18 \%$ of heavy vehicles on John Renshaw Drive. The maximum number of haulage trucks generated by Tasman would remain at the existing level until after the Hunter Expressway is opened.
- The Project would increase the maximum total weekday traffic generation of Tasman (operating at maximum coal haulage rates) from 510 vehicles per day to 818 vehicles per day.
- The length of each coal haulage trip on the public roads would be reduced by approximately 3 km with the development of the new pit top, with the proposed $54 \%$ increase in the coal haulage task resulting in a corresponding $26 \%$ increase in VKT and $21 \%$ increase in VHT.
- Before the opening of the Hunter Expressway, the Project would contribute less than $4 \%$ of total weekday traffic on George Booth Drive and less than $3 \%$ of total weekday traffic on John Renshaw Drive.
- After the opening of the Hunter Expressway and at Project maximum coal haulage rates, weekday total traffic on George Booth Drive will decline well below existing levels and the Project would contribute less than $3 \%$ of total weekday traffic on John Renshaw Drive.
- After the opening of the Hunter Expressway and at Project maximum coal haulage rates Saturday total traffic on George Booth Drive will decline well below existing levels and the Project would contribute approximately $1 \%$ of total Saturday traffic on John Renshaw Drive. Project Saturday coal haulage would be limited to a maximum of 26 Saturdays per year.
- Donaldson Coal has commissioned a review of private driveway accesses on George Booth Drive and the results of this review are detailed in the Main Report of the Environmental Impact Statement.
- Long term growth forecasts presented in this report reference forecasts and modelling work undertaken by Hyder (2008) which take into consideration forecasts of significant employment and population growth in the Lower Hunter Region. Application of these forecasts to peak hour conditions suggest that all relevant intersection performances would be satisfactory in the short to medium term, and that the performance of the new roundabout on George Booth Drive would be satisfactory in the long term. Application of these forecasts to traffic on John Renshaw Drive indicates possible lengthy delays to vehicles exiting the Donaldson access road could occur in the long term (i.e. 2029).
- It is recommended that long term monitoring of the operation of the intersection of the Donaldson access road with John Renshaw Drive be undertaken to review the impacts of increasing through traffic on the intersection performance, particularly if the Black Hill site is developed to the east of the intersection.

Overall, this study has found that the extension of the life of Tasman would have only minor impacts on the operation of the surrounding road system, and would reduce the road system's exposure to individual coal haulage truck trips with the reduction in distance travelled by each truck trip on the public roads.

The opening of the Hunter Expressway and forecast growth in background traffic not associated with the Project would have significantly more impact on the operation of the road system than the Project traffic generation. The proposed roundabout on George Booth Drive at the new Project pit top is predicted to improve the Level of Service for existing turning movements out of the Daracon Quarry access road and provide additional turning capacity at this intersection. The Project's contribution to overall traffic conditions on George Booth Drive and John Renshaw Drive would be such that no significant impacts on the performance, capacity, efficiency and safety of the road network are expected to arise as a direct result of the Project.

It is recommended that the operation of the intersection of the Donaldson access road and John Renshaw Drive be monitored in the future, with particular regard to the impacts that increasing background levels of through traffic on John Renshaw Drive would have on traffic turning into and out of the Donaldson access road.

## Attachment A. RTA Crash Data

George Booth Drive between F3 (Exc) to John Renshaw Dr (Exc)
Crashes period I/7/2005 to 30/06/20 10 (Finalised data).






^ Belt fitted but not worn, No restraint fitted to position OR No helmet worn
$0.0 \%$




Crashid dataset George Booth Drive between F3 Freeway (exc) to John Renshaw Drive (Exc). Crash Period 01/07/05 to 30/06/10 (finalised data).

Percentages are percentages of all crashes. Unknown values for each category are not shown on this report.








Crashid dataset George Booth Drive between F3 Freeway (exc) to John Renshaw Drive (Exc). Crash Period 01/07/05 to 30/06/10 (finalised data).

Iohn Renshaw Drive between New England Highway at Beresfield (exc) to Maitland St at Kurri Kurri (Inc) RiA Crashes period 1/7/2005 to 30/06/10 (Finalised Data)


| Crash Movement |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection, adjacent approaches |  |  | 21 | 16.0\% |
| Head-on (not overtaking) |  |  | 9 | 6.9\% |
| Opposing vehicles; turning |  |  | 3 | 2.3\% |
| U-turn |  |  | 5 | 3.8\% |
| Rear-end |  |  | 42 | 32.1\% |
| Lane change |  |  | 3 | 2.3\% |
| Parallel lanes; turning |  |  | 10 | 7.6\% |
| Vehicle leaving driveway |  |  | 3 | 2.3\% |
| Overtaking; same direction |  |  | 0 | 0.0\% |
| Hit parked vehicle |  |  | 0 | 0.0\% |
| Hit railway train |  |  | 0 | 0.0\% |
| Hit pedestrian |  |  | 0 | 0.0\% |
| Permanent obstruction on road |  |  | 0 | 0.0\% |
| Hit animal |  |  | 2 | 1.5\% |
| Off road, on straight |  |  | 0 | 0.0\% |
| Off road on straight, hit object |  |  | 9 | 6.9\% |
| Out of control on straight |  |  | 2 | 1.5\% |
| Off road, on curve |  |  | 0 | 0.0\% |
| Off road on curve, hit object |  |  | 7 | 5.3\% |
| Out of control on curve |  |  | 1 | 0.8\% |
| Other crash type |  |  | 14 | 10.7\% |
| $\sim 40 \mathrm{~km} / \mathrm{h}$ or less |  |  | 0 | 0.0\% |
| 1.5\% | $80 \mathrm{~km} / \mathrm{h}$ zone | 29 |  | 22.1\% |
| 2.3\% | 90 km/h zone | 13 |  | 9.9\% |
| 48.9\% | $100 \mathrm{~km} / \mathrm{h}$ zone | 15 |  | 11.5\% |
| 3.8\% | $110 \mathrm{~km} / \mathrm{h}$ zone | 0 |  | 0.0\% |


| CRASHES |  | 131 |
| :---: | :---: | :---: |
| Fatal crash | 3 | 2.3\% |
| Injury crash | 62 | 47.3\% |
| Non-casualty crash | 66 | 50.4\% |
| $\wedge$ Belt fitted but not worn, No restraint fitted to |  |  |


| CASUALTIES |  |  |
| :--- | ---: | ---: |
| Killed | 3 | $3.5 \%$ |
| Injured | 83 | $96.5 \%$ |
| $\wedge$ | Unrestrained | 1 |

^ Belt fitted but not worn, No restraint fitted to position OR No helmet worn

6

| Time Group |  |  | of Day |  | Crashes |  | sualties |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00:01-02:59 | 5 | 3.8\% | 12.5\% |  | 11 | 2010 | 8 |
| 03:00-04:59 | 3 | 2.3\% | 8.3\% |  | 25 | 2009 | 15 |
| 05:00-05:59 | 2 | 1.5\% | 4.2\% |  | 28 | 2008 | 15 |
| 06:00-06:59 | 5 | 3.8\% | 4.2\% |  | 25 | 2007 | 14 |
| 07:00-07:59 | 10 | 7.6\% | 4.2\% |  | 24 | 2006 | 16 |
| 08:00-08:59 | 5 | 3.8\% | 4.2\% |  |  | 2005 | 18 |
| 09:00-09:59 | 10 | 7.6\% | 4.2\% |  |  |  |  |
| 10:00-10:59 | 9 | 6.9\% | 4.2\% |  |  |  |  |
| 11:00-11:59 | 7 | 5.3\% | 4.2\% |  | ~ Schoo | I Travel Ti | ime |
| 12:00-12:59 | 9 | 6.9\% | 4.2\% |  | volvement | 41 | 31.3\% |
| 13:00-13:59 | 7 | 5.3\% | 4.2\% |  |  |  |  |
| 14:00-14:59 | 9 | 6.9\% | 4.2\% |  | cLean Peri | ods | \% Week |
| 15:00-15:59 | 11 | 8.4\% | 4.2\% | A | 22 | 16.8\% | 17.9\% |
| 16:00-16:59 | 12 | 9.2\% | 4.2\% | B | 3 | 2.3\% | 7.1\% |
| 17:00-17:59 | 13 | 9.9\% | 4.2\% | C | 34 | 26.0\% | 17.9\% |
| 18:00-18:59 | 2 | 1.5\% | 4.2\% | D | 9 | 6.9\% | 3.5\% |
| 19:00-19:59 | 2 | 1.5\% | 4.2\% | E | 8 | 6.1\% | 3.6\% |
| 20:00-21:59 | 8 | 6.1\% | 8.3\% | F | 22 | 16.8\% | 10.7\% |
| 22:00-24:00 | 2 | 1.5\% | 8.3\% | G | 14 | 10.7\% | 7.1\% |
|  |  |  |  | H | 9 | 6.9\% | 7.1\% |
| Street Lighting Off/Nil \% of Dark |  |  |  | I | 3 | 2.3\% | 12.5\% |
| 10 of | 23 in Dark 43.5\% |  |  | J | 7 | 5.3\% | 10.7\% |


| Road Classification |  |  |
| :--- | ---: | ---: |
| Freeway/Motorway | 0 | $0.0 \%$ |
| State Highway | 0 | $0.0 \%$ |
| Other Classified Road | 131 | $100.0 \%$ |
| Unclassified Road | 0 | $0.0 \%$ |


| Speed Limit |  |  | $\sim 40 \mathrm{~km} / \mathrm{h}$ or less |  | 0 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $40 \mathrm{~km} / \mathrm{h}$ or less | 2 | 1.5\% | $80 \mathrm{~km} / \mathrm{h}$ zone | 29 | 22.1\% |
| $50 \mathrm{~km} / \mathrm{h}$ zone | 3 | 2.3\% | $90 \mathrm{~km} / \mathrm{h}$ zone | 13 | 9.9\% |
| $60 \mathrm{~km} / \mathrm{h}$ zone | 64 | 48.9\% | $100 \mathrm{~km} / \mathrm{h}$ zone | 15 | 11.5\% |
| $70 \mathrm{~km} / \mathrm{h}$ zone | 5 | 3.8\% | 110 km/h zone | 0 | 0.0\% |


| \# Crash Type |  |  |
| :---: | :---: | :---: |
| Car Crash | 122 | 93.1\% |
| Light Truck Crash | 19 | 14.5\% |
| Rigid Truck Crash | 0 | 0.0\% |
| Articulated Truck Crash | 10 | 7.6\% |
| 'Heavy Truck Crash | (10) | (7.6\%) |
| Bus Crash | 1 | 0.8\% |
| "Heavy Vehicle Crash | (11) | (8.4\%) |
| Emergency Vehicle Crash | 1 | 0.8\% |
| Motorcycle Crash | 14 | 10.7\% |
| Pedal Cycle Crash | 0 | 0.0\% |
| Pedestrian Crash | 1 | 0.8\% |
| ' Rigid or Artic. Truck " Heavy Truck or Heavy Bus <br> \# These categories are NOT mutually exclusive |  |  |
| Location Type |  |  |
| *Intersection | 66 | 50.4\% |
| Non intersection | 65 | 49.6\% |
| * Up to 10 metres from an intersection <br> ~ 07:30-09:30 or 14:30-17:00 on school days |  |  |
|  |  |  |
| Collision Type |  |  |
| Single Vehicle | 26 | 19.8\% |
| Multi Vehicle | 105 | 80.2\% |


| Contributing Factors |  |  |
| :---: | :---: | :---: |
| Speeding | 16 | 12.2\% |
| Fatigue | 9 | 6.9\% |
| Weather |  |  |
| Fine | 101 | 77.1\% |
| Rain | 17 | 13.0\% |
| Overcast | 11 | 8.4\% |
| Fog or mist | 2 | 1.5\% |
| Other | 0 | 0.0\% |
| Road Surface Condition |  |  |
| Wet | 25 | 19.1\% |
| Dry | 106 | 80.9\% |
| Snow or ice | 0 | 0.0\% |
| Natural Lighting |  |  |
| Dawn | 1 | 0.8\% |
| Daylight | 102 | 77.9\% |
| Dusk | 5 | 3.8\% |
| Darkness | 23 | 17.6\% |都


| Day of the Week |  |  |  |  |  |  | \# Holiday Periods |  | New Year Aust. Day | 0 | 0.0\% | Queen's BD | 1 | 0.8\% | Easter SH | 1 | 0.8\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monday | 22 | 16.8\% | Thursday | 17 | 13.0\% | Sunday | 13 | 9.9\% |  | 2 | 1.5\% | Labour Day | 1 | 0.8\% | June/July SH | 4 | 3.1\% |
| Tuesday | 19 | 14.5\% | Friday | 25 | 19.1\% | WEEKDAY | 101 | 77.1\% | Easter | 1 | 0.8\% | Christmas | 0 | 0.0\% | Sept./Oct. SH | 4 | 3.1\% |
| Wednesday | 18 | 13.7\% | Saturday | 17 | 13.0\% | WEEKEND | 30 | 22.9\% | Anzac Day | 0 | 0.0\% | January SH | 6 | 4.6\% | December SH | 5 | 3.8\% |

Crashid dataset John Renshaw Drive between New England Hwy at Beresfield (exc) to Maitland St, Kurri Kurri (Inc). Crash Period 01/07/05 to 30/06/10 (finalised data).

Percentages are percentages of all crashes. Unknown values for each category are not shown on this report.





| Hunter Region | Cessnock City LGA |  |  |
| :---: | :---: | :---: | :---: |
| 538563 02/10/2006 | Mon | 01:30 | 20 m W GEORGE BOOTH |
| E28057659 |  |  | Darkness |
| Hunter Region | Cessnock City LGA |  |  |
| 540486 10/10/2006 | Tue | 07:30 | 1.2 km E BLACK HILL RD |
| E28604650 |  |  | Daylight |
| Hunter Region | Cessnock City LGA |  |  |
| 561921 23/11/2006 | Thu | 03:15 | 200 m W LINGS RD |
| E28563947 |  |  | Darkness |
| Hunter Region |  |  | ssnock City LGA |
| 553502 03/12/2006 | Sun | 11:20 | at BUCHANAN RD |
| E108246195 |  |  | Daylight |



## Buttai

|  | John Renshaw Dr |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2WY | STR | Fine | Dry | 100 | 2 | 4WD | F48 | W in JOHN RENSHAW DR |
| DCA: 201 | Opp-Head on |  |  | CAR | M33 | E in JOHN RENSHAW DR |  |  |

Buchanan John Renshaw Dr
TJN STR Overcast Dry 602 CAR F17 S in BUCHANAN RD DCA: 101 Adj-Cross traffic CAR F62 E in JOHN RENSHAW DR

Buchanan John Renshaw Dr
2WY STR Overcast Dry 802 CAR F18 N in JOHN RENSHAW DR DCA: 301 Same - Rear end CAR MUN in JOHN RENSHAW DR

## Buchanan

$$
\begin{array}{llllllll}
\text { 2WY } & \text { STR } & \text { Fine } & \text { Dry } & 90 & 1 & \text { CAR } & \text { F27 } \\
\text { DCA: } 704 & \text { Right off cway into obj } & & \text { Tree/bush }
\end{array}
$$

| Beresfield |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RDB | CRV | Fine | Wet | 60 | 2 | WAG | F75 | N in NEWCASTLE EXP DCA: 308 Same-Rgt turn side swipe WAG F28 $N$ in NEWCASTLE EXP


| Hunter Region | Newcastle City LGA |  |  |
| :---: | :---: | :---: | :---: |
| 590159 09/01/2007 | Tue | 14:20 | at NEWCASTLE EXP |
| E169956092 |  |  | Daylight |
| Hunter Region |  |  | ssnock City LGA |
| 554051 26/01/2007 | Fri | 17:00 | 100 m W LINGS RD |
| E29192056 |  |  | Daylight |
| Hunter Region |  |  | ssnock City LGA |
| 560792 31/01/2007 | Wed | 12:00 | at BUCHANAN RD |
| E29056360 |  |  | Daylight |


| 549680 | $03 / 12 / 2006$ | Sun 11:50 | 60 m E BUCHANAN RD |  |
| ---: | :---: | :---: | :---: | :---: |
| E29544739 |  |  | Daylight |  |
| Hunter Region |  | Cessnock City LGA |  |  |
| 549062 | $08 / 12 / 2006$ | Fri | 17:00 | 500 m W AVERYS LANE |
| E28997026 |  |  |  | Daylight |


| Buttai | John Renshaw Dr |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $2 W Y$ | STR | Fine | Dry | 100 | 1 | M/C | M34 | DCA: $901 \quad$ Fell in/from vehicle

Buchanan John Renshaw Dr

| TJN | STR | Fine $\quad$ Dry 80 | 2 | CAR | M24 | S in BUCHANAN RD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DCA: 104 | Adj- Right-thru from right |  | TRK | F22 | E in JOHN RENSHAW DR |  |



Incorrect side 95 Proceeding in lane 80 Proceeding in lane

Unk Incorrect side Unk Proceeding in lane

15 Proceeding in lane 45 Proceeding in lane

20 Proceeding in lane
N 0
20 Proceeding in lane

0 Proceeding in lane

30 Turning right
30 Turning right

100 Proceeding in lane

5 Turning right
80 Proceeding in lane

|  | $\stackrel{\stackrel{1}{\overleftarrow{N}}}{ }$ |  | $\stackrel{0}{\underline{E}}$ | $\begin{aligned} & \ddot{0} \\ & \stackrel{0}{\Pi} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |






> Beresfield
> RDB CRV Overcast Dohn Renshaw $\begin{array}{lllllll}\text { Dry } & 60 & 1 & \text { CAR } & \text { M17 } & \text { S in NEWCASTLE EXP } \\ \text { DCA: } & 803 & \text { L } & \text { Off right bend into obj } & & & \text { Utility pole }\end{array}$

## Buchanan 2WY STR John Renshaw D DCA: 201 Opp - Head on $\quad$ 4WD F46 W in JOHN RENSHAW DR

## Beresfield John Renshaw Dr

RDB CRV Fine Dry $60 \quad 2$ SEM UU N in JOHN RENSHAW DR DCA: 308 Same - Rgt turn side swipe CAR M44 N in JOHN RENSHAW DR

## Black Hill

 RDB STR Raining Newcastle Exp| Hunter Region | Newcastle City LGA |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 602762 | 22/12/2007 | Sat | 11:30 | 10 m |
| S JOHN RENSHAW DR |  |  |  |  |
| E32066435 |  |  | Daylight |  |


| Hunter Region |  | Newcastle City LGA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 606797 | 21/01/2008 | Mon | 15:40 |  | at NEWCASTLE EXP |
| E33450453 |  |  |  |  | Daylight |
| Hunter | Region |  |  | ssnock | City LGA |
| 606173 | 25/01/2008 | Fri | 21:00 | 200 m | E AVERYS LANE |
| E63569301 |  |  |  |  | Darkness |

$$
\begin{array}{lllllllll}
\text { Beresfield } \\
\text { RDB } & \text { STR } & \text { Fine } & \text { Dry } & 60 & 2 & \text { CAR } & \text { M73 } & \text { N in NEWCASTLE EXP } \\
\text { DCA: } 201 & \text { Opp - Head on } & & & \text { CAR } & \text { F39 } & \text { S in NEWCASTLE EXP }
\end{array}
$$

## Buchanan John Renshaw Dr

| 2WY STR | Overcast Wet | 100 | 3 | CAR | M18 | W in JOHN RENSHAW DR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DCA: 301 | Same - Rear end |  |  | CAR | M20 | W in JOHN RENSHAW DR |
|  |  |  |  | CAR | F21 | W in JOHN RENSHAW DR |

Black Hill John Renshaw Dr

| Hunter Region |  | Cessnock City LGA B |  |  | Black Hill | John Renshaw Dr |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 607658 | 03/02/2008 | Sun | 10:50 | 3.5 km W NEW ENGLAND HWY | 2WY CRV | Raining Wet | 100 | 3 | CAR | F19 | W in JOHN RENSHAW DR |
| E33114069 |  |  |  | Daylight | DCA: 201 | Opp - Head on |  |  | TRK | M29 | E in JOHN RENSHAW DR |
|  |  |  |  |  |  |  |  |  | TRK | M56 | E in JOHN RENSHAW DR |


| Hunter Region | Cessnock City LGA |  |  | Buchanan |  | John Renshaw Dr |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 614529 27/02/2008 | Wed | 20:15 | 500 m W GEORGE BOOTH DR | R 2WY | CRV | Fine | Dry | 90 | 2 | WAG | M26 | W in JOHN RENSHAW DR |
| E32832136 |  |  | Darkness | DCA: | 304 | Same - U |  |  |  | CAR | FU | W in JOHN RENSHAW DR |
| Hunter Region |  |  | Newcastle City LGA | Beresfield |  |  | John Re | aw |  |  |  |  |
| 616518 13/03/2008 | Thu | 17:25 | at NEWCASTLE EXP | RDB | STR | Fine | Dry | 60 | 2 | CAR | M48 | N in NEWCASTLE EXP |
| E32869509 |  |  | Daylight | DCA: |  | Adj - Cros | s traffic |  |  | M/C | M35 | in JOHN RENSHAW |



| Hunter Region | Cessnock City LGA |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 634454 | 15/08/2008 | Fri | 04:20 | 500 m E BUCHANAN RD |
| E34954549 |  |  | Darkness |  |






| Hunter Region |  | Newcastle City LGA |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 667810 12/05/2009 | Tue | 21:00 | 540 m | E NEWCASTLE EXP |
| E37293813 |  |  |  | Darkness |
| Hunter Region | Cessnock City LGA |  |  |  |
| 683980 18/05/2009 | Mon | 09:00 | 5 m | N MULBRING ST |
| E38740018 |  |  |  | Daylight |
| Hunter Region | Cessnock City LGA |  |  |  |
| 667601 21/05/2009 | Thu | 07:15 | 200 m | W AVERYS LANE |
| E37698373 |  |  |  | Daylight |
| Hunter Region | Newcastle City LGA |  |  |  |
| 669396 04/06/2009 | Thu | 14:45 |  | at NEWCASTLE EXP |
| E37314335 |  |  |  | Daylight |


|  |  | Beresfield John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIV STR | Fine | Dry | 80 | 1 | WAG |  | E in JOHN RENSHAW DR | 60 Proceeding in lane | N | 0 | 0 | F |
| DCA: 703 | Left off cway into object |  |  |  | Drain/culvert |  |  |  |  |  |  |  |
| Stanford Merth | Maitland Rd |  |  |  |  |  |  |  |  |  |  |  |
| TJN STR | Fine | Dry | 60 | 2 | OMV | UU | N in MAITLAND RD | Unk Proceeding in lane | N | 0 | 0 |  |
| DCA: 303 | Same - Re |  |  |  | CAR | F60 | N in MAITLAND RD | 0 Wait turn right |  |  |  |  |
| Stanford Merth | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| 2WY STR | Raining | Wet | 80 | 2 | CAR | M18 | E in JOHN RENSHAW DR | 80 Proceeding in lane | N | 0 | 0 |  |
| DCA: 301 | Same - Rea |  |  |  | CAR | F37 | E in JOHN RENSHAW DR | 50 Proceeding in lane |  |  |  |  |
| Beresfield | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| RDB STR | Overcast | Wet | 60 | 2 | SEM | M29 | N in JOHN RENSHAW DR | 20 Turning right | N | 0 | 0 |  |
| DCA: 308 | Same - Rg | side |  |  | CAR | M37 | N in JOHN RENSHAW DR | 20 Proceeding in lane |  |  |  |  |
| Stanford Merth | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| 2WY STR | Fine | Dry | 60 | 2 | CAR | M29 | W in JOHN RENSHAW DR | 60 Proceeding in lane | N | 0 | 0 |  |
| DCA: 301 | Same - Re |  |  |  | WAG | F35 | W in JOHN RENSHAW DR | 0 Stationary |  |  |  |  |
| Black Hill | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| 2WY STR | Fine | Dry | 40 | 2 | SEM | M41 | W in JOHN RENSHAW DR | 80 Proceeding in lane | 1 | 0 | 1 | S |
| DCA: 301 | Same - Rea |  |  |  | CAR | M23 | W in JOHN RENSHAW DR | 50 Proceeding in lane |  |  |  |  |
| Stanford Merth | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| TJN STR | Fine | Dry | 50 | 2 | TRK | M39 | W in JOHN RENSHAW DR | 40 Proceeding in lane | I | 0 | 1 |  |
| DCA: 303 | Same - Rear right |  |  |  | CAR | F54 | W in JOHN RENSHAW DR | 0 Wait turn right |  |  |  |  |
| Black Hill | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| 2WY CRV | Fine | Dry | 60 | 1 | CAR | F46 | E in JOHN RENSHAW DR | 60 Proceeding in lane | N | 0 | 0 |  |
| DCA: 606 | On path - Hit temp roadwork |  |  |  | Roadwork equipment |  |  |  |  |  |  |  |
| Black Hill | Fohn Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| 2WY CRV |  |  |  |  | CAR | M63 | W in JOHN RENSHAW DR | Unk Proceeding in lane | I | 0 | 1 |  |
| DCA: 606 | On path - Hit temp roadwork |  |  |  | Roadwork equipment |  |  |  |  |  |  |  |
| Buchanan | John Renshaw Dr |  |  |  |  |  |  |  |  |  |  |  |
| 2WY STR | Fine | Dry | 60 | 2 | 4WD | M47 | W in JOHN RENSHAW DR | 65 Incorrect side | 1 | 0 | 1 | S F |
| DCA: 201 | Opp - Head |  |  |  | TRK | M51 | E in JOHN RENSHAW DR | 60 Proceeding in lane |  |  |  |  |





Crashid dataset John Renshaw Drive between New England Hwy at Beresfield (exc) to Maitland St, Kurri Kurri (Inc). Crash Period 01/07/05 to 30/06/10 (finalised data). Note: Ordered by: Crash Date,Crash Time,Crash No.

## Attachment B. Traffic Survey Results

Tasman Mine Access

| Day <br> Time | Mon | Tue | Wed | Thu | Fri | Sat | Sun | W/Day <br> Ave. | W/End Ave. | $\begin{gathered} 7 \text { Day } \\ \text { Ave } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4-Jul-11 | 5-Jul-11 | 29/06/2011 | 30-Jun-11 | 1-Jul-11 | 2-Jul-11 | 3-Jul-11 |  |  |  |
| 0:00 | 0 | 0 | 4 | 0 | 3 | 0 | 0 | 1 | 0 | 1 |
| 1:00 | 0 | 3 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 1 |
| 2:00 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 3:00 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 4:00 | 5 | 2 | 3 | 4 | 3 | 3 | 0 | 3 | 2 | 3 |
| 5:00 | 15 | 11 | 15 | 16 | 17 | 12 | 6 | 15 | 9 | 13 |
| 6:00 | 41 | 42 | 31 | 41 | 34 | 19 | 5 | 38 | 12 | 30 |
| 7:00 | 39 | 29 | 31 | 40 | 35 | 17 | 1 | 35 | 9 | 27 |
| 8:00 | 35 | 38 | 29 | 22 | 35 | 1 | 0 | 32 | 1 | 23 |
| 9:00 | 37 | 24 | 28 | 27 | 21 | 2 | 0 | 27 | 1 | 20 |
| 10:00 | 22 | 21 | 20 | 19 | 30 | 1 | 0 | 22 | 1 | 16 |
| 11:00 | 30 | 27 | 18 | 32 | 29 | 0 | 0 | 27 | 0 | 19 |
| 12:00 | 35 | 36 | 32 | 40 | 13 | 2 | 4 | 31 | 3 | 23 |
| 13:00 | 33 | 40 | 43 | 34 | 17 | 0 | 0 | 33 | 0 | 24 |
| 14:00 | 47 | 35 | 36 | 25 | 16 | 0 | 1 | 32 | 1 | 23 |
| 15:00 | 37 | 24 | 25 | 9 | 11 | 2 | 2 | 21 | 2 | 16 |
| 16:00 | 47 | 38 | 40 | 20 | 24 | 17 | 2 | 34 | 10 | 27 |
| 17:00 | 35 | 18 | 10 | 12 | 1 | 4 | 8 | 15 | 6 | 13 |
| 18:00 | 9 | 3 | 4 | 0 | 3 | 6 | 1 | 4 | 4 | 4 |
| 19:00 | 11 | 3 | 1 | 4 | 3 | 1 | 0 | 4 | 1 | 3 |
| 20:00 | 11 | 10 | 12 | 13 | 11 | 1 | 5 | 11 | 3 | 9 |
| 21:00 | 11 | 8 | 9 | 12 | 9 | 0 | 9 | 10 | 5 | 8 |
| 22:00 | 17 | 22 | 20 | 19 | 18 | 0 | 0 | 19 | 0 | 14 |
| 23:00 | 5 | 5 | 2 | 3 | 0 | 2 | 0 | 3 | 1 | 2 |
| Total | 522 | 444 | 414 | 393 | 333 | 94 | 44 | 421 | 69 | 321 |

George Booth Drive

| Day | Mon | Tue | Wed | Thu | Fri | Sat | Sun | $\begin{gathered} \text { W/Day } \\ \text { Ave. } \end{gathered}$ | W/End Ave. | $7 \text { Day }$ <br> Ave |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 4-Jul-11 | 5-Jul-11 | 29/06/2011 | 30-Jun-11 | 1-Jul-11 | 2-Jul-11 | 3-Jul-11 |  |  |  |
| 0:00 | 17 | 36 | 34 | 29 | 42 | 50 | 61 | 32 | 55 | 38 |
| 1:00 | 7 | 17 | 9 | 22 | 26 | 19 | 22 | 16 | 20 | 17 |
| 2:00 | 10 | 7 | 7 | 9 | 12 | 13 | 13 | 9 | 13 | 10 |
| 3:00 | 18 | 15 | 33 | 23 | 25 | 15 | 9 | 23 | 12 | 20 |
| 4:00 | 92 | 92 | 104 | 107 | 89 | 38 | 19 | 97 | 28 | 77 |
| 5:00 | 420 | 413 | 422 | 418 | 396 | 129 | 46 | 414 | 88 | 321 |
| 6:00 | 772 | 798 | 790 | 813 | 776 | 194 | 78 | 790 | 136 | 603 |
| 7:00 | 685 | 702 | 805 | 779 | 713 | 237 | 92 | 737 | 165 | 573 |
| 8:00 | 561 | 555 | 758 | 658 | 668 | 361 | 170 | 640 | 266 | 533 |
| 9:00 | 414 | 458 | 461 | 511 | 447 | 390 | 340 | 458 | 365 | 431 |
| 10:00 | 398 | 425 | 407 | 382 | 440 | 502 | 372 | 411 | 437 | 418 |
| 11:00 | 402 | 439 | 429 | 416 | 451 | 543 | 439 | 427 | 491 | 446 |
| 12:00 | 429 | 490 | 517 | 445 | 466 | 524 | 419 | 469 | 471 | 470 |
| 13:00 | 452 | 531 | 508 | 461 | 501 | 490 | 368 | 491 | 429 | 473 |
| 14:00 | 550 | 540 | 563 | 571 | 609 | 437 | 424 | 567 | 431 | 528 |
| 15:00 | 758 | 765 | 854 | 782 | 874 | 473 | 461 | 807 | 467 | 710 |
| 16:00 | 898 | 913 | 893 | 939 | 943 | 473 | 435 | 917 | 454 | 785 |
| 17:00 | 857 | 927 | 811 | 905 | 827 | 481 | 361 | 865 | 421 | 738 |
| 18:00 | 327 | 354 | 342 | 431 | 369 | 233 | 171 | 365 | 202 | 318 |
| 19:00 | 150 | 158 | 166 | 206 | 184 | 125 | 105 | 173 | 115 | 156 |
| 20:00 | 118 | 99 | 139 | 153 | 116 | 101 | 99 | 125 | 100 | 118 |
| 21:00 | 91 | 109 | 121 | 136 | 110 | 89 | 71 | 113 | 80 | 104 |
| 22:00 | 68 | 71 | 81 | 96 | 98 | 132 | 41 | 83 | 87 | 84 |
| 23:00 | 38 | 38 | 42 | 46 | 68 | 85 | 19 | 47 | 52 | 48 |
| Total | 8531 | 8954 | 9299 | 9337 | 9250 | 6135 | 4638 | 9074 | 5386 | 8020 |

Includes adjustment for school holidays (refer Section 3.7.1)

John Renshaw Drive West of CHPP access

| Day | Mon | Tue | Wed | Thu | Fri | Sat | Sun | W/Day Ave. | W/End Ave. | $\begin{gathered} \hline \text { 7 Day } \\ \text { Ave } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 23-May-11 | 24-May-11 | 25-May-11 | 19/05/2011 | 20-May-11 | 21-May-11 | 22-May-11 |  |  |  |
| 0:00 | 22 | 43 | 54 | 48 | 52 | 66 | 94 | 44 | 80 | 54 |
| 1:00 | 22 | 29 | 38 | 37 | 39 | 55 | 50 | 33 | 53 | 39 |
| 2:00 | 21 | 36 | 38 | 41 | 32 | 30 | 26 | 34 | 28 | 32 |
| 3:00 | 37 | 44 | 42 | 54 | 48 | 34 | 32 | 45 | 33 | 42 |
| 4:00 | 110 | 130 | 109 | 145 | 113 | 73 | 29 | 121 | 51 | 101 |
| 5:00 | 466 | 496 | 501 | 522 | 522 | 194 | 76 | 501 | 135 | 397 |
| 6:00 | 759 | 853 | 757 | 857 | 767 | 252 | 135 | 799 | 194 | 626 |
| 7:00 | 785 | 850 | 799 | 833 | 784 | 286 | 152 | 810 | 219 | 641 |
| 8:00 | 649 | 719 | 659 | 731 | 659 | 419 | 224 | 683 | 322 | 580 |
| 9:00 | 515 | 600 | 536 | 520 | 547 | 407 | 333 | 544 | 370 | 494 |
| 10:00 | 499 | 493 | 452 | 464 | 501 | 550 | 450 | 482 | 500 | 487 |
| 11:00 | 440 | 478 | 429 | 473 | 521 | 583 | 457 | 468 | 520 | 483 |
| 12:00 | 463 | 487 | 427 | 513 | 596 | 563 | 419 | 497 | 491 | 495 |
| 13:00 | 484 | 514 | 473 | 542 | 609 | 498 | 388 | 524 | 443 | 501 |
| 14:00 | 618 | 680 | 652 | 685 | 699 | 454 | 431 | 667 | 443 | 603 |
| 15:00 | 829 | 946 | 974 | 902 | 869 | 408 | 467 | 904 | 438 | 771 |
| 16:00 | 829 | 948 | 927 | 875 | 889 | 487 | 485 | 894 | 486 | 777 |
| 17:00 | 717 | 849 | 866 | 840 | 749 | 447 | 362 | 804 | 405 | 690 |
| 18:00 | 336 | 389 | 415 | 387 | 447 | 298 | 191 | 395 | 245 | 352 |
| 19:00 | 192 | 191 | 212 | 229 | 231 | 173 | 167 | 211 | 170 | 199 |
| 20:00 | 177 | 167 | 177 | 204 | 178 | 133 | 96 | 181 | 115 | 162 |
| 21:00 | 147 | 146 | 188 | 176 | 154 | 134 | 73 | 162 | 104 | 145 |
| 22:00 | 115 | 127 | 123 | 146 | 156 | 175 | 78 | 133 | 127 | 131 |
| 23:00 | 78 | 71 | 66 | 80 | 87 | 116 | 39 | 76 | 78 | 77 |
| Total | 9310 | 10286 | 9914 | 10304 | 10249 | 6835 | 5254 | 10013 | 6045 | 8879 |

## Tasman - Donaldson Mine: Travel Time Survey Results

| Date Start Time | 25/05/2011 |  |  |  |  |  |  |  |  |  | 24/05/2011 |  |  |  |  |  |  |  |  |  |  |  |  | Average Mins | Min <br> Mins | Max <br> Mins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7:11 | 7:43 | 8:30 | 9:03 | 9:33 | 10:19 | 10:58 | 11:28 | 12:05 | 12:45 | 13:22 | 13:53 | 14:26 | 15:43 | 16:13 | 16:50 | 17:29 | 18:15 | 18:51 | 19:23 | 19:55 | 20:44 |  |  |  |  |
| Donaldson Mine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |
| John Renshaw Dr | 6 | 5.9 | 6.58 | 6.13 | 5.92 | 7.06 | 5.83 | 5.33 | 5.63 | 5.6 | 5.8 | 5.88 | 5.75 | 5.98 | 6.22 | 5.82 | 5.77 | 7.1 | 6.18 | 6.47 | 6.32 | 6.58 |  | 6.10 | 5.33 | 7.10 |
| Richmond Vale Rd | 2.27 | 2.25 | 2.3 | 2.37 | 2.22 | 2.55 | 2.17 | 2.1 | 2.17 | 2.05 | 2.27 | 2.32 | 2.37 | 2.3 | 2.47 | 2.3 | 2.35 | 2.43 | 2.35 | 2.35 | 2.37 | 2.27 |  | 2.30 | 2.05 | 2.55 |
| Orica Access | 1.43 | 1.43 | 1.48 | 1.4 | 1.4 | 1.38 | 1.25 | 1.28 | 1.38 | 1.22 | 1.47 | 1.45 | 1.43 | 1.4 | 1.42 | 1.43 | 1.45 | 1.42 | 1.4 | 1.38 | 1.6 | 1.27 |  | 1.40 | 1.22 | 1.60 |
| Access Rd | 0.88 | 0.87 | 0.87 | 0.87 | 0.85 | 0.88 | 0.85 | 0.78 | 0.85 | 0.78 | 0.85 | 0.9 | 0.88 | 0.85 | 0.9 | 0.88 | 0.88 | 0.93 | 0.95 | 0.82 | 0.87 | 0.82 |  | 0.86 | 0.78 | 0.95 |
| Tasman Mine | 2.72 | 2.97 | 2.82 | 2.52 | 2.57 | 2.85 | 2.37 | 2.95 | 2.29 | 2.73 | 2.63 | 2.63 | 2.55 | 3.28 | 2.7 | 2.65 | 2.77 | 2.82 | 2.85 | 2.8 | 2.45 | 2.6 |  | 2.89 | 2.29 | 6.43 |
|  | 13.3 | 13.4 | 14.1 | 13.3 | 13 | 14.7 | 14.7 | 12.4 | 12.3 | 12.4 | 13 | 13.2 | 13 | 13.8 | 13.7 | 13.1 | 13.2 | 14.7 | 13.7 | 13.8 | 13.6 | 13.5 |  |  |  |  |
| Start Time | 7:26 | 8:12 | 8:47 | 9:19 | 10:02 | 10:33 | 11:15 | 11:41 | 12:31 | 12:57 | 12:51 | 13:35 | 14:06 | 14:39 | 15:57 | 16:28 | 17:12 | 17:48 | 18:01 | 18:34 | 19:07 | 19:39 | 20:32 |  |  |  |
| Tasman Mine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Access Rd | 2.67 | 3.95 | 2.57 | 2.52 | 2.62 | 2.73 | 2.6 | 3.03 | 2.43 | 2.27 | 3.2 | 2.88 | 3.57 | 2.53 | 3.2 | 3.8 | 2.78 | 3.53 | 2.63 | 2.56 | 2.68 | 3.38 | 2.53 | 2.89 | 2.27 | 3.95 |
| Orica Access | 1.75 | 0.95 | 0.85 | 0.83 | 0.83 | 0.8 | 0.83 | 0.87 | 0.8 | 0.77 | 0.97 | 0.85 | 0.92 | 0.83 | 0.85 | 0.87 | 0.87 | 0.93 | 0.87 | 0.85 | 0.87 | 0.85 | 0.78 | 0.90 | 0.77 | 1.75 |
| Richmond Vale Rd | 1.42 | 1.57 | 1.4 | 1.4 | 1.4 | 1.42 | 1.37 | 1.42 | 1.3 | 1.32 | 1.6 | 1.45 | 1.45 | 1.42 | 1.47 | 1.5 | 1.4 | 1.47 | 1.43 | 1.35 | 1.37 | 1.33 | 1.3 | 1.43 | 1.30 | 1.60 |
| John Renshaw Dr | 2.53 | 2.92 | 2.52 | 2.45 | 2.43 | 2.4 | 2.27 | 2.35 | 2.32 | 2.13 | 2.75 | 2.47 | 2.72 | 2.47 | 2.63 | 2.78 | 2.77 | 2.92 | 2.77 | 2.73 | 2.55 | 2.57 | 2.33 | 2.57 | 2.13 | 2.92 |
| Donaldson Mine | 5.97 | 6.62 | 5.75 | 5.87 | 6.47 | 5.7 | 5.28 | 5.63 | 5.18 | 5.47 | 5.43 | 5.73 | 6.45 | 5.72 | 5.32 | 6.72 | 6.34 | 6.13 | 6.85 | 6.13 | 6.08 | 5.88 | 5.75 | 5.94 | 5.18 | 6.85 |
|  | 14.3 | 16 | 13.1 | 13.1 | 13.8 | 13.1 | 12.4 | 13.3 | 12 | 12 | 14 | 13.4 | 15.1 | 13 | 13.5 | 15.7 | 14.2 | 15 | 14.6 | 13.6 | 13.6 | 14 | 12.7 | 13.73 | 11.65 | 17.07 |

Note: Shaded sections indicate where a Tasman Coal Truck was encountered within that section of the trip.
Our drivers attempted to tag on behind the Tasman Mine trucks where possible. However, the truck drivers either slowed down or pulled over if our driver stayed behind.









## Attachment C. Project Traffic Scenarios

The tables which follow present the components of the traffic generation of Tasman for the three future scenarios presented in this report. It is noted that "Delivery" referred to in the tables includes vehicle trips generated by visitors as well as by deliveries, and "Works" refers to both construction and decommissioning activities.

| Road and Location | Heavy Vehicles |  |  |  | Light Vehicles |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Coal } \\ \text { Haulage } \end{gathered}$ | Operational Delivery | Works Delivery | Waste Rock <br> Transport | Operational <br> Employees | Operational Delivery | Works Employees | Works Delivery |  |
| Average Weekday <br> Tasman Mine Access |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Existing | 118 | 24 | 0 | 0 | 154 | 96 | 0 | 0 | 392 |
| New | 0 | 0 | 33 | 118 | 0 | 0 | 40 | 32 | 223 |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| South of Existing Mine Access | 0 | 17 | 23 | 0 | 116 | 67 | 30 | 22 | 275 |
| North of Existing Mine Access | 118 | 8 | 23 | 0 | 38 | 28 | 30 | 22 | 267 |
| North of New Mine Access | 118 | 8 | 10 | 118 | 38 | 28 | 10 | 10 | 340 |
| John Renshaw Drive |  |  |  |  |  |  |  |  |  |
| East of Donaldson Access | 0 | 3 | 4 | 0 | 8 | 9 | 2 | 3 | 29 |
| West of Donaldson Access | 118 | 3 | 4 | 118 | 8 | 9 | 2 | 3 | 265 |
| Saturday |  |  |  |  |  |  |  |  |  |
| Tasman Mine Access |  |  |  |  |  |  |  |  |  |
| Existing | 0 | 0 | 0 | 0 | 96 | 0 | 0 | 0 | 96 |
| New | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| South of Existing Mine Access | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 73 |
| North of Existing Mine Access | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 23 |
| North of New Mine Access | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 23 |
| John Renshaw Drive |  |  |  |  |  |  |  |  |  |
| East of Donaldson Access | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 5 |
| West of Donaldson Access | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 5 |


| Road and Location | Heavy Vehicles |  |  |  | Light Vehicles |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Coal } \\ \text { Haulage } \end{gathered}$ | Operational Delivery | Works Delivery | Waste Rock Transport | Operational <br> Employees | Operational Delivery | Works Employees | Works <br> Delivery |  |
| Average Weekday <br> Tasman Mine Access |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Existing | 0 | 0 | 15 | 0 | 0 | 0 | 40 | 15 | 70 |
| New | 356 | 36 | 0 | 0 | 212 | 144 | 0 | 0 | 748 |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| South of Existing Mine Access | 0 | 25 | 10 | 0 | 161 | 101 | 30 | 11 | 338 |
| North of Existing Mine Access | 0 | 25 | 5 | 0 | 161 | 101 | 10 | 4 | 306 |
| North of New Mine Access | 356 | 11 | 5 | 0 | 51 | 43 | 10 | 4 | 480 |
| John Renshaw Drive |  |  |  |  |  |  |  |  |  |
| East of Donaldson Access | 0 | 4 | 2 | 0 | 11 | 14 | 2 | 1 | 34 |
| West of Donaldson Access | 356 | 4 | 2 | 0 | 11 | 14 | 2 | 1 | 390 |
| Saturday |  |  |  |  |  |  |  |  |  |
| Tasman Mine Access |  |  |  |  |  |  |  |  |  |
| Existing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| New | 100 | 0 | 0 | 0 | 96 | 0 | 0 | 0 | 196 |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| South of Existing Mine Access | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 73 |
| North of Existing Mine Access | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 73 |
| North of New Mine Access | 100 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 123 |
| John Renshaw Drive |  |  |  |  | 0 |  |  |  |  |
| East of Donaldson Access | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 5 |
| West of Donaldson Access | 100 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 105 |


| Road and Location | Heavy Vehicles |  |  |  | Light Vehicles |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Coal } \\ \text { Haulage } \end{gathered}$ | Operational Delivery | Works Delivery | Waste Rock Transport | Operational Employees | Operational Delivery | Works Employees | Works Delivery |  |
| Average Weekday <br> Tasman Mine Access |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Existing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| New | 356 | 36 | 0 | 0 | 212 | 144 | 0 | 0 | 748 |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| South of Existing Mine Access | 0 | 25 | 0 | 0 | 161 | 101 | 0 | 0 | 287 |
| North of Existing Mine Access | 0 | 25 | 0 | 0 | 161 | 101 | 0 | 0 | 287 |
| North of New Mine Access | 356 | 11 | 0 | 0 | 51 | 43 | 0 | 0 | 461 |
| John Renshaw Drive |  |  |  |  |  |  |  |  |  |
| East of Donaldson Access | 0 | 4 | 0 | 0 | 11 | 14 | 0 | 0 | 29 |
| West of Donaldson Access | 356 | 4 | 0 | 0 | 11 | 14 | 0 | 0 | 385 |
| Saturday |  |  |  |  |  |  |  |  |  |
| Tasman Mine Access |  |  |  |  |  |  |  |  |  |
| Existing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| New | 100 | 0 | 0 | 0 | 96 | 0 | 0 | 0 | 196 |
| George Booth Drive |  |  |  |  |  |  |  |  |  |
| South of Existing Mine Access | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 73 |
| North of Existing Mine Access | 0 | 0 | 0 | 0 | 73 | 0 | 0 | 0 | 73 |
| North of New Mine Access | 100 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 123 |
| John Renshaw Drive |  |  |  |  |  |  |  |  |  |
| East of Donaldson Access | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 5 |
| West of Donaldson Access | 100 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 105 |

Weekday On-Street Peak Hour Tasman Underground Mine Project Traffic at Maximum Haulage (veh/day)

|  | Heavy Vehicles |  |  |  | Light Vehicles |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coal Haulage | Operational Delivery | Works <br> Delivery | Waste Rock Transport | Operational Employees | Operational Delivery | Works Employees | Works <br> Delivery |  |
| Year 2011 |  |  |  |  |  |  |  |  |  |
| Daily | 236 | 24 | - | - | 154 | 96 | - | - | 510 |
| 6.00 to $7.00 \mathrm{am}^{\text {A }}$ | 24 | 5 | - | - | 28 | 0 | - | - | 57 |
| 4.00 to 5.00 pm | 24 | 0 | - | - | 17 | 5 | - | - | 46 |
| Year 2013 |  |  |  |  |  |  |  |  |  |
| Daily | 118 | 24 | 33 | 118 | 154 | 96 | 40 | 32 | 615 |
| 6.00 to $7.00 \mathrm{am}^{\text {A }}$ | 12 | 5 | 7 | 12 | 28 | 0 | 7 | 0 | 71 |
| 4.00 to 5.00 pm | 12 | 0 | 0 | 12 | 17 | 5 | 4 | 2 | 53 |
| Year 2017 |  |  |  |  |  |  |  |  |  |
| Daily | 356 | 36 | 15 | 0 | 212 | 144 | 40 | 15 | 818 |
| 6.00 to $7.00 \mathrm{am}^{\text {A }}$ | 40 | 8 | 3 | 0 | 38 | 0 | 7 | 0 | 96 |
| 4.00 to 5.00 pm | 40 | 0 | 0 | 0 | 24 | 8 | 4 | 1 | 77 |
| Year 2029 |  |  |  |  |  |  |  |  |  |
| Daily | 356 | 36 | 0 | 0 | 212 | 144 | 0 | 0 | 748 |
| 6.00 to $7.00 \mathrm{am}^{\text {A }}$ | 40 | 8 | 0 | 0 | 38 | 0 | 0 | 0 | 86 |
| 4.00 to 5.00 pm | 40 | 0 | 0 | 0 | 24 | 8 | 0 | 0 | 72 |

Assumptions.

- Maximum coal haulage (including waste rock haulage in 2013) is 12 loaded trucks per hour, increases to 20 loaded trucks per hour after 2013, with loaded trucks matched by empty trucks returning.
 same distribution through the day as coal haulage (note maximum haulage rate applies to combination of waste rock and coal haulage trips),
- Peak hour to daily ratio remains constant for employee and delivery trips.
- Construction employee and delivery traffic assumed to be spread through the day according to operational employee and delivery distribution.

Average Weekday Future Peak Hour Midblock Levels of Service No Project

|  | Capacity (vehicles per hour) | Volume (veh/hr) | V/C Ratio | Level of <br> Service |
| :---: | :---: | :---: | :---: | :---: |
| Year 2013 AM Peak |  |  |  |  |
| Existing Mine Access | 1,489 | 45 | 0.03 | A |
| George Booth Drive | 2,399 | 891 | 0.37 | C/D |
| John Renshaw Drive | 2,875 | 930 | 0.32 | C |
| Year 2013 PM Peak |  |  |  |  |
| Existing Mine Access | 1,566 | 35 | 0.02 | A |
| George Booth Drive | 2,633 | 1,026 | 0.39 | D |
| John Renshaw Drive | 2,917 | 1,031 | 0.35 | C |
| Year 2017 AM Peak |  |  |  |  |
| Existing Mine Access | 1,489 | 45 | 0.03 | A |
| George Booth Drive | 1,951 | 100 | 0.05 | A |
| John Renshaw Drive | 2,879 | 1,264 | 0.44 | D |
| Year 2017 PM Peak |  |  |  |  |
| Existing Mine Access | 1,566 | 35 | 0.02 | A |
| George Booth Drive | 2,162 | 110 | 0.05 | A |
| John Renshaw Drive | 2,921 | 1,402 | 0.48 | D |
| Year 2029 AM Peak |  |  |  |  |
| George Booth Drive | 2,471 | 9 | 0.00 | A |
| John Renshaw Drive | 2,904 | 2,478 | 0.85 | E |
| Year 2029 PM Peak |  |  |  |  |
| George Booth Drive | 2,704 | 11 | 0.00 | A |
| John Renshaw Drive | 2,943 | 2,754 | 0.94 | E |

Average Weekday Future Peak Hour Midblock Levels of Service with Project

|  | Capacity (vehicles per hour) | Volume (veh/hr) | V/C Ratio | Level of Service |
| :---: | :---: | :---: | :---: | :---: |
| Year 2013 AM Peak |  |  |  |  |
| Existing Mine Access | 1,489 | 45 | 0.03 | A |
| New Mine Access | 1,006 | 26 | 0.03 | A |
| George Booth Drive | 2,328 | 907 | 0.39 | D |
| John Renshaw Drive | 2,844 | 943 | 0.33 | C |
| Year 2013 PM Peak |  |  |  |  |
| Existing Mine Access | 1,566 | 35 | 0.02 | A |
| New Mine Access | 1,076 | 18 | 0.02 | A |
| George Booth Drive | 2,566 | 1,040 | 0.41 | D |
| John Renshaw Drive | 2,890 | 1,044 | 0.36 | C |
| Year 2017 AM Peak |  |  |  |  |
| Existing Mine Access | 1,650 | 11 | 0.01 | A |
| New Mine Access | 1,200 | 86 | 0.07 | A |
| George Booth Drive | 1,490 | 134 | 0.09 | A |
| John Renshaw Drive | 2,829 | 1,293 | 0.46 | D |
| Year 2017 PM Peak |  |  |  |  |
| Existing Mine Access | 3,200 | 5 | 0.00 | A |
| New Mine Access | 1,196 | 72 | 0.06 | A |
| George Booth Drive | 1,628 | 142 | 0.09 | A |
| John Renshaw Drive | 2,874 | 1,431 | 0.50 | D |
| Year 2029 AM Peak |  |  |  |  |
| New Mine Access | 1,200 | 86 | 0.07 | A |
| George Booth Drive | 1,020 | 61 | 0.06 | A |
| John Renshaw Drive | 2,866 | 2,521 | 0.88 | E |
| Year 2029 PM Peak |  |  |  |  |
| New Mine Access | 1,196 | 72 | 0.06 | A |
| George Booth Drive | 1,040 | 59 | 0.06 | A |
| John Renshaw Drive | 2,908 | 2,796 | 0.96 | E |


[^0]:    ${ }^{1}$ Note that use of the existing pit top may continue in 2015 following completion of mining, including haulage of stockpiled coal.

[^1]:    Source: Hyder (2008)
    A 2006 Average Weekday Traffic
    ${ }^{\text {B }}$ RMS AADT for 2004

[^2]:    Assumes maximum hourly coal (and waste rock) haulage

