DONALDSON COAL PTY LIMITED

ABEL COAL PROJECT GROUNDWATER ASSESSMENT

ΒY

PETER J DUNDON

21 JULY 2006

05-0163-R01E

CONTENTS

CONTENTSi	ii
1 INTRODUCTION 1.1 Project Overview 1.2 Interaction with Neighbouring Mines 1.3 Objectives of Groundwater Study	1
2 GROUNDWATER INVESTIGATIONS 4 2.1 Summary 4 2.2 Census of Existing Groundwater Usage 4 2.3 Piezometers 5 2.4 Groundwater Levels 9 2.5 Hydraulic Testing 10 2.6 Water Sampling and Analysis 13 2.7 Surface Water Quality 13	1
3 DESCRIPTION OF THE EXISTING HYDROGEOLOGICAL ENVIRONMENT16 3.1 Climate	3
4 ASSESSMENT OF POTENTIAL IMPACTS OF THE PROPOSAL ON THE GROUNDWATER SYSTEM. 23 4.1 The Mining Proposal 23 4.2 Groundwater Flow Model 23 4.3 Model Calibration 25 4.4 Predictive Modelling and Sensitivity Analysis 27 4.5 Potential Impacts on Surficial Groundwater and Surface Water 30 4.6 Potential Impacts on Pambalong Nature Reserve and Hexham Swamp .31 31 4.7 Potential Impacts on Groundwater Quality 31 4.8 Potential Impacts of Proposed Tailings Disposal 32	3
5 MONITORING AND MANAGEMENT RECOMMENDATIONS	1
6 CONCLUSIONS	7
7 GLOSSARY OF TERMS)
8 REFERENCES	1

TABLES

Table 1	Groundwater Piezometers and Other Monitoring Bores	6
Table 2	Hydraulic Testing Program – Piezometers and Monitoring Bores	11
Table 3	Water Sample Analysis Results	14
Table 4	Bureau of Meteorology Stations	16
Table 5	Long Term Rainfall Data for East Maitland Station 61034	16
Table 6	Average Monthly Potential Evapotranspiration Rates for the Project Area (mm)	16
Table 7	Hydraulic Parameters of Hydrogeological Units	18
Table 8	Abel Model Parameters after Calibration	26
Table 9	Steady State Water Balance	26
Table 10	Stress Period Set-up of the Dewatering Model Run	27
Table 11	Set-up of the Dewatering and Recovery Models	28
Table 12	Summary of Sensitivity Modelling Runs	29

FIGURES

Figure 1 P	roject Locality
------------	-----------------

- Figure 2 Bore Location Plan
- Figure 3 Groundwater Level Hydrographs Regional Trends
- Figure 4 Groundwater Level Hydrographs Impact of Donaldson Dewatering
- Figure 5 Groundwater Level Hydrographs DPZ17
- Figure 6 Regional Geology
- Figure 7 North-South Geological Cross-Section Through Abel Project Area
- Figure 8 Interpreted Groundwater Level Contours for the Donaldson Seam
- Figure 9 Piper Trilinear Water Quality Diagram
- Figure 10 Groundwater Flow Model Area
- Figure 11 Groundwater Model Layer Definition
- Figure 12 Predicted Groundwater Inflow Rates to the Abel Mine
- Figure 13 Predicted Groundwater Levels in the Donaldson Seam (Layer 6) at 2027
- Figure 14 Predicted Groundwater Levels in the Undisturbed Overburden (Layer 4) at 2027

APPENDICES

- Appendix A DNR Licensed Bores Within 10 km of Abel Project
- Appendix B Piezometer Construction Logs
- Appendix C Groundwater Level Hydrographs
- Appendix D Hydraulic Testing Results
- Appendix E Groundwater Modelling Report

1 INTRODUCTION

1.1 Project Overview

Donaldson Coal Pty Ltd ('Donaldson') currently owns and operates Donaldson Open Cut Mine, located approximately 23 km north-west of Newcastle (**Figure 1**). This open cut mine has approval to operate until 2012 when it is considered current reserves will be exhausted. Donaldson proposes to develop a new underground mine known as Abel south from the high wall of Donaldson Open Cut Mine. The mine will utilise existing areas of disturbance within the Donaldson Mine Lease for surface infrastructure and the existing Bloomfield Coal Handling and Preparation Plant (CHPP), rail loader and rail loop for coal processing and loading.

The proposed Abel Underground Mine will have a production capacity of approximately 4.5 million tonnes per annum run-of-mine (ROM) coal over 20 years. The proposed method of extraction will be high productivity, continuous miner based bord and pillar systems, and pillar extraction techniques.

The Abel mining lease area (**Figure 1**) extends southwards from John Renshaw Drive towards George Booth Drive and is bounded on the eastern side by the F3 Freeway and the western side by a geological feature in the vicinity of Buttai Creek. The eastern boundary also excludes the Pambalong Nature Reserve.

Abel Underground Mine will extract coal from the Upper and Lower Donaldson coal seams. These seams dip downwards towards the south across the site at approximately 5 degrees. Mine access will be from the Donaldson high wall north of John Renshaw Drive. Underground mining will commence on the southern side of John Renshaw Drive and progress southwards. ROM coal will be transported via conveyor through the high wall to the existing Bloomfield Coal Handling and Preparation Plant (CHPP) where it will be processed and loaded onto rail.

The Abel Project Area consists of the area of generally disturbed land north of John Renshaw Drive within the existing Donaldson and Bloomfield mining leases, and the underground area south of John Renshaw Drive that consists of low undulating forested hills with patches of cleared land with rural/residential properties. The ridgeline associated with Black Hill runs east-west through the Project Area, with tributaries of Buttai Creek, Viney Creek/Weakleys Flat Creek and Four Mile Creek draining northwards from this ridgeline. The Long Gully/Blue Gum Creek system drains the southern side of the ridgeline eastwards towards Pambalong Nature Reserve. Some limited cliff-lines and steeper gullies are located along sections of the ridge.

1.2 Interaction with Neighbouring Mines

Donaldson Open Cut Mine

Donaldson Open Cut Mine has consent to operate until 2012. The areas of Donaldson Mine that will be required for the Abel Underground Mine to operate are included in this Development Application for Abel Underground Mine. These include:

- existing Donaldson Coal private roads for coal haulage to Bloomfield, and the approved access road from John Renshaw Drive;
- selected areas of active and future mining that will be used for Abel surface facilities; and
- elements of the existing Donaldson dirty water management system.

The existing Donaldson final landform and rehabilitation plans will be amended to address the required modifications to cater for the Abel Underground Mine.

Donaldson currently delivers 2.5 million tonnes per annum ROM coal to the Bloomfield CHPP, however this amount is planned to decrease as Abel production increases.

Tasman Underground Mine

Tasman Underground Mine, to the south of George Booth Drive and Abel Underground Mine, was approved in 2004 for a maximum extraction of 960,000 tonnes per annum ROM coal.

Coal from Tasman Underground Mine (which is currently under construction) will be trucked to Bloomfield Coal Handling and Preparation Plant and Rail Loading facility for processing. Trucks will use approved roads through Donaldson Open Cut Mine to Bloomfield.

Bloomfield Coal Handling and Preparation Plant (CHPP) and Rail Loading Facility

The Bloomfield CHPP and rail loading facility will be used for the processing of coal from Abel Underground Mine. The CHPP and rail loading facility also handles coal from Donaldson Open Cut, Bloomfield and Tasman Mines. Bloomfield currently has a licence under the *Protection of the Environment Operations Act 1997* to process 3.5 million tonnes per annum of product coal (approximately 5 million tonnes per annum ROM coal). An increase in capacity of 30 percent is required to cater for Abel coal.

The Bloomfield Coal Handling and Preparation Plant (CHPP) is also used, and will continue to be used, to process coal from other sources, including from the Bloomfield Group operations.

1.3 Objectives of Groundwater Study

The broad objectives of the study were to:

- To assess and describe the existing groundwater environment in the vicinity of the proposed Abel project
- To identify key potential risks to the environment from the proposal
- To evaluate the potential impacts of the proposal on the regional and local groundwater resources, incorporating any necessary management and mitigation strategies
- To assess the residual post-project impacts and any ongoing management requirements.

The study has been undertaken with reference to the following relevant policies:

- NSW State Rivers and Estuaries Policy
- NSW Wetlands Management Policy
- NSW Groundwater Policy Framework Document General
- NSW Groundwater Quantity Management Policy
- NSW Groundwater Quality Protection Policy
- NSW Groundwater Dependent Ecosystem Policy,

and the following relevant best practice guidelines:

- Groundwater Flow Modelling Guideline (Middlemis, 2001)
- Independent Inquiry into the Hunter River System (Healthy Rivers Commission, 2002)
- Guidelines for Management of Stream/Aquifer Systems in Coal Mining Developments Hunter Region (DNR, 2005).
- Groundwater Monitoring Guidelines for Mine Sites within the Hunter Region (DIPNR, 2003).

2 **GROUNDWATER INVESTIGATIONS**

2.1 Summary

A series of piezometers were installed across the lease area, to enable separate sampling, testing and monitoring of the Donaldson coal seams, and the overburden and interburden sediments, both within the shallow northern part of the deposit, and downdip at the southern end. Some bores were also installed along strike to the east. A number of shallow piezometers were also installed around the Pambalong Nature Reserve.

Each piezometer was designed to monitor a specific depth interval. Both open standpipe piezometers and vibrating wire piezometers were used. Standpipes were mainly used for shallow piezometers, with the casing/screen annulus sealed above and below, to enable the specific screened zone to be separately sampled and tested. Deeper piezometers usually consisted of vibrating wire piezometers encased in fully-grouted holes.

A hydraulic testing program was carried out on the standpipe piezometers, comprising either slug tests or short duration pumping tests, to determine aquifer permeabilities.

Water samples have been collected from each piezometer during hydraulic testing. The samples were submitted to a NATA-registered laboratory for comprehensive analysis of physical properties and the major inorganic parameters.

The specific investigations carried out for the Abel project were supplemented by relevant parts of earlier studies carried out for the Donaldson Open Cut mine. Ongoing monitoring of groundwater levels and groundwater and surface water quality has provided additional valuable information.

A limited testing program was also carried out on existing bores on the Bloomfield project site.

The hydrogeological investigations (including modelling) have also been undertaken with reference to the *Guidelines for Management of Stream/Aquifer Systems in Coal Mining Developments – Hunter Region* (DNR, 2005), with the model developed in accordance with the best practice guidelines on groundwater flow modelling (Middlemis et al, 2001).

2.2 Census of Existing Groundwater Usage

A search of the Department of Natural Resources groundwater bore database has been made to identify existing licensed bores within approximately 10km of the project. Summary details of the 16 licensed bores within 10km of the project are presented in **Appendix A**. Locations are shown on **Figure 2**.

Peter Dundon and Associates Pty Ltd

Most of the licensed water supply bores are located to the north of the project, beyond the subcrop line of the Donaldson seams and the overlying coal measures sediments. They will thus not be impacted by the project.

Only one stock/domestic bore is recorded within the zone of potential groundwater impact from the project, ie bore GW51353, which is located on the western boundary of the mining lease (**Figure 2**). This bore is reported to be 50m deep, with a water level at 15m, yielded 0.2 L/s and has a salinity in the range 3000-7000 ppm.

All other licensed bores within the project vicinity are monitoring bores around the Donaldson Open Cut.

2.3 Piezometers

Fourteen (14) piezometers have been installed specifically for the Abel project. These are supplemented by 30 piezometers previously installed for the Donaldson project, 9 piezometers at the Tasman project to the south, and 8 monitoring bores/shafts on the Bloomfield lease. Piezometer locations are shown on **Figure 2**. All piezometers have been consolidated into an integrated regional monitoring network encompassing all four coal operations.

Completion details of the piezometers are listed in **Table 1**. Summary bore logs for the fourteen new Abel piezometers and the Donaldson piezometers are presented in **Appendix B**. A Bore Licence application has been lodged for all the new piezometers.

Piezometers were constructed in existing coal exploration drillholes, which had generally been drilled at 100 or 125mm diameter.

Standpipe piezometers were constructed by installation of 50mm diameter PVC casing, with PVC screens set adjacent to the desired monitoring interval in the bore, then placing a gravel pack around the screen and a bentonite seal in the annulus above the screened zone. The rest of the annulus above the bentonite seal was then backfilled with cement grout using a tremie pipe from the surface. Vibrating wire piezometers were installed by securing them to the cementing tremie pipe at the desired depth level and the hole then fully grouted back to the surface.

The piezometers have been completed at the surface with a concrete block to prevent ingress of surface runoff or contamination, and secured within a padlocked steel monument.

The piezometers were located and designed to allow a geographic spread of monitoring locations across the project area, and also to allow separate monitoring of aquifers in both the Donaldson coal seams and the overburden sediments, as well as in the shallow surficial aquifer.

Peter Dundon and Associates Pty Ltd_

Piezometer	MGA Co	ordinates	Surface RL	Depth	Screen / Vibrating Wire	Elevation of Donaldson	Screen / Piezometer Relative to Donaldson		Vater Level		Aquifer Formation	Status	
	E	N	(mAHD)	(m)	Piezometer (m)	Seams (m AHD)	Seam (m)	Date	m BGL	m AHD			
CO62A	370143	6366248	36	157	124-118	-95 to -86	0	27/03/06	11.4	24.6	Donaldson Seam	Active	
CO62B	370143	6366248	36	157	87-81	-95 to -86	+35	27/03/06	4.2	31.8	Overburden	Active	
CO63A	372109	6366193	19	255	197	-169 to -144	-34	27/03/06	27.0	-8.0	?Donaldson Seam	Active	
CO63B	372109	6366193	19	255	130	-169 to -144	+33	27/03/06	24.9	-5.9	Overburden	Active	
CO72	369927	6362562	63	318	264	-188 to -176	0	27/03/06	44.3	18.7	Donaldson Seam	Active	
CO72A	369919	6362569	63		168	-188 to -176	+71	23/03/06	41.3	21.7	Overburden	Active	
CO72B	369911	6362570	63		45-42	-188 to -176	+194	27/03/06	13.0	50.0	Alluvium/weathered Permian	Active	
CO78A	367140	6367054	77	101	99-96 and 90-87	-32 to -22	0	26/04/06	48.6	28.4	Donaldson Seam	Active	
CO78B	367140	6367054	77	24	24-18	-32 to -22	+75	28/03/06	9.5	67.5	Alluvium/weathered Permian	Active	
CO80	368040	6365176	177	300	280	-106 to -95	0	27/03/06	148.4	28.6	Donaldson Seam	Active	
CO81A	369992	6364001	2.3	225	149.7	-160 to -141	0	27/03/06	-23.9	26.0	Donaldson Seam	Active	
CO81B	369992	6364001	2.3	20	20-14	-160 to -141	+124	27/03/06	0.3	2.0	Alluvium/weathered Permian	Active	
CO82	370319	6364647	34	20	20-14	-151 to -132	+146	27/03/06	15.3	18.7	Alluvium/weathered Permian	Active	
C087	367187	6367079	74	18.3	18.3-12.3	-32 to -22	+78	26/04/06	10.5	63.5	Alluvium/weathered Permian	Active	
DPZ1	370828	6369904	23.08	30	16.5-26.9	+2 to +19	0	11/07/01	10.8	12.2	Lower Donaldson and Big Ben Seams	Mined out	
DPZ2	371847	6370120	22.3	30	15.8-27.8	?	+5	16/12/04	15.1	7.2	Beresfield Seam	Active	
DPZ3	368774	6368609	49.1	30	6.8-18.8	absent	? -20	17/08/05	12.4	36.7	Undifferentiated coal measures below Lower Donaldson Seam	Active	
DPZ4A	370542	6368780	35.0	23	18.7-22.7	-8 to +10	+2	17/03/04	14.15	20.86	Beresfield Seam	Mined out	
DPZ4B	370542	6368780	35.0	49	24.9-49.2	-8 to +10	0	26/02/04	41.92	-6.91	Upper and Lower Donaldson and Big Ben Seams	Mined out	
DPZ5	371367	6368780	12.8	24	6-18	?	? +20	17/08/05	6.83	5.97	Undifferentiated coal measures above Donaldson Seams	Active	
DPZ6			57.7	43	26.7-42.5	+19 to +26	0	14/08/02	13.64	31.02	Upper and Lower Donaldson Seams	Not read - unreliable	
DPZ7A	368848	6367641	55.4	18	12.9-16.9	+29 to +36	+3	11/07/01	16.9	38.5	Overburden above Upper Donaldson	Not read sin 2001	
DPZ7B	368848	6367641	55.4	41	22.9-34.9	+29 to +36	0	17/08/05	23.5	31.9	Lower Donaldson	Active	
DPZ8	369375	6368074	51.8	33	22.2-32.2	+29 to +39	0	17/08/05	25.3	26.5	Lower Donaldson and Big Ben Seams	Active	

Table 1: Groundwater Piezometers and Other Monitoring Bores

0163-R01E-abel_06-07-21_.doc

Peter Dundon and Associates Pty Ltd_

Piezometer	MGA Co	ordinates	Surface RL	Depth	Screen / Vibrating Wire	Elevation of Donaldson	Screen / Piezometer Relative to Donaldson		Vater Level		Aquifer Formation	Status				
	E	N	(mAHD)	(m)	Piezometer (m)	Seams (m AHD)	Seam (m)	Date	Date m BGL m AHD		Date m BGL m AH		Date m BGL m			
DPZ9	369848	6368017	36.4	40	12.5-36.5	+9 to +21	0	17/08/05	32.1	4.2	Upper and Lower Donaldson and Big Ben Seams	Active				
DPZ10	371002	6368464	19.8	30	11.8-29.8	?	? +20	17/08/05	13.8	6.0	Beresfield Seam	Active				
DPZ11	371760	6368006	19.0	30	17.5-29.5	?	? +30	-	-	-	Overburden above Upper Donaldson	Lost				
DPZ12	369115	6366415	59.5	24	6-18	?	? +60	17/08/05	16.8	42.7	Overburden above Upper Donaldson	Active – erratic readings				
DPZ13	371221	6367558	21.5	30	18-30	?	? +40	17/08/05	7.3	14.2	Overburden above Upper Donaldson	Active				
DPZ14			47.4	32	23.9-31.8	+36 to +44	-13	13/03/02	29.2	18.2		Mined out				
DPZ15			43.4	50	40.5-47.3	+19 to +42	-16	20/02/02	36.9	6.5	Buchanan and Ashtonfield Seams	Mined out				
DPZ16			26.8	27	21.1-24.0	+22 to +24	-17	13/03/02	18.1	8.7	Ashtonfield Seam	Mined out				
DPZ17-24m								13/06/02	15.9	-0.6		Not read since 2002				
DPZ17-38m								13/06/02	15.9	-0.6		Not read since 2002				
DPZ17-62m								17/08/05	18.3	-3.0		Active				
DPZ18-72m								16/04/02	33.2	-2.7		Mined out				
DPZ18-90m								16/04/02	32.8	-2.3		Mined out				
DPZ19-56m								13/03/02	26.3	-4.1		Mined out				
DPZ19-73m								13/03/02	25.4	-3.2		Mined out				
DPZ20A	370541	6368439	20.1	51	11.5-17.5			23/05/06	11.1	9.0	Surficial aquifer - creek bed level	Active				
DPZ20B	370540	6368439	20.1	51	44			23/05/06	32.2	-12.0	Big Ben Seam	Active				
FMC1																
FMC2																
JRD1	368560	6366731														
JRD2	368280	6366936														
REGDPZ1												Regional licensed bore (GW58760)				
ODO003												Blocked				

-

3/07/01

135.9

158

 Table 1:
 Groundwater Piezometers and Other Monitoring Bores

0163-R01E-abel_06-07-21_.doc

293.94

227

215-227

-

TAS009a

Blocked

Peter Dundon and Associates Pty Ltd_

Piezometer	MGA Co	ordinates	Surface RL	Depth	Screen / Vibrating Wire	Elevation of Donaldson	Screen / Piezometer Relative to Donaldson	v	Vater Level		Aquifer Formation	Status		
	Е	N	(mAHD)	(m)	Piezometer (m)	Seams (m AHD)	Seam (m)	Date	Date m BGL m AHD					
TAS009b			293.94	227	185-190	-	-	3/07/01	143.4	150.5		Blocked		
TAS010			318.39	236	199.5-211.5	-	-	3/07/01	200	118.4		? Active		
TAS011			106.74	38	26-38	-	-	3/07/01	24.8	81.9		? Active		
TAS012			199.15	149	90.5-105.5	-	-	3/07/01	97.8	101.4		? Active		
TAS013			113.02	44	32-44	-	-	3/07/01	40.5	72.5		? Active		
TAS014a			148.23	50	38-50	-	-	3/07/01	39.6	108.5		Blocked		
TAS014b			148.23	50	24.5-30	-	-	3/07/01	Dry	Dry		Blocked		
TAS24	364951	6359786		146	135	-	-					Active		
BL01 (Old fan shaft)	363789	6371466	16.1			-	-							
BL02	365994	6372249	26.7			-	-		Dry	Dry		Blocked by tree roots		
BL03A	366422	6368077	63.6	72		-	-	14/04/06	69.0	-4.5				
BL03B	366422	6368077		53		-	-	14/04/06	50.2	+14.3				
BL04	366519	6368076	61.5	52		-	-	14/04/06	43.7	+18.6				
BL05	367385	6367957	75.4	46		-	-	14/04/06	? 45	+31				
BL07	367211	6368485	57.6	26		-	-	13/04/06	24.6	+33.7		Partially blocked 15m		
BL08	367029	6368431	52.3	49		-	-	13/04/06	27.0	+26.0				

Table 1: Groundwater Piezometers and Other Monitoring Bores

2.4 Groundwater Levels

Groundwater levels are monitored approximately monthly in all piezometers on the Donaldson and Abel project areas. Overall, there are almost 9 years of relevant groundwater level monitoring records extending from July 1997 to the present time. The earliest records were collected during the pre-project investigations for the Donaldson mine in 1997. Routine monthly monitoring at Donaldson commenced in June 2000, prior to the commencement of mining in the Donaldson open cut in January 2001.

There has been less frequent monitoring of the Tasman and Bloomfield bores. Tasman piezometers were monitored between July 2000 and October 2002, however they represent a hydraulically separate aquifer system. The Tasman mine is proposing to extract coal from the Fassifern Seam, which is more than 300m stratigraphically above the Donaldson seams targeted by the Abel project.

All relevant water level hydrographs are shown in Appendix C.

The hydrographs show the effects of seasonal and long term climatic changes in groundwater levels. The Donaldson bores also show the effects of pit dewatering and the onset of post-mining recovery of groundwater levels. Dewatering of the Donaldson mine is achieved by allowing free drainage of groundwater to a sump at the low point in the active mining area, and pumping from the sump to one of several water supply dams within the Donaldson mine area, for use primarily for dust suppression. Mining commenced at the north-eastern end of the deposit, and has progressed westwards to approximately the centre of the lease at the present time.

In summary, the hydrographs show:

- The effects of the protracted period of below average rainfalls between 2001 and 2005, illustrated by the hydrograph for regional monitoring bore REGDPZ1 and other bores remote from the mine development – FMCPZ2, DPZ5, DPZ7 and DPZ10 (Figure 3).
- The progressive impacts of the Donaldson mine dewatering (Figure 4), with the piezometers near the eastern end of the lease responding first (eg DPZ4B, which first responded to dewatering in October 2001) and those further west responding later as the pit advanced to the west (eg DPZ9 first response in August 2004; and DPZ8 first response in December 2004).
- The commencement of recovery of groundwater levels in some of the eastern bores, as the centre of mining has moved further west, and the eastern end of the pit has been progressively backfilled with waste rock, eg DPZ17-62m (**Figure 5**). By March 2006, the groundwater level has recovered by more than 8m from the lowest level reached in January 2004.

2.5 Hydraulic Testing

A hydraulic testing program was carried out on the new standpipe piezometers, comprising either slug tests or short duration pumping tests using low capacity sampling pumps, to determine aquifer permeabilities. The pumping tests were all of relatively short duration, generally 120 minutes or less.

Pumping tests or slug tests were also carried out on four bores on the Bloomfield site.

Details of the hydraulic testing program carried out are summarised in **Table 2**. The results of previous testing carried out on the Donaldson and Tasman piezometers are also included in the table. The results of all testing are presented in **Appendix D**.

Table 2:	Hydraulic Testing Program – Piezometers and Monitoring Bores
	Tryanadilo rogram riozomotoro ana monitoring Doros

Piezometer / Test Bore	Test Interval	Aquifer / Lithology	Date of Test	Type of Test	Pumping Rate	Duration	Transmissivity		Hydraulic uctivity	Storativity	Comments	
Test Bore					kL/d	min	m²/d	m/d	m/s			
Abel Piezomet	ters:											
C062A	118-124	Donaldson Seam	27 May 2006	Constant Rate	7.5	15	-	-	-	-	Reached pump inlet in 15 minutes	
			30 May 2006	Slug Test	-	-	-			-		
			27 May 2006	Constant Rate	2	5	0.7	0.1	1 x 10 ⁻⁶	-	Interrupted test	
C062B	81-87	Overburden	30 May 2006	Constant Rate	10	120	0.4	0.06	7 x 10 ⁻⁷		Early data	
			30 May 2000	Constant Nate	10	120	0.08	0.01	1.5 x 10 ⁻⁷	_	Late data	
C072B	42-45	Alluvium / weathered Permian	20 March 2006	Constant Rate	13	30	1.2	0.4	5 x 10⁻ ⁶	-		
C078A	87-90 and 96-99	Donaldson Seam	2 June 2006	Constant Rate	2	120	0.4	0.07	8 x 10 ⁻⁷	-		
C078B	18-24	Alluvium / weathered Permian	30 May 2006	Constant Rate	11	60	0.2	0.07	8 x 10 ⁻⁷	-		
C081B	14-20	Alluvium / weathered Permian	22 March 2006	Constant Rate	13	75	2.4	0.4	4 x 10 ⁻⁶	-		
C082	14-20	Alluvium / weathered Permian	22 March 2006	Constant Rate	13	160	0.3	0.05	6 x 10 ⁻⁷	-		
C087	12-18	Alluvium / weathered Permian								-	No test – pumped dry in 4 minutes	
Bloomfield Mo	onitoring Bores:											
BL03A	?		14 April 2006	Slug test	-	-	-	1.3	1.6 x 10 ⁻⁵	-		
BLO4	?		14 April 2006	Slug Test	-	-	-	0.02	3 x 10 ⁻⁷	-		
BL05	?		14 April 2006	Slug Test	-	-	-	0.04	5 x 10 ⁻⁷	-		
BL07	?		13 April 2006	Slug Test	-	-	-	2.3	3 x 10 ⁻⁵	-		
Donaldson Pie	ezometers:											
	16.5-26.9	L Donaldson and Big Ben Seams	31 July 1997	Slug Test	-	-	-	0.08	9.6 x 10 ⁻⁷	-		
	17.4-17.6	Mudstone	4 Sept 1997	Lab K Test	_	_	_	0.0003	3 x 10 ⁻⁹	-	Kh	
DPZ1	17.4-17.0	INITASIONE	4 Sept 1997	Laurriest	-	-		0.0001	1 x 10 ⁻⁹	-	Kv	
	18.5-18.6	Mudstone	4 Sept 1997	Lab K Test	_	_		0.0037	4 x 10 ⁻⁸	-	Kh	
	10.3-10.0	INIGUSIONE	4 Ochr 1991	Launtesi	-	-	-	0.0008	9 x 10⁻ ⁹	-	Kv	
DPZ4	12.8-13.0	Interbedded sandstone /	4 Sept 1997	Lab K Test	-	-	-	0.0015	2 x 10 ⁻⁸	-	Kh	
		mudstone	·					0.0005	5 x 10 ⁻⁹	-	Kv	

Piezometer / Test Bore	Test Interval	Aquifer / Lithology	Date of Test	Type of Test	Pumping Rate	Duration min	Transmissivity		Hydraulic uctivity	Storativity	Comments
Test Dore				-	kL/d	11111	m²/d	m/d	m/s		
	20.0-20.2	Mudstone	4 Sept 1997	Lab K Test	_	_	_	0.0015	2 x 10⁻ ⁸	-	Kh
	20.0-20.2	Widdstone	4 Sept 1997	Labit Test	-	-		0.0002	2 x 10 ⁻⁹	-	Kv
		Interbedded						0.0014	1.6 x 10 ⁻⁸	-	Kh
	35.7-35.9	sandstone / mudstone	4 Sept 1997	Lab K Test	-	-		0.0001	1 x 10 ⁻⁹	-	Κv
	37.0-37.2	Sandstone (very	4 Sept 1997	Lab K Test	_	-		1.3	1.5 x 10 ⁻⁵	-	Kh
	57.0-57.2	coarse)	4 0601 1337	Labit Test				0.19	2.2 x 10 ⁻⁶	-	Kv
	22.9-34.9	L Donaldson Seam	30 June 1997	Slug Test	-	-	-	0.002	1.4 x 10 ⁻⁸	-	
DPZ7	18.4-18.6	Sandstone	4 Sept 1997	Lab K Test		-	_	0.0015	1.7 x 10 ⁻⁸	-	Kh
	10.4-10.0	Gandstone	4 0601 1337	Labit Test	_	-	_	0.0009	1 x 10 ⁻⁸	-	Kv
DPZ8	22-32	L Donaldson and Big Ben Seams	30 June 1997	Slug Test	-	-	-	0.17	1.9 x 10 ⁻⁶	-	
DPZ9	12.5-36.5	U/L Donaldson and Big Ben Seams	30 June 1997	Slug Test	-	-	-	0.02	2.3 x 10 ⁻⁷	-	
DPZ14	24-32	Buchanan and	20 1010 2001	Chur Taat				0.7	8 x 10⁻ ⁶	-	Early data (Gravel pack?)
DPZ14	24-32	Ashtonfield Seams	26 July 2001	Slug Test	-	-		0.02	2.5 x 10 ⁻⁷	-	Late data (formation?)
DPZ15	41-47	Buchanan and	26 July 2001	Slug Test				0.3	3 x 10 ⁻⁶	-	Early data (Gravel pack?)
DPZ15	41-47	Ashtonfield Seams	26 July 2001	Slug Test	-	-	-	0.009	1 x 10 ⁻⁷	-	Late data (formation?)
DPZ16	21-24	Ashtonfield Seam	26 July 2001	Slug Test				0.4	4 x 10 ⁻⁶	-	Early data (Gravel pack?)
DF210	21-24	Ashionneid Sean	20 July 200 I	Slug Test	-	-	-	0.04	3 x 10 ⁻⁷	-	Late data (formation?)
Tasman:											
ODO003	113-131	Fassifern Seam	7 December 2001	Slug Test	-	-	-	0.002	2 x 10 ⁻⁸	-	
TAS011	26-38	Fassifern Seam	7 December 2001	Slug Test	-	-	-	1.25	1.5 x 10 ⁻⁵	-	
			7 December					0.15	1.7 x 10 ⁻⁶	-	Early data (Gravel pack?)
TAS012	90.5-105.5	Overburden above	2001	Slug Test	-	-	- '				
		Fassifern	7 December 2001	Slug Test	-	-	-	0.3	4 x 10 ⁻⁶	-	Late data (formation?)
TAS014a	38-50	Fassifern Seam	7 December 2001	Slug Test	-	-	-	0.25	3 x 10 ⁻⁶	-	

Table 2: Hydraulic Testing Program – Piezometers and Monitoring Bores

2.6 Water Sampling and Analysis

Water samples have been collected from the Abel standpipe piezometers and Bloomfield monitoring bores, and submitted to NATA-accredited laboratory ALS Environmental for detailed chemical analysis. Electrical conductivity (EC) and pH were measured in the field at the time of sampling.

The laboratory analysis results are presented in **Table 3**. Water analysis results from previous sampling of the Donaldson and Tasman bores are included in **Table 3**.

The main water quality characteristics of groundwater from within the Abel lease area are as follows:

Salinity

Salinity is variable, ranging from 518 to 13000 mg/L total dissolved solids (TDS).

рΗ

pH is close to neutral. Two samples with reported pH in the range 11-12 (C082 and C087) are believed to be affected by residual affects of cement grout.

Dissolved Metals

Limited sampling of dissolved metals revealed generally low concentrations relative to ANZECC (2000) freshwater ecosystem protection guidelines. Dissolved iron concentrations are relatively high in some samples.

Nutrients

Limited sampling for nutrients revealed concentrations ranging from 0.3 to 13 mg/L ammonia (as N). The 13mg/L was reported from one of the cement-affected bores (C082).

2.7 Surface Water Quality

Surface water samples were collected from five sites on and near the Abel project lease and subjected to laboratory analysis. The results are presented in **Table 3**, together with a summary of relevant previous water quality monitoring on the Tasman and Donaldson projects.

Table 3: Groundwater Sample Analysis Results (page 1 of 2)

Bore/Stream				C062A	C062B	C072A	C072B	C078A	C078B	C081B	C082	C087	Blue Gum Upstream	Blue Gum Downstream	Tasman Creek	Viney Creek Downstream
Parameter	Units	LOR	ANZECC (2000) Guideline Value for Freshwater Ecosystem Protection	27-May-06	30-May-06		20-Mar-06	30-May-06	30-May-06	20-Mar-06	20-Mar-06	29-May-06	04-Apr-06	04-Apr-06	04-Apr-06	04-Apr-06
pH Value		0.01		7.26	6.64		7.19	6.94	7.23	7.36	12.20	11.90	6.90	6.90	5.40	6.70
Sodium Adsorption Ratio				2.48	34.02		12.59	10.91	34.65	35.86	22.59	28.94	2.29	4.46	3.38	2.42
	µS/cm	1		904	10200		3800	3140	23400	10300	2770	3220	275	860	240	355
	mg/L	1		518	8890		2460	2070	13000	7440	2230	1980	185	575	160	235
Total Suspended Solids (TSS)	mg/L												266	20	1260	13
	mg/L	1		21	68		103	109	163	70	27	42	9.6	26	3.6	11
	mg/L	1		34	266		73	72	499	137	<1	<1	8.2	21	10	10
	mg/L	1		79	2780		683	598	3950	2240	439	681	40	126	55	46
Potassium	mg/L	1		40	33		16	12	45	45	8	24	3.5	10	5	8.8
	mg/L	1		<1	<1		<1	<1	<1	<1	146	87				
	mg/L	1		<1	<1		<1	<1	<1	<1	119	88	<2	<2	<2	<2
Bicarbonate Alk as CaCC ₃	mg/L	1		249	686		539	515	1220	1210	265	<1	61	145	9	88
Sulphate	mg/L	1		62	888		160	84	1070	46	323	235	<2	6	8	<2
Chloride	mg/L	1		92.2	4620		1100	1010	6970	3550	388	930	46	170	50	99
Aluminium - Filtered	mg/L	0.1/0.01	0.055				0.01			<0.01	1.46					
Arsenic - Filtered	mg/L	0.01/0.001	0.013				<0.001			0.011	0.006					
Cadmium - Filtered	mg/L	0.005/0.0001	0.0002				<0.0001			<0.0001	<0.0001					
Chromium - Filtered	mg/L	0.01/0.001	ID				0.002			0.001	0.002					
Copper - Filtered	mg/L	0.01/0.001	0.0014				< 0.001			<0.001	0.004					
Lead - Filtered	mg/L	0.01/0.001	0.0034				<0.001			<0.001	<0.001					
Manganese - Filtered	mg/L	0.01	1.9				1.29			0.539	<0.001					
Nickel - Filtered	mg/L	0.01/0.001	0.011				0.008			0.003	0.006					
Selenium - Filtered	mg/L	0.01	0.005				<0.01			<0.01	<0.01					
Silver - Filtered	mg/L	0.001	0.00005				<0.001			0.001	<0.001					
Zinc - Filtered	mg/L	0.01/0.001	0.008				0.006			<0.005	<0.005					
Boron - Filtered	mg/L	0.1/0.01	0.37				0.12			0.99	0.07					
Iron - Filtered	mg/L	0.1	ID				1.56			2.13	<0.05					
	mg/L	0.0001	0.00006				<0.0001			<0.0001	<0.0001					
Ammonia as N	mg/L	0.01	0.9				0.283			4.02	13.4					
	mg/L	0.01					<0.01			<0.01	0.042					
Nitrate as N	mg/L	0.01	0.7				0.085			<0.01	0.116					
Total Kjeldahl Nitrogen as N	mg/L	0.1					3.3			7.2	15					
Total Phosphorus as P	mg/L	0.01					0.04			0.23	0.14					
Reactive Phosphorus as P	mg/L	0.01					0.034			0.035	0.029					
Total Cations (reported)	meq/L	0.01		8.24	162		41.2	40.5	243		21.6	34.6				
Total Anions (reported)	meq/L	0.01		8.3	147		45.1	37.7	222		23	32.4				
Anion-Cation Difference (reported)	meq/L	0.01		0.38%	4.93%		4.47%	3.59%	4.58%		3.06%	3.40%				
Allowable Anion-Cation Difference (reptd)	meq/L	0.01		2.00%	5.00%		5.00%	5.00%	5.00%		5.00%	5.00%				
Anion-Cation Difference (reported)	%															
Allowable Anion-Cation Difference (reptd)	%															
Total Cations (calculated)	meq/L	0.01		8.30	147.05		41.26	37.68	222.16	114.00	20.73	32.33	2.98	8.76	3.52	114.00
Total Anions (calculated)	meq/L	0.01		8.87	162.53		45.13	40.53	243.28	125.00	22.97	31.13	2.56	7.82	1.76	125.00
% Difference (calculated)	%	0.01		-3.28%	-5.00%		-4.48%	-3.64%	-4.54%	4.88%	-5.12%	1.90%	7.67%	5.69%	33.44%	4.88%
								2.00%	2.00%	2.00%						2.00%

Table 3: Groundwater Sample Analysis Results (page 2 of 2)

Bore/Stream				DPZ1	DPZ2	DPZ3	DPZ4	DPZ5	DPZ6	DPZ7	DPZ8	DPZ9	DPZ10	DPZ11	DPZ12	DPZ13	BL01	BL04
Parameter	Units	LOR	ANZECC (2000) Guideline Value for Freshwater Ecosystem Protection															
pH Value		0.01															6.58	7.11
Sodium Adsorption Ratio	a /			7.26	19.12	17.45	13.51	9.09	11.30	11.59	9.28	8.61	11.03	27.56	19.60	23.52	13.22	13.72
Conductivity @ 25°C	µS/cm	1				5300	1700		3800	2300	1900	2600			3300		2700	2970
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	mg/L mg/L	1		770	900	2500	850	3600	1800	1100	1000	1200	2600	16000	1600	8900	2020	2110
Calcium	mg/L	1		9	11	81	8.6	99	56	18	18	32	49	140	19	130	67	76
Magnesium	mg/L	1		33	2.5	96	19	190	71	36	34	61	140	700	36	400	41	61
Sodium Potassium	mg/L	1		210	270 7.9	980 21	310 7.7	670 17	540	370	290 8.6	360 10	670	3600 27	630 8.4	2400	557 11	662
Hydroxide Alk as CaCO3	mg/L mg/L	1 1		5.1	7.9	21	1.1	17	15	8.6	0.0	10	9.7	21	0.4	16	<1	19 <1
Carbonate Alk as CaCO3	mg/L	1		0	0	0	0	0	0	0	0	0	0	0	0	0	<1 <1	<1 <1
Bicarbonate Alk as CaCC3	mg/L	1		70	90	590	160	440	300	85	60	190	410	310	210	640	288	753
Sulphate	mg/L	1		130	110	170	52	540	56	47	75	39	130	1100	330	690	573	247
Chloride	mg/L	1		340	410	1300	410	1500	1000	620	510	660	1300	7300	600	4900	573	757
Aluminium - Filtered Arsenic - Filtered	mg/L mg/L	0.1/0.01 0.01/0.001	0.055 0.013															
Cadmium - Filtered	mg/L	0.005/0.0001	0.0002															
Chromium - Filtered	mg/L	0.01/0.001	ID															
Copper - Filtered	mg/L	0.01/0.001	0.0014															
Lead - Filtered	mg/L	0.01/0.001	0.0034															
Manganese - Filtered	mg/L	0.01	1.9															
Nickel - Filtered	mg/L	0.01/0.001	0.011															
Selenium - Filtered	mg/L	0.01	0.005															
Silver - Filtered Zinc - Filtered	mg/L mg/L	0.001 0.01/0.001	0.00005 0.008															
Boron - Filtered	mg/L	0.01/0.001	0.008															
Iron - Filtered	mg/L	0.1	0.37 ID	11	5	0.14	5.6	0.09	0.18	3.9	16	19	<0.06	7.2	0.39	<0.06		
Mercury - Filtered	mg/L	0.0001	0.00006		Ŭ	0.14	0.0	0.00	0.10	0.0	10	15	~0.00	1.2	0.00	~0.00		
Ammonia as N	mg/L	0.01	0.9															
Nitrite as N	mg/L	0.01	0.5															
Nitrate as N	mg/L	0.01	0.7															
Total Kjeldahl Nitrogen as N	mg/L	0.1																
Total Phosphorus as P	mg/L	0.01																
Reactive Phosphorus as P	mg/L	0.01																
Total Cations (reported)	meq/L	0.01															31.3	38.1
Total Anions (reported)	meq/L	0.01															33.8	41.5
Anion-Cation Difference (reported)	meq/L	0.01																
Allowable Anion-Cation Difference (reptd)	meq/L	0.01															4.000/	4.000/
Anion-Cation Difference (reported) Allowable Anion-Cation Difference (reptd)	% %																4.00%	4.32%
Total Cations (calculated) Total Anions (calculated)	meq/L	0.01 0.01																
l otal Anions (calculated) % Difference (calculated)	meq/L %	0.01																
Allowed % Difference (calculated)	%	0.01																
	70	0.01																

3 DESCRIPTION OF THE EXISTING HYDROGEOLOGICAL ENVIRONMENT

3.1 Climate

Rainfall

The nearest long-term Bureau of Meteorology rain gauging stations to the Abel Project are listed in **Table 4**.

Station No.	Location	Latitude	Longitude
61008	Campbells Hill (16 km NNE)	32.7000 S	151.5000 E
61009	Cessnock Post Office (20.4 km WNW)	32.8272 S	151.3661 E
61034	East Maitland Bowling Club (13.3 km NNE)	32.7483 S	151.5833 E
61223	Maryville (19 km East)	32.9131 S	151.7500 E
61242	Cessnock – Nulkaba (22 km WNW)	32.8093 S	151.3490 E

 Table 4:
 Bureau of Meteorology Stations

Analysis of the daily rainfall data since 1902 (ie. 99 years) from the nearest meteorological station at East Maitland, 5 km north of the proposed surface infrastructure development for the Abel Project, provides the following key characteristics shown in **Table 5**.

Table 5:	Long Term Rainfall Data for East Maitland Station 61034
----------	---

Rainfall	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Mean (mm)	89	94	96	87	70	84	58	52	55	65	62	81	895
Mean No of Raindays	7.9	7.8	7.7	7.7	6.7	7.5	6.6	6.2	6.2	7.4	6.5	6.4	85

The annual rainfall at the East Maitland site exhibits a moderate seasonal pattern with the highest mean rainfall occurring during the December to June period and lower rainfall between July and November. No evaporation data is available from the East Maitland meteorological station.

Evapotranspiration

Average annual potential evapotranspiration for the Project area is around 1470 mm.

Table 6:Average Monthly Potential Evapotranspiration Rates
for the Project Area (mm)

Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
mm	182	143	127	96	68	57	67	93	120	149	167	200	1470

Average of Cessnock and Paterson Stations - Source: Bureau of Meteorology (2001)

A comparison between monthly average rainfall and monthly average potential evapotranspiration over the year, indicates that on average the area has an excess evaporative capacity over rainfall in all months. There is variability in monthly rainfall and there would be periods when rainfall could exceed evapotranspiration during the winter months.

3.2 Geology

The project area is underlain by Permian Tomago and Newcastle Coal Measures (**Figure 6**). The target coal seam of the proposed Abel mine is the Donaldson Seam, which divides into separate Upper and Lower units in the southern half of the lease. Sediments above and below the coal seams comprise predominantly interbedded mudstone, siltstone and sandstone. The strata dip generally towards the south and south-east, although the structure is complicated by the presence of faults.

Surface topography is generally in the range 15 to 150 mAHD in the Abel area.

The West Borehole Seam is present only in the southern part of the Abel mining lease (**Figure 6**), and was the subject of previous mining. It is stratigraphically about 200m above the Donaldson Seam, on average 7.7 m thick, and crops out in the south-west of the project area. Due to the dip of the strata, the seam reaches depths of over 200 m below surface in the south of the study area, while it is absent due to erosion in the north (**Figure 7**).

Other coal seams of lesser importance between the West Borehole and Donaldson seams include the Sandgate, Buttai and Beresfield seams.

The Upper and Lower Donaldson seams are on average 1.5 and 2.2 m thick, respectively. The seams are present throughout the proposed Abel mining area and outcrop at about 800 m north of the site. Due to the southerly dip, the seams reach depths of about -360 mAHD in the south of the study area (**Figure 7**).

Around the Pambalong Nature Reserve, Hexham Swamp and the floodplain of the Hunter River to the east of the site, the bedrock is overlain by Quaternary alluvial deposits including gravel, sand, silt and clay. Alluvial development extends upstream from Pambalong for some distance along the lower reaches of Blue Gum Creek and Long Gully. To the west, alluvial sediments also occur along Wallis Creek. Elsewhere, minor intermittent occurrences of localised alluvium can be found in association with creek-lines.

The upper part of the Permian sequence is moderately to highly weathered to depths of up to 20-30 m.

3.3 Hydrogeology

Overall, the coal measures are poorly permeable, but in the study area permeability is generally highest in the coal seams and areas of significant fracturing or faulting. The interbedded sandstones and siltstones are of lower permeability (generally by at least one order of magnitude) and offer very limited intergranular porosity and little secondary permeability and storage in joints.

Groundwater also occurs in the alluvial overburden, which comprises mainly swamp, floodplain and estuarine sediments. There is believed to be very limited hydraulic connectivity between the alluvium and the coal measures.

The colluvium / weathered bedrock zone constitutes a minor aquifer up to about 20-30 m thick which blankets most of the area. Groundwater occurs locally within this zone and represents a discontinuous unconfined aquifer, that is believed to be in hydraulic connection locally with the surface stream system, but is hydraulically isolated from deeper groundwater within the Permian coal measures sequence.

A summary of representative aquifer properties of the hydrogeological units in the study area is given in **Table 7**. These are based on hydraulic testing on the Abel site, supplemented by previous investigations in the Tasman and Donaldson Mining area and experience in other parts of the Hunter Valley coalfields.

Units	Horizontal Hydraulic Conductivity (m/d)	Confined Storativity	Unconfined Specific Yield
Coal Seams	0.01 to 0.1	0.0001	0.01
Interburden (undisturbed)	0.001	0.00001	0.005
Interburden (disturbed through mining)	0.1 to 10	0.0001	0.01 to 0.05
Colluvium / weathered coal measures sediments	0.1 to 0.5	-	0.05
Alluvium	1 to 5	-	0.1

Table 7: Hydraulic Parameters of Hydrogeological Units

Horizontal hydraulic conductivity is considered to be at least 10 times higher than vertical hydraulic conductivity. This is generally supported by the results of laboratory testing on samples collected at the Donaldson site in 1997 (**Table 2**) which showed horizontal/vertical ratios of between 1.7 and 14 in solid rock samples. Much higher ratios are expected for bulk rock mass hydraulic conductivity, when fractures and bedding plane partings are included.

It is likely that enhanced hydraulic conductivity exists within the previously mined areas of the West Borehole seam, and disturbed overburden strata.

The extent and nature of subsidence and cracking associated with mining of the West Borehole seam is not known, nor is the extent to which the workings have become re-saturated following cessation of mining. However it is likely that there is a body of groundwater within the residual mine voids and fractured overburden, and that this zone would have a substantially higher hydraulic conductivity than the undisturbed coal measures sediments.

Groundwater flow within the coal measures is overall controlled by the recharge-discharge process, with recharge occurring to coal seams and other permeable zones where they outcrop in areas of elevated terrain, and then slow movement down-dip or along strike to areas of lower topography, with ultimate discharge probably to the ocean. There is believed to be a smaller component of vertical downward flow across the bedding within the coal measures.

Groundwater level contours for the Donaldson Seam show an overall pattern of flow to the east, south and west from a central ridge which extends southwards from the Donaldson project, and the flow pattern is largely independent of the local topography (**Figure 8**). The contours also show the influence of dewatering in the Donaldson Mine area with a prominent cone of depression located to the north of John Renshaw Drive.

A similar flow pattern is apparent generally for the rest of the coal measures. Groundwater levels are about 5 - 10 m higher in the overburden above the Donaldson Seam. There is a consistent pattern of lower pressure heads with depth in the coal measures.

However, groundwater levels in the near surface material, which includes alluvium, colluvium and weathered bedrock, show a much closer relationship to the local topography. Near surface groundwater levels in shallow piezometers C072B, C078B and C087 reported groundwater levels of 50, 67 and 63 mAHD respectively (**Table 2**), in each case about 30-40 m higher than water levels in the Donaldson Seam at the same sites (ie C072VW, C072A, C078A and C087). However, the near surface groundwater level in bore C081B is 2.0 mAHD, which is 24m lower than the pressure head in the Donaldson Seam at the same location (C081A).

The groundwater levels in the deeper coal measures are not influenced by local topography, but rather by the elevations of the recharge zones (ie in updip areas where they outcrop). By contrast, the surficial groundwater levels are locally influenced, as they are recharged by infiltration of local rainfall and downward percolation to the water table.

Flow within the deeper coal measures is therefore believed to be more regionally controlled, whereas flow within the near-surface material is subject to local topographic influences.

The close correlation between groundwater levels in the alluvium around the wetlands of Pambalong Nature Reserve and the swamp water levels indicate that the alluvium and the swamp are in good hydraulic connection. However, the distinct lack of correlation between the deeper groundwater levels and the

swamp levels show that there is negligible hydraulic connection between the swamps and the deeper groundwater.

3.4 Recharge and Discharge

Rainfall recharge occurs to both the coal seams where they outcrop, and to the alluvial aquifers. The alluvial aquifers are likely to be in hydraulic continuity with Hexham Swamp in the east and Wallis Creek to the west of the Abel mining area. During periods of high stream flow, surface water courses are likely to contribute to recharge to these alluvial aquifers. However, stream flows from rainfall runoff are reported to be short-lived after rainfall events.

The coal seams, where covered by overburden, are recharged mainly by flow along the bedding from elevated areas where the beds are exposed in outcrop, with minimal downward percolation through the overburden. After reaching the water table, flow is predominantly down-gradient along the more permeable horizons, but also with a smaller component of continuing downward flow to recharge underlying coal seam aquifers.

Rainfall recharge rates within the hard rock outcrop area are believed to be relatively low (below 10 mm/yr). However, where alluvial deposits occur, recharge rates may be as high as 100mm/yr.

Natural groundwater discharge occurs through evaporation, seepage and baseflow contributions to creeks, rivers and Hexham Swamp, where aquifer horizons outcrop in low lying areas. However, most natural discharge is believed to occur by slow downdip migration within the coal measures strata to the south and east, with ultimate discharge to the ocean.

3.5 Existing Groundwater Usage

Due to the generally high salinity and low bore yields, there is almost no existing groundwater abstraction in the study area other than for coal mine dewatering (Donaldson, Bloomfield, etc). Occasional small stock water supplies are drawn from near surface groundwater, such as the DNR registered bore GW51353 discussed in **Section 2.2**.

Incidental use of groundwater from the coal measures is believed to occur. A landholder south of John Renshaw Drive reported that groundwater inflow was observed to occur from a shallow coal seam (believed to be the Sandgate Seam) intersected during excavation of a dam. The salinity is reported to be too high for beneficial use, unless it is blended with low salinity surface runoff in the dam.

3.6 Groundwater Quality

The quality of groundwater sampled from within the Abel lease is variable, with total dissolved solids (TDS) ranging from less than 518 mg/L to 13,000 mg/L. The highest salinities are reported from the surficial groundwater, ie the colluvium / weathered Permian (13,000 mg/L TDS in C078B, and 7440 mg/L TDS in C081B) and the overburden (8890 mg/L TDS in C062B). The lowest reported salinity of 518 mg/L was from the Donaldson Seam at bore C062A.

The salinities reported from the Donaldson open cut area are also variable. They represent a broad spectrum of lithologies, including the coal seams (Donaldson Seam and others above and below) and various levels within the coal measures overburden. Salinities ranged from 770 to 16,000 mg/L TDS.

pH is close to neutral. Two samples reporting pH values of 11-12 (C082 and C087) are believed to be affected by the residual effects of cement grout.

The groundwater samples have been plotted on a Piper Trilinear diagram (**Figure 9**), which allows each sample to be plotted at a unique point on the basis of the relative concentrations of the major ions in solution – the cations calcium, magnesium, sodium and potassium, and the anions carbonate/bicarbonate, sulphate and chloride. This plot allows an assessment of the recharge-discharge processes, and also allows a comparison of water samples derived from different environments within the hydrological cycle. It can also be used to assess the possible mixing of waters from different sources.

Recently-recharged water tends to plot closer to the left-hand apex of the diamond field in the Piper diagram, and waters further from the source of recharge closer to the right-hand side.

Figure 9 is a composite plot of the groundwater samples from the Abel project area, and the Donaldson and Bloomfield sites, together with surface water samples collected from Blue Gum Creek, Tasman Creek (a Blue Gum Creek tributary on the Tasman project site) and Viney Creek close to the lease boundaries. The plot shows the Blue Gum Creek surface waters and the groundwater sample from bore C062A plotting near the centre of the Piper diamond, whereas the remaining groundwater samples and the surface water sample from Tasman Creek are grouped close to the right hand side of the diagram. It is interpreted that the Tasman Creek sample, despite its relatively low salinity, probably contains a significant component of groundwater baseflow, whereas the other surface samples are probably largely runoff.

3.7 Groundwater-Surface Water Interaction

Groundwater in the alluvium associated with Pambalong Nature Reserve and Hexham Swamp is believed to be in direct hydraulic connection with the surface water in these wetlands, based on close correlation between the surface water and groundwater levels. There is believed to be relatively free interchange of water between the alluvium and the surface water bodies, with the groundwater discharging to the surface water at most times, and possibly the in the reverse direction for short periods following periods of heavy rainfall.

The limited occurrences of localised surficial groundwater in the colluvium / weathered bedrock are believed to be in reasonable hydraulic connection with the high level streams, and there is expected to be some interchange of water between the creek-beds and the shallow weathered bedrock beneath. These localised occurrences of surficial groundwater do not represent a significant or regionally extensive aquifer system, and should really be considered to be an integral part of the surface water flow system.

On the other hand, there is believed to be minimal interaction between the surface drainage system (including the alluvial and other surficial groundwater), and the deeper groundwater within the coal measures. Likewise, there is believed to be limited interaction between groundwater in the alluvium and deeper groundwater in the coal measures.

4 ASSESSMENT OF POTENTIAL IMPACTS OF THE PROPOSAL ON THE GROUNDWATER SYSTEM

4.1 The Mining Proposal

The Abel project comprises a proposed underground mining operation in which coal will be recovered from the Donaldson and Ashtonfield Seams, as a down-dip extension from the Donaldson Open Cut.

The entry to the mine will be by way of a portal from the highwall of the Donaldson open cut, on the northern side of John Renshaw Drive. A number of roadways will be driven under John Renshaw Drive with normal underground mining commencing on the southern side of John Renshaw Drive and progressing southwards.

The mining method proposed for the Abel Underground Mine is a bord and pillar system with secondary extraction using high productivity continuous miners. This mining method has been selected to enable long term stable pillars to be left behind to provide surface protection where there is no other option to manage subsidence.

4.2 Groundwater Flow Model

A numerical groundwater flow model based on the MODFLOW package has been used to assess the potential impacts of the proposed mining operation. A detailed account of the modelling carried out for the Abel project is presented in **Appendix E**.

The modelling has been reviewed by an independent peer reviewer, Dr Noel Merrick. A copy of Dr Merrick's review report is also presented in **Appendix E**.

The model area of about 120 km² is shown in **Figure 10**. It includes the Abel and Donaldson mining areas and part of the Bloomfield operation, and extends to the north and west as far as the outcrop line of the Lower Donaldson seam, which is represented in the model using a no-flow boundary. The southern model boundary has been set at Northing 6,360,000, about 1.8 km south of the Abel mining area. At this latitude, the coal seam aquifers are overlain by considerable thickness of overburden – the Lower Donaldson seam occurs at a depth of about 240 m below surface in the west, increasing to over 400 m depth towards the east.

The depth of the coal seam aquifer units along the southern boundary warrants that only limited flow occurs across it. Additionally, it has been set far enough south to avoid any interference with the mining activities to be simulated in the Abel mining area to the north. This boundary has been represented numerically using a head-dependent flux (using MODFLOW's General Head Boundary "GHB" package), with water level set to observed heads.

In model layers representing the coal seams and interburden material, the eastern boundary has been represented using GHB cells, as some groundwater flow may occur across the boundary towards the sea. This flow however is believed to be minimal with seams buried under more than 200 m of overburden at this location.

The eastern model boundary is located within Hexham Swamp at Easting 374000, about 2 km east of the N3 Freeway. The Hexham Swamp area (including the Pambalong Nature Reserve) has been represented using river cells, allowing water to flow into or leak out of the swamp according to the difference in heads between the aquifer and swamp.

For the steady state model, Wallis Creek has been represented using river cells to allow for stream-aquifer interaction due to leakage from the creek and/or baseflow from the alluvial aquifer. Smaller creeks, where flow is known to occur only through minor baseflow and after rainfall events, are represented using drain cells to allow for the predominant process of groundwater discharge (baseflow) to these minor streams. Such creeks included in the numerical model are Buttai Creek, Blue Gum Creek, Weakleys Flat Creek, Viney Creek and Four Mile Creek.

The cell size throughout the model is a uniform 100m by 100m.

The hydrogeology has been represented numerically with a 6 layer model (**Figure 11**), where coal seams and interburden are represented independently. Alluvial deposits are not represented as a specific single layer but are included in layers 1 to 6 according to their location and surface elevation.

Summary of model layers:

- Layer 1: Interburden (undisturbed)
- Layer 2: Interburden (disturbed "goaf" interburden section after mining)
- Layer 3: West Borehole Seam
- Layer 4: Interburden (undisturbed)
- Layer 5: Interburden (disturbed "goaf" interburden section after mining)
- Layer 6: Upper and Lower Donaldson Seams including the interburden between the seams.

The interburden above coal seams has been divided into two parts. The lower unit, a "goaf" zone of about 50 metres thickness immediately above the coal seams, represents the interburden where subsidence during and after mining may result in increased vertical and horizontal hydraulic conductivity (ie Layers 2 and 5). The upper unit represents the undisturbed interburden sediments (ie Layers 1 and 4). This delineation of a 50m "disturbed" layer above the mined seam is based on the likely continuous fracturing heights of 29m to 66m above the workings predicted by Strata Engineering (2006).

As the Lower and Upper Donaldson Seams are separated by a relatively thin interburden layer and are believed to act as a single hydrogeological unit, they are represented by one model layer.

Layers 1 to 3 are only present in the model within the area of occurrence of the West Borehole seam. Alluvium where it occurs has been represented in the uppermost active model layer, which is Layer 3 (ie alluvium is only present in areas where there is no West Borehole Seam).

Underground mining and dewatering activity has been represented in the model using drain cells within the mined coal seams (Layer 6). These have been emplaced where workings occur and progress in accordance with the mine plan requiring a transient model set-up.

Although the hydraulic properties of the coal seams and the overlying goaf would change following mining, MODFLOW does not permit these properties to be changed during a simulation. Therefore, for the base dewatering predictions, aquifer parameters were not changed progressively in the cells representing mined coal seams or the overlying goaf cells. However, for the post-mining recovery model run, aquifer properties of the interburden above the mine workings (Layer 5) have been changed to reflect the increased permeability of goaf zones. The effect of the change in hydraulic properties as mining proceeds has been evaluated in the sensitivity modelling (discussed in **Section 4.4**).

Given the current hydrogeological knowledge, using drain cells to model the underground development progressively down-dip is believed to adequately represent the flow processes. The drain conductance values used in the model have been derived during the modelling process, comparing the predicted leakage rates into the workings with the results of analytical calculations of inflow.

4.3 Model Calibration

The Abel groundwater model was run firstly in steady-state ("long term average") mode. Pre-mining conditions were simulated for the Abel mining lease area, while Donaldson mine dewatering north of John Renshaw Drive was included using drain cells. The modelled abstraction rate from Donaldson amounted to about 70 m³/d, which is slightly lower than, but comparable to, the reported volumes being pumped at Donaldson.

Parameters of the calibrated steady-state model run are detailed in **Table 8** and are graphed in **Appendix E**. The calibrated model has a scaled RMS error of 6.07% and simulated water levels fit the observed pattern well (**Appendix E**).

The model simulates a vertical hydraulic gradient from higher to lower model layers within the coal and interburden layers, with lowest water levels being measured in the Donaldson Seam. Water levels in the Hexham swamp area are simulated to be around 1 to 4 mAHD, being perched and with very limited

hydraulic connectivity to the layers below. The model has been calibrated to reflect the observed vertical hydraulic gradients by varying the vertical hydraulic conductivity.

Layer		Kh [m/d]	Kv [m/d]	Confined S*	Unconfined Sy*
1	Interburden above WB seam (undisturbed)	0.001	0.0001	0.00001	0.005
2	Interburden above WB seam (undisturbed)	0.001	0.0001	0.00001	0.005
3	WB seam	0.15	0.001	0.0001	0.01
5	Alluvium	6.0	0.0005	0.0001	0.1
4	Interburden above LD/UD seam	Under confinement: 0.001	0.0001	0.00001	0.005
-	(undisturbed)	At outcrop/Under Alluvium: 0.0005 - 0.01	under swamp: 0.00001	0.00001	0.000
5	Interburden above LD/UD seam (undisturbed)	0.001 At outcrop : 0.005	0.00005	0.00001	0.005
6	LD/UD seam	0.1 – 0.001	0.001	0.0001	0.01

Table 8: Abel Model Parameters after Calibration

* only applicable for the transient model runs

The steady-state water balance is summarised in Table 9.

Table 9: Steady State Water Balance

	Recharge	Evapotranspiration	Drains (dewatering at Donaldson/Bloomfield and flow into creeks)	River flows	Flows across boundaries
Inflows into model [m ³ /d]	1785	-	-	16.4	8.45
Outflows [m³/d]	-	22	149	1402	236

Recharge was applied at rates of 1.5 to 3 mm/yr generally, except for the alluvium areas, which received 100mm/yr. Evapotranspiration is active in low lying area such as around creeks and the swamp area to the east, and operates at maximum rates of 250 mm/yr.

Due to limited detailed knowledge of pumping rates and schedules in the Bloomfield and Donaldson mine areas, the impact of these operations on the water table has been simulated in a simplistic way, using drain cells set to observed water levels in the area.

4.4 **Predictive Modelling and Sensitivity Analysis**

Having achieved satisfactory calibration of the model in steady-state mode, the groundwater model was applied to prediction simulations of mining from 2007 onwards as envisaged by the Abel mine plan. The model setup for the predictive modelling runs is described in detail in **Appendix E**.

The transient dewatering model comprised 11 stress periods. The duration of each stress period is detailed in **Table 10**. At 2027, a post-mining recovery model run was set up to simulate the recovery of the groundwater levels after mining operations have ceased.

Underground mining and dewatering activity is represented in the dewatering model using drain cells within the mined coal seam (Layer 6). These are emplaced where workings occur and progress in accordance with the mine plan. The drain conductivity has been set to double the Kv of the overlying interburden (ie resulting in a drain conductance of $0.01 \text{ m}^2/\text{d}$) in the actively mined area. This changes to a 5 times higher drain conductance (ie $0.05 \text{ m}^2/\text{d}$) for already mined out areas, to reflect the increased permeability of "goaf" zones above the mine workings.

Stress period	Time	Features implemented in the model
1	Jan 2007 – Dec 2007	The box-cut is being introduced north of John Renshaw Drive.
2	Jan 2008 – Dec 2009	Underground mining in Abel. Open cut mining in Donaldson progresses towards Abel portal
3	Jan 2010 – Dec 2011	Underground mining in Abel. Open cut mining in Donaldson progresses towards Abel portal
4	Jan 2012 – Dec 2013	Underground mining in Abel. Open cut mining in Donaldson has progressed to Abel portal and then ceases
5 to 11	Jan 2014 – Dec 2027	Underground mining in Abel progresses down-dip according to mine plan

Table 10: Stress Period Set-up of the Dewatering Model Run

For the post-mining recovery model run, aquifer properties of the interburden above the mine workings (Layer 5) have been changed to reflect the increased permeability of "goaf" zones, while drain cells have been switched off (**Table 11**).

Predicted groundwater inflow rates to the mine workings over time are shown in **Figure 12**. Seepage into the mine commences at 2008 and increases with the progressively enlarged underground mine area. By 2027, when the mine reaches its largest extent, a mine inflow rate of $3100 \text{ m}^3/\text{d}$ is predicted. This is accompanied by a drawdown in hydraulic heads in the Donaldson Seam of about 60 m at the fringes of the mining lease and about 120 m in the centre of the area (**Figure 13**).

Figure 14 shows a less pronounced cone of depression in the undisturbed interburden above the Donaldson seam (model layer 4). The predicted maximum decline in heads is about 30 metres (ie to -10mAHD).

Layer		Dewatering run	Recovery run
1 to 2	Interburden above WB seam	No change to steady state model	No change to steady state model
3	Alluvium WB seam	No change to steady state model	No change to steady state model
4	Interburden above LD/UD (undisturbed)	No change to steady state model	No change to steady state model
5	Interburden above LD/UD (disturbed)	No change to steady state model	Aquifer parameters changed to reflect disturbed interburden (i.e. Kh, Kv times 100)
6	LD/UD seam	Introduction of drain cells in accordance with the mine plan. Drain conductance in actively mined area: $0.01 \text{ m}^2/\text{d}$, in mined-out areas: $0.05\text{m}^2/\text{d}$	No change to steady state model. Drain cells are switched off.

Table 11: Set-up of the Dewatering and Recovery Models

A complete set of water table maps from 2008 onwards is presented in **Appendix E**. Prediction hydrographs for selected piezometer locations are also presented in **Appendix E**.

Following on from the dewatering phase, the recovery of the water table after mining ceases (ie after 2027) was simulated over a period of 60 years. Pressure heads in the Donaldson Seam are predicted to recover to 80% of the pre-mining levels within 6 years after cessation of mining. Undisturbed overburden groundwater levels show a much slower rate of recovery due to their lower permeability, and also show an apparent incomplete recovery. This is due to the increase in permeability of the goaf zone above the mined areas. The water balance flow volumes also show a return to pre-mining levels.

The results of the recovery modelling are presented in more detail in **Appendix E**.

The modelling predicts an insignificant decline in water levels in the alluvium around Pambalong Nature Reserve in the East, reaching a maximum of about 12 cm by 2029, ie 2 years after completion of mining, before commencing a post-mining recovery back to pre-mining levels (see Figures19 and 23 in **Appendix E**).

To assess the level of uncertainty in the modelling results, sensitivity analysis was carried out on the dewatering model, to derive upper and lower bounds for seepage rates into the mine workings over time, and the associated drawdown and recovery impacts.

The critical model parameter that most influences the seepage rate into the mine workings is the applied drain conductance. To establish its influence on model results, the drain conductance was systematically changed within a plausible range. **Table 12** summarises the sensitivity runs undertaken and the parameters applied.

	Kh/Kv	S/Sy	Drain conductance (m²/d)
Dewatering model	As per steady state model	See Table 8	Drain conductance: actively mined: 0.01m ² /d, mined-out area: 0.05 m ² /d
Sensitivity Run 1	Parameters of dewatering model	Parameters of dewatering model	Drain conductances ÷ 2 (i.e. 0.001/0.025)
Sensitivity Run 2	Parameters of dewatering model	Parameters of dewatering model	Drain conductances x 2 (i.e. 0.02/0.1)
Sensitivity Run 3	Parameters of dewatering model	Parameters of dewatering model	Drain conductances ÷ 5 (i.e. 0.002/0.01)
Sensitivity Run 4	Kh/Kv x 100	Parameters of dewatering model	Parameters of dewatering model
Sensitivity Run 5	Parameters of dewatering model	Parameters of dewatering model	Drain conductances x 5 (i.e. 0.05/0.25)

Table 12:	Summary of Sensitivity Modelling Runs
-----------	---------------------------------------

The sensitivity analysis shows that predicted inflow rates to the mine workings increase with higher drain conductances, as the resistance to flow between interburden and mine workings is reduced. For the applied range of parameters, seepage rates were calculated to be in the order of $1500 \text{ m}^3/\text{d}$ to $4500 \text{ m}^3/\text{d}$. For the highest drain conductance applied, the accompanying maximum reduction in piezometric heads in the Donaldson Seam is about 170 metres, which is regarded as the upper limit of likely drawdowns, based on experience in other areas of underground mine workings.

The model was then also run introducing the "goaf" zone parameters (ie higher vertical and horizontal permeability values) in the interburden above the Donaldson coal seam to establish the influence of enhanced permeability during mining.

Using disturbed aquifer properties during the prediction run (ie vertical and horizontal hydraulic conductances increased by two orders of magnitude) results in higher inflow rates and demonstrates the strong dependence of seepage volumes on the geological structure present.

In conclusion, the sensitivity analysis established a likely range of groundwater inflow rates to be expected in the Abel underground mine, which is between 1500 m³/d and 4500 m³/d. Based on experience of drawdowns observed in other underground mining operations, drawdowns of 100 to 150 m are plausible, which narrows the most likely rate of seepage to around 3100 m³/d or 3.1 ML/day, based on the assumed aquifer properties.

It also should also be pointed out that, during the dewatering simulation, the cone of depression caused by the mining activity encroaches on the model boundaries. This is not ideal, as models should preferably extend beyond the zone of influence of any aquifer stresses to avoid boundary interference effects. However, the model was properly restricted to the area of detailed geological information. To reduce boundary effects in the chosen model area, the model design involved general-head boundaries, which were implemented to allow inflow and outflow over the model boundaries in response to changes

in piezometric heads. This approach is believed to be adequate given the lack of information on layer geometry and heads on a more regional scale and ensures that the current model boundaries minimise any effect on model results.

As mining will be confined to shallow updip areas in the early years, a considerable amount of additional monitoring data will be collected from regional monitoring bores to enable improved assessment of model boundary impacts prior to mining approaching the southern and eastern model boundaries at depth.

4.5 Potential Impacts on Surficial Groundwater and Surface Water

Under present (pre-mining) conditions, there is a clear lack of hydraulic connection between the surface and near surface water resources, and the deeper groundwater within the Permian coal measures, as evidenced by the large differences in groundwater levels. The near surface groundwater levels are strongly influenced by local topography (ie local recharge and local discharge), whereas the deeper groundwater in the coal measures is responding to regional influences (ie recharge updip where the aquifers outcrop and discharge down-dip).

Thus the near-surface groundwater levels tend to mirror the topography, whereas the deeper groundwater levels show a more consistent pattern across the area, irrespective of the local topography. This is best illustrated at the site of piezometers C081A and C081B near Pambalong Nature Reserve (**Figure 2**), with C081A showing a water level (pressure head) in the Donaldson seam about 24 m above ground level, and C081B showing a water level almost at ground level in the alluvium.

The subsidence studies (Strata Engineering, 2006) have indicated that continuous cracking is likely to result in hydraulic connection for a distance of between 29 and 66 m above the proposed Abel workings, (or a credible worst case of 58 to 123 m in the event of adverse conditions). In the area of shallow cover depth in the northern part of the Abel project area, in the region shown hatched on **Figure ...**, Strata Engineering predict that direct hydraulic connection may extend to the surface. However, elsewhere throughout the lease area, the depth of cover is such that direct hydraulic connection with the surface is not expected to occur.

The area of potential direct hydraulic connection to the surface does not contain any regionally significant alluvium.

As shown by the predictive modelling, there is potential for leakage of groundwater from higher levels in the Permian coal measures above the predicted zone of continuous cracking, but this would occur by natural leakage through the relatively low permeability strata, and not by the creation of a direct fracture-induced pathway.

4.6 Potential Impacts on Pambalong Nature Reserve and Hexham Swamp

As discussed above in **Section 4.5**, the prevailing groundwater levels in the coal measures beneath Pambalong Nature Reserve indicate that there is negligible hydraulic connection between the Donaldson Seam aquifer and the surface wetland. The depth of cover above the Upper Donaldson seam in this vicinity is around 150m.

The Pambalong Nature Reserve has been totally excluded from the proposed Abel mining area. Further, it is not proposed to mine by total extraction methods beneath the Blue Gum Creek alluvial valley that extends southwestwards from Pambalong. The closest proposed area of total extraction mining to Pambalong Nature Reserve is approximately 300m laterally from the north-western margin of the wetland. This is beyond the buffer zone required by the DNR Guideline for mining near streams and alluvial aquifers (DNR, 2005). As a result, negligible subsidence impacts are predicted to occur beneath the Pambalong wetland.

Strata Engineering (2006) have predicted that the maximum extent of continuous sub-surface fracturing above the Donaldson seam at the closest point to Pambalong Nature Reserve would be around 50 m, or a credible worst case height of around 120 m above the seam level in the event of adverse conditions. On this basis, it is not expected that the sub-surface cracking will allow direct hydraulic interconnection between the workings and the surface or any near-surface groundwater in the vicinity of Pambalong Nature Reserve.

This is supported by the groundwater model predictions. The groundwater modelling has predicted that drawdown in the alluvial aquifer at the location of piezometer C081B, near the western side of Pambalong Nature Reserve, would reach 10cm by the conclusion of mining in 2027, and would reach a maximum of 12cm by 2029 before starting to recover back to the pre-mining water levels. This predicted drawdown would occur by indirect flow, ie by leakage through the low permeability coal measures strata beneath the alluvium. A 10-12cm drawdown is much less than the seasonal variation in water levels that has been observed even in the short period of monitoring of bore C081B (Figure C2 in **Appendix C**).

4.7 Potential Impacts on Groundwater Quality

It is expected that the quality of groundwater inflows to the Abel underground mine will initially be similar to the current groundwater inflow to the Donaldson open cut, with TDS around 1500-2000 mg/L and pH around 7. Over time, a gradual increase in salinity may occur, to an eventual salinity of around 3000-4000 mg/L TDS.

It is proposed to maintain a no-discharge water management strategy for the project, with all water derived from groundwater inflows to be either used for coal washing, dust suppression or other project uses, or contained in storage within the project area. No water releases are anticipated, so it is expected that the project will not have any adverse impacts on surface water quality.

Following completion of the project and recovery of groundwater levels, groundwater levels will remain below ground level in the vicinity of the mine portal, and there is not expected to be any ongoing discharge of mine water.

In the event that there is any reduction in groundwater baseflow contribution to the surface streams within the predicted subsidence impact areas, the impact on water quality in the streams would be beneficial, as the groundwater quality is commonly poorer than the quality of surface runoff.

4.8 Potential Impacts of Proposed Tailings Disposal

Coal from the Bloomfield and Donaldson projects is currently processed through a coal washery plant located on the Bloomfield project site. Tailings from the washery are discharged into former underground workings via a former shaft located in the northern part of the lease (**Figure 2**). Prior to 2003, tailings were deposited into the U open cut north of the present discharge point (**Figure 2**).

Water is recovered from the tailings by pumping from a downdip borehole BH01 located about 2 km south of the discharge shaft (**Figure 2**). The water pumped from BH01 would comprise water segregating from the deposited tailings and groundwater inflows. This recovery point is believed to represent a local sump for groundwater in the Bloomfield lease area.

The water level is regularly monitored in BH01, and the hydrograph (**Figure 15**) shows that the water level has been consistently between about -5 and - 15 mAHD since 2001.

Additional groundwater sumps exist in the open cuts, and water is currently pumped from sumps in the U Cut, Creek Cut and S Cut (**Figure 2**). The sump in S Cut near the southern boundary of the Bloomfield lease is located at an RL of -60 mAHD. This is believed to be the primary groundwater "sink" for the lease area. Groundwater levels in nearby bores BL03A and BL03B are currently at -4.5 and +14.3 mAHD respectively, which are more than 15m lower than the water level in the closest Abel bore measuring water level in the coal measures (C078A about 1 km to the south – see **Figure 2**).

The current practice of tailings disposal and recovery of water from BH01, as well as the sump pumping from the open cuts, in particular S Cut, is maintaining a groundwater "sink" within the Bloomfield lease. Thus groundwater currently flows generally towards the lease, and there is believed to be no off-site discharge of tailings leachate or other contaminated groundwater.

It is proposed to process the Abel coal through the Bloomfield coal washery, as well as continued processing of coal from Donaldson and Bloomfield. Tasman project coal will also be processed here as well when it comes on stream. The expansion of the coal washery to accommodate the additional throughput will require additional water supply, which will be partly derived from groundwater inflows to Abel, but will require continued pumping from BH01 and from the open cut sumps. Thus the additional volume of tailings disposal in the former underground workings will be offset by additional water abstractions from borehole BH01, maintaining this location as a groundwater "sink", and groundwater will continue to flow inwards towards the Bloomfield lease.

In the event that the remaining underground storage capacity for tailings is exhausted, it is proposed to revert to open cut disposal again. Sufficient storage is available in the underground workings and open cuts to accommodate tailings for the proposed life of the Abel project (Evans and Peck, 2006).

5 MONITORING AND MANAGEMENT RECOMMENDATIONS

It is recommended that the monitoring program currently operating at the Donaldson mine be continued and expanded to include the Abel, Tasman and Bloomfield areas, as an integrated monitoring system covering all four sites. It should also be integrated with the surface water monitoring program.

The groundwater monitoring program would include:

- Monthly measurement of water levels in a representative network of piezometers. Initially, all piezometers currently available would be monitored, however it is recommended that the representativeness of the piezometers be reviewed after the first two years of the project, and an appropriate suite of piezometers be selected on the basis of this review for ongoing monitoring. All piezometers located around Pambalong Nature Reserve would continue to be monitored through the life of the project.
- Quarterly sampling of all standpipe piezometers, for laboratory analysis of electrical conductivity (EC), total dissolved solids (TDS) and pH.
- Annual collection of water samples from all standpipe piezometers for laboratory analysis of a broader suite of parameters
 - ♦ Physical properties (EC, TDS and pH)
 - Major cations and anions
 - ◊ Nutrients
 - Object of the base of the b
- Weekly measurement of the volume of mine water pumped from the underground workings. Separate inflow rates should be monitored if tow or more separate mining areas are active at any time.
- Weekly measurement on site of the EC, TDS and pH of the mine water pumped from the underground workings.

Additional regional monitoring piezometers are recommended in the following areas to resolve some of the existing hydrogeological uncertainties and to provide a more comprehensive monitoring network near the sensitive ecosystems:

• Multi-level piezometers to the north and west of Pambalong Nature Reserve, to provide additional data on groundwater pressures in the intervening strata between the Donaldson seams and the alluvium (supplementing the existing data from piezometers C081A and B and C082).

- Multi-level piezometers along the eastern side of the Abel project area, located at nominally 3 sites between the F3 Freeway and the lease boundary, to resolve the apparent anomalous water levels below sea level at C063A and B, and to provide additional data on groundwater pressures in the intervening strata between the Donaldson seams and the Hexham Swamp alluvium.
- Multi-level piezometers near the western and southern boundaries of the Abel project area to provide information on groundwater pressures at various depths, as this area currently lacks monitoring points. These piezometers would also aim to provide information on the current status of groundwater in the West Borehole seam near the former workings, prior to mining of the Donaldson seams approaching that area.

The additional Pambalong and Hexham Swamp monitoring bores should be installed prior to commencement of coal extraction. The western piezometers should be installed at least five years prior to mining reaching that part of the lease, ie by around 2013.

A comprehensive monitoring program is also recommended to assess the development of sub-surface fracturing above the underground mining areas. It is recommended that a monitoring network of multi-level piezometers and extensometers be installed above the first 4 or 5 extraction panels, which will be near the northern-central and north-eastern part of the project area. This is the area with shallowest cover depths (**Figure ...**). The monitoring network will aim to verify the predicted fracture heights as reported by Strata Engineering (2006), and the associated impacts on groundwater levels/pressures and hydraulic properties of the strata.

The subsidence/fracturing monitoring piezometer network should comprise the following:

- Multi-level piezometers situated centrally within the extraction panels (at least 2 locations per panel) with vibrating wire piezometers set at nominally 30m intervals from the surface down to 30m above the Upper Donaldson roof level.
- Shallow standpipe piezometers adjacent to each of the above multilevel piezometers, set to the base of the colluvium/weathered bedrock zone, to monitor any impact on the surficial unconfined aquifer. Standpipe piezometers will allow repeat hydraulic testing and water quality sampling, as well as water level monitoring.

The above monitoring network would be implemented prior to commencement of each extraction panel, and would be monitored closely before, during and after extraction. Based on the monitoring results during extraction of the first 4 or 5 panels, an appropriate ongoing monitoring program would be developed for the subsequent deeper panels as the mining progresses downdip. It is also recommended that the following response plan be implemented in the event of significant unforeseen variances from the predicted inflow rates and/or groundwater level impacts:

- Additional sampling and/or water level measurements to confirm the variance from expected behaviour.
- Immediate referral to a competent hydrogeologist for assessment of the significance of the variance from expected behaviour. The review hydrogeologist would be requested to recommend an appropriate remedial action plan or amendment to the mining or water management approach. If appropriate, this recommended action plan would be discussed with DNR and other agencies for endorsement.

It is further recommended that at the end of the second year of underground mining, a comprehensive review be undertaken of the performance of the groundwater system. This would include re-running the groundwater model in transient calibration mode, to verify that the actual inflow rates and groundwater level impacts are in accordance with the model predictions described in this report. If necessary, further adjustment would be made to the model at that time, and new forward predictions of mine inflows and water level impacts would be undertaken.

The groundwater model used for the simulation of impacts from the proposed Abel mine has been limited to the Donaldson seams and the coal measures stratigraphically overlying them. Thus the model does not extend north of the sub-crop line of the Lower Donaldson Seam, and does not therefore include all of the Bloomfield mining operation. This limitation was considered adequate for the purpose of predicting impacts from the Abel project.

The model does include the existing Donaldson open cut, however that operation has been simulated in a simplified fashion, rather than detailed simulation of the westward advance of the open cut and progressive backfilling with waste.

There is currently a groundwater depression centred on the deepest part of current mining in the open cuts near the southern boundary of the Bloomfield lease, and a lesser depression centred on the water recovery bore into the former underground Big Ben workings which are the current depository for tailings from the coal washery. Hence the Bloomfield operation constitutes a regional groundwater sink.

Following the lodgement of the Abel Project environmental assessment documents, it is proposed to expand the current groundwater model to include deeper layers and an expanded area, that will incorporate the Bloomfield operations and areas of possible groundwater impact around Bloomfield. It is proposed to calibrate this expanded model with ongoing monitoring data from Bloomfield, and more detailed simulation of the Donaldson mining and backfilling.

6 CONCLUSIONS

The groundwater investigations carried out for the Abel Coal Project have led to the following principal conclusions:

- Groundwater is present in most lithologies in the area, but significant permeability is generally only present in association with fracturing and cleat development in the principal coal seams in the Permian coal measures. Lesser permeability may be present locally in interburden siltstones, mudstones and sandstones, and in the surficial alluvium / colluvium.
- Groundwater quality is variable, with salinity ranging from around 500 to more than 13000 mg/L total dissolved solids (TDS). pH is generally close to neutral.
- Groundwater levels in the Permian coal measures including the Donaldson Coal Seams generally fall to the east and west from a central ridge extending south from the Donaldson mine area, and range from around 35 mAHD near the central northern end of the project area to around 10-15 mAHD along the eastern boundary, and around 15-20m at the north-western corner. The groundwater levels in the Permian coal measures are unrelated to the local topography, and are frequently artesian (ie above ground level) in low-lying areas.
- Surficial groundwater levels in the alluvium / colluvium, probably including the thin upper highly weathered zone of the Permian coal measures are strongly controlled by the local topography, and appear to be unrelated to the groundwater in the underlying less weathered Permian coal measures. Thus the surficial groundwater water levels are above the Permian groundwater levels in elevated locations and below the Permian levels in low-lying areas.
- The dewatering operations at the Donaldson mine have caused a noticeable cone of drawdown in groundwater levels, ranging up to more than 30m (ie to around –15 mAHD) along the southern margin of the open cut. The cone of drawdown has extended only a short distance into the north-eastern part of the Abel lease area.
- The Donaldson mine dewatering appears to have had negligible impact on groundwater levels in the alluvium/colluvium, or in the Permian coal measures lithologies that are stratigraphically above the zones that have been directly intersected by the open cut.
- A less pronounced cone of depression has developed around the Bloomfield mining operations, most of which are situated north of the Donaldson Seam subcrop line. Near the southern boundary of the Bloomfield lease, mine dewatering appears to have resulted in

drawdown in groundwater levels to around -30 mAHD.

- Dewatering will be required as part of the proposed mine developments. Modest groundwater inflows are predicted to the Abel underground mine, based on the most likely set of assumed hydraulic parameters. The total groundwater inflow rate is predicted to increase steadily through the project life, reaching a maximum of 3 ML/d by the 20 year mark.
- Sensitivity modelling suggests that the maximum inflow rates could be between about 1.5 and 4.5 ML/d.
- Initial average water quality of groundwater inflows to the Abel underground mine is expected to be similar to that currently entering the Donaldson open cut, with TDS around 1500-2000 mg/L and pH around 7. Over time, a steady increase in salinity may occur, to an eventual salinity of around 3000-4000 mg/L TDS.
- The dewatering associated with the proposed Abel mine is predicted to locally impact groundwater levels in the Donaldson Seam and the immediately overlying coal measures sediments. Drawdowns to below -100 mAHD are predicted for the sediments above the centre of mining activity as it progresses through the lease.
- There is believed to be negligible hydraulic interconnection between the Donaldson seams and the Hexham Swamp / Pambalong Nature Reserve. Limited connection was simulated in the groundwater modelling to assess a possible worst case condition. Drawdowns of just 10 cm at the completion of extraction, and a maximum of 12 cm two years after completion, and then recovery back to pre-mining levels, were predicted by the groundwater model for the alluvium adjacent to Pambalong Nature Reserve, and less beneath the main Hexham Swamp region to the east of the F3 freeway. In practice, no impact is expected.
- Recovery of groundwater levels after completion of mining have been assessed by 60 years of post-mining simulations. Pressure heads in the Donaldson Seam are predicted to recover to 80% of the pre-mining levels within 6 years after cessation of mining. Undisturbed overburden groundwater levels show a much slower rate of recovery due to their lower permeability, and also show an apparent incomplete recovery.
- Localised changes to the relative proportions of surface flow and surficial groundwater baseflow may occur as a result of subsidence effects. However, these two components should properly be considered as component parts of the surface water system, and are predicted to remain unconnected to the deeper groundwater.
- No adverse impacts on surface water quality are expected.

- No existing groundwater supplies are expected to be impacted.
- No adverse impacts are expected on any groundwater dependent ecosystems (GDEs).

7 GLOSSARY OF TERMS

aquifer	A saturated permeable unit of rock or soil which is able to transmit significant quantities of water under ordinary hydraulic gradients.
aquitard	A saturated unit of rock or soil that is capable of transmitting water to and between aquifers, but is not sufficiently permeable to allow water to flow into a bore a rate that will allow the bore to be pumped at a useful rate.
bedrock	In this report, bedrock refers to the geological unit that underlies the geological units that are active media for the movement of groundwater.
discharge	Groundwater discharge from an aquifer is the loss of water from the aquifer, either by natural processes (such as evapotranspiration, outflow to the ocean or other water body, or to another aquifer) or by artificial means (such as pumped extraction). Under conditions of dynamic equilibrium, the average rate of natural discharge from an aquifer is usually equivalent to the average long-term rate of recharge. See "recharge".
DNR	Department of Natural Resources, formerly known as Department of Infrastructure, Planning and Natural Resources (DIPNR) or Department of Land and Water Conservation (DLWC).
drawdown	The lowering of the water level or the potentiometric head in an aquifer due to the removal of water from a nearby bore or excavation.
drain conductance	When the Drain Package has been used in a MODFLOW groundwater model to simulate open mine workings, the drain conductance term (units of m^2/d) represents the ease with which water can leak from an aquifer into the mine opening. It is an empirical term usually determined by calibration to field data. In the modelling described in this report, the open cuts and underground longwall panels have been represented by drain cells.
ephemeral	Temporary or seasonal.
groundwater	Water that occurs beneath the water table in rock or soil that is fully saturated.

- groundwater modelling Use of mathematical functions to simulate the flow of water below the ground surface.
- groundwater table See "water table".
- head The head in an aquifer is the height above a reference datum of the surface of a column of water that can be supported by the hydraulic pressure in the aquifer against atmospheric pressure. It equates to the elevation of the water table above the datum, and is the sum of the *elevation* head, or the elevation of the point of measurement, and the *pressure* head, or the pressure of the water at that point relative to atmospheric pressure.
- hydraulic conductivity (K) A measure of the ability of a rock or soil to transmit water under a prevailing hydraulic gradient. It has the units of metres/day. In this report, the term is used synonymously with the term "permeability". Hydraulic conductivity is often anisotropic, and the horizontal hydraulic conductivity (Kh) is usually higher than the vertical hydraulic conductivity (Kv).
- hydraulic testing Testing to determine the hydraulic properties (hydraulic conductivity, storativity, etc) of aquifers. Tests used in this study included pumping tests and slug tests.
- hydraulic gradient The change in head per unit distance in a particular direction, usually the direction of maximum change, perpendicular to the groundwater contours (equipotentials).
- hydrogeological unit A unit of rock or soil which has reasonably consistent hydraulic properties of permeability and storage
- hydrograph A linear plot of water level versus time.
- infiltration Movement of water through the surface of the ground into the saturated or unsaturated zone beneath.
- lithologyA term used to describe the physical nature and
characteristics of a rock or soil.
- MODFLOW A modular three-dimensional groundwater flow model which was developed by the USGS (McDonald and Harbaugh, 1988).

monitoring piezometer	Bore drilled in a location and constructed specifically to enable the sampling and ongoing measurement of groundwater levels, pressure changes and groundwater quality. It is ideally constructed so as to minimise the potential for contamination or interference from external influences, and to enable accurate and reliable sampling and hydraulic measurements from a specific aquifer or zone within an aquifer.
permeability	The permeability of a rock or soil is a measure of the ease with which fluids can flow through it, and is independent of the properties of the fluid. In this report, the term is used synonymously with the term "hydraulic conductivity".
Permian	Last period of the Paleozoic Era, 280 – 225 million years BP.
porosity	The proportion of a volume of rock or soil that is occupied by voids, or the ratio of the total void space to the total rock or soil volume. For the movement or release of water, only the proportion of porosity that is interconnected is significant, and is referred to as the "effective" porosity, which is often very much less than the total porosity. In a saturated material, the porosity comprises two components – the proportion of porosity that will freely drain under gravity, known as the specific yield, and the proportion that will not drain under gravity, known as the specific retention.
potentiometric surface	An imaginary surface defined by the heads at all points within a particular plane in an aquifer. Where the vertical component of hydraulic gradient is much smaller than the horizontal component, the potentiometric surface can be said to apply to the aquifer as a whole.
pumping test	Test carried out to determine hydraulic properties of the aquifer (hydraulic conductivity, storativity, etc).

recharge Groundwater recharge is the addition of water to an aquifer, either by direct infiltration at the ground surface, by percolation through an unsaturated zone, or by inflow of discharge from another aquifer.

runoff	The portion of rainfall precipitation which collects on the surface and flows to surface streams.
saturated zone	That part of a soil or rock in which all the interconnected voids are filled with water under pressure equal to or greater than atmospheric pressure. The top of the saturated zone is defined by the surface at which the water pressure is equal to atmospheric pressure. [Parts of the saturated zone may be temporarily unsaturated due to air entrapment; likewise, in parts of the "unsaturated zone" the voids may be all filled with water, but at less than atmospheric pressure.]
slug test	A type of permeability test conducted by introducing to (or removing from) a bore, a known volume of water and monitoring the progressive return of the water level in the bore back to its former level.
specific yield	The volume of water that will freely drain under gravity from a unit volume of a saturated soil or rock per unit change in head.
storage coefficient	The volume of water that will drain freely from a unit volume of saturated soil or rock per unit change in head, by means of elastic compression of the aquifer fabric and decompression of the water.
storativity	A general term for both specific yield (gravity storage term) and storage coefficient (elastic storage term).
transmissivity	The rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient. It is equal to the product of the average hydraulic conductivity and the saturated thickness of the aquifer. It is expressed in units of metres ² /day.
water table	The surface within an unconfined aquifer at which the water pressure is equal to atmospheric pressure. It is defined by the level to which water would rise in a bore which just penetrates the top of the aquifer.

8 **REFERENCES**

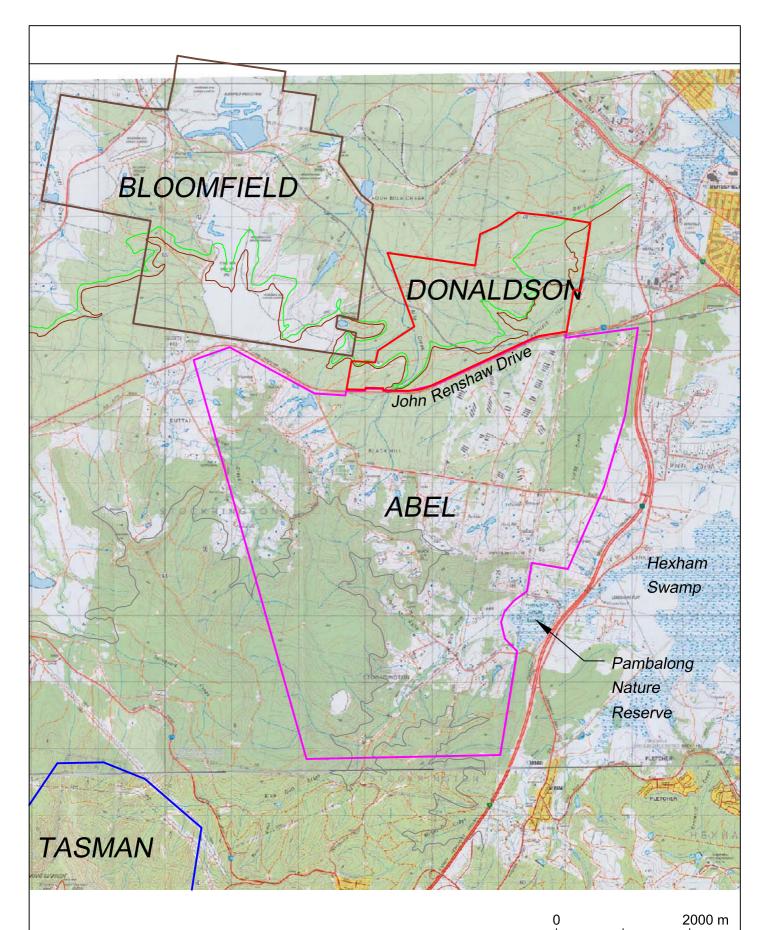
Australian and New Zealand Environment and Conservation Council (ANZECC) / Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000. *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.*

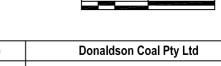
Bureau of Meteorology, 2001. Climatic Atlas of Australia.

Department of Infrastructure, Planning and Natural Resources (DIPNR), 2003. *Groundwater Monitoring Guidelines for Mine Sites Within the Hunter Region.* Rept prepared by J Williams, Sept 2003.

Department of Natural Resources (DNR), 2005. *Guidelines for Management of Stream/Aquifer Systems in Coal Mining Developments – Hunter Region.*

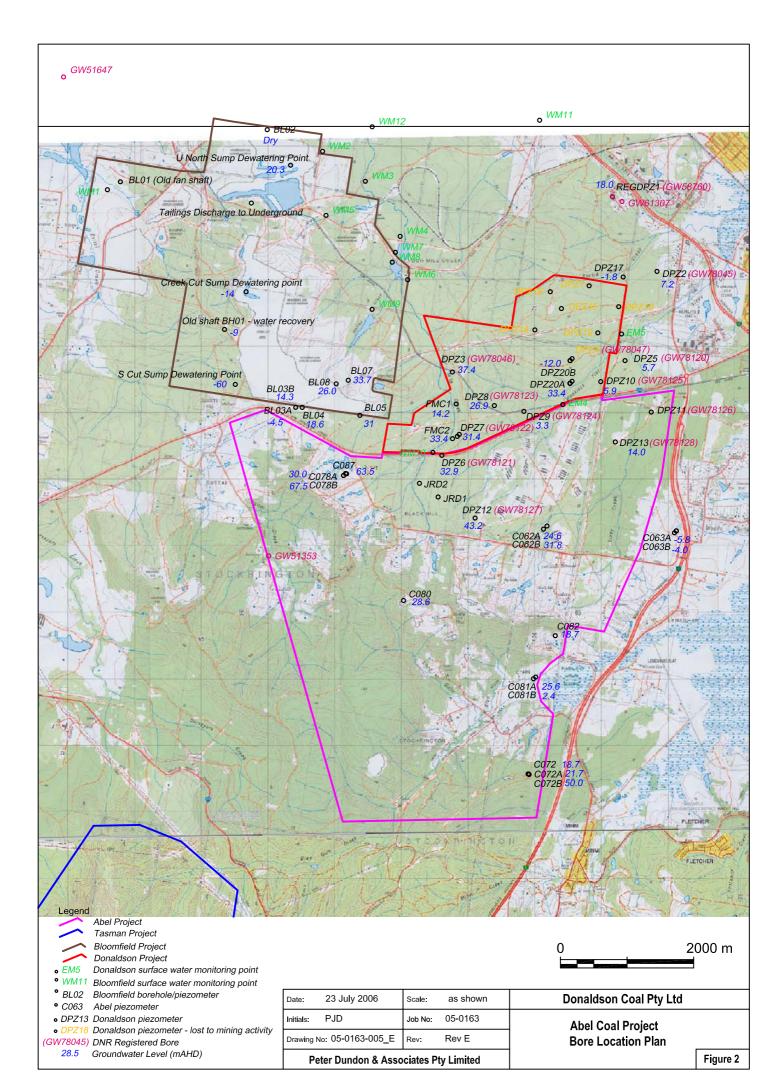
ESI, 2004. *Groundwater Vistas*. Version 4 User's Manual. URL: <u>www.groundwatermodels.com</u>

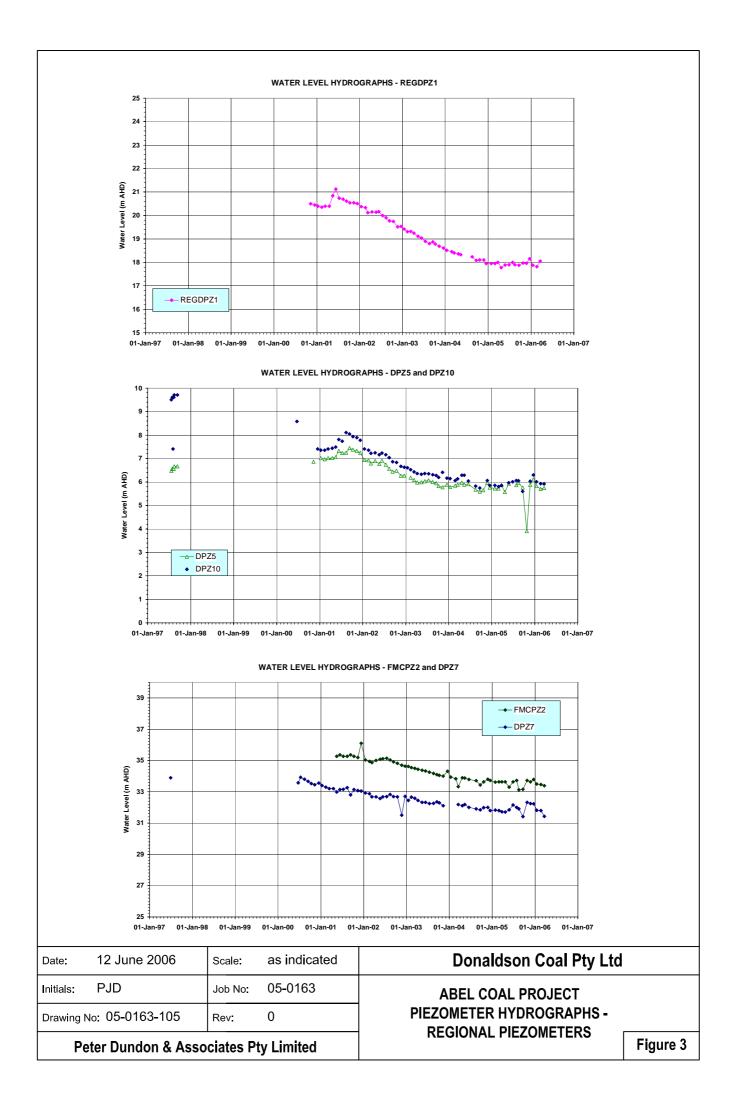

Evans and Peck, 2006. Surface Water Assessment and Outline Water Management Plan.

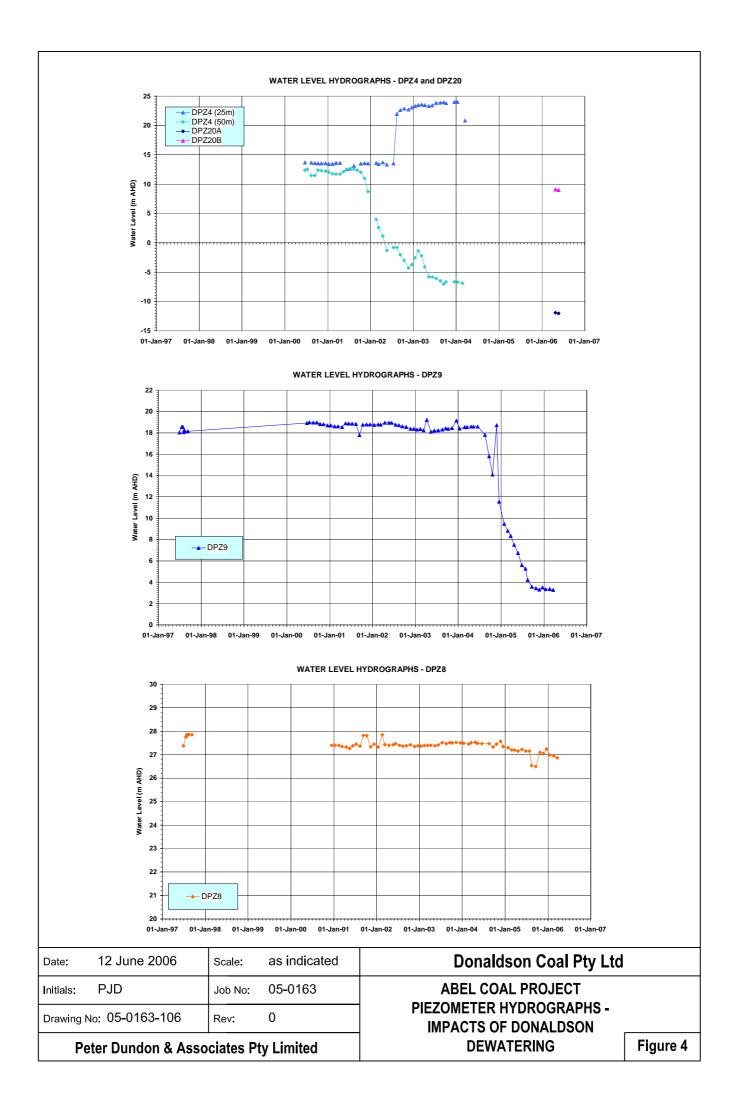

Healthy Rivers Commission, 2002. *Independent Inquiry into the Hunter River System.*

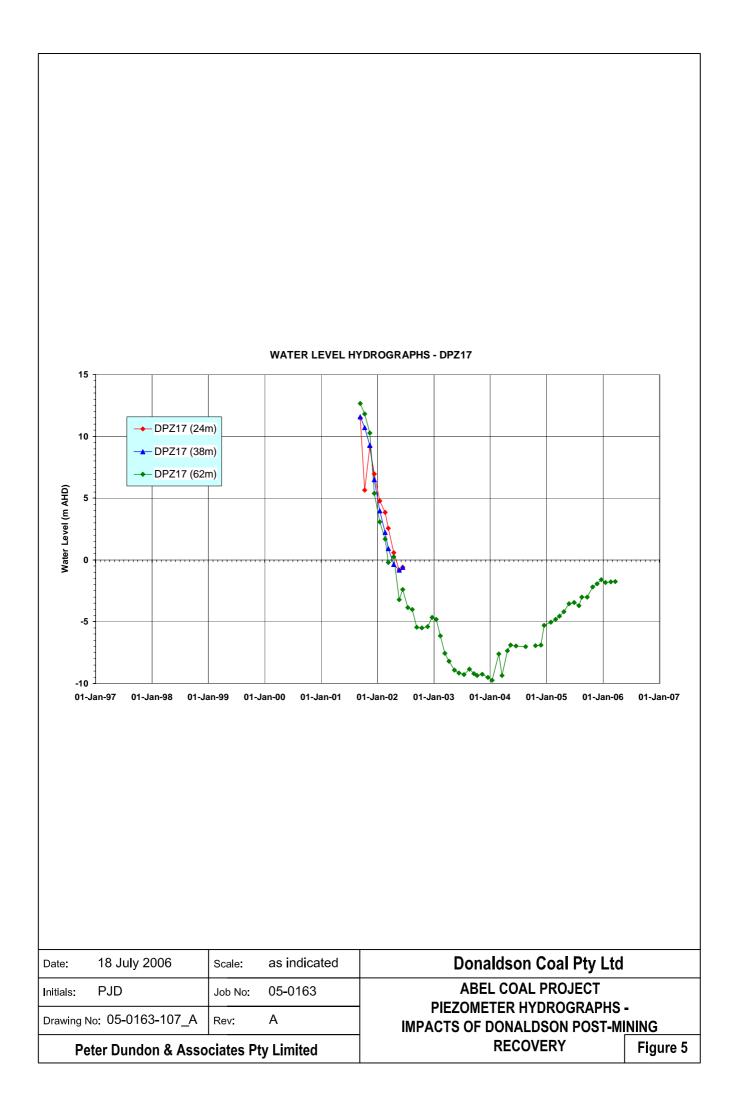
IES, 2006. *Processing MODFLOW Pro* Version 7.0.15 User's Manual. URL: <u>http://www.iesinet.com/products/desktop_pmwin.php</u>

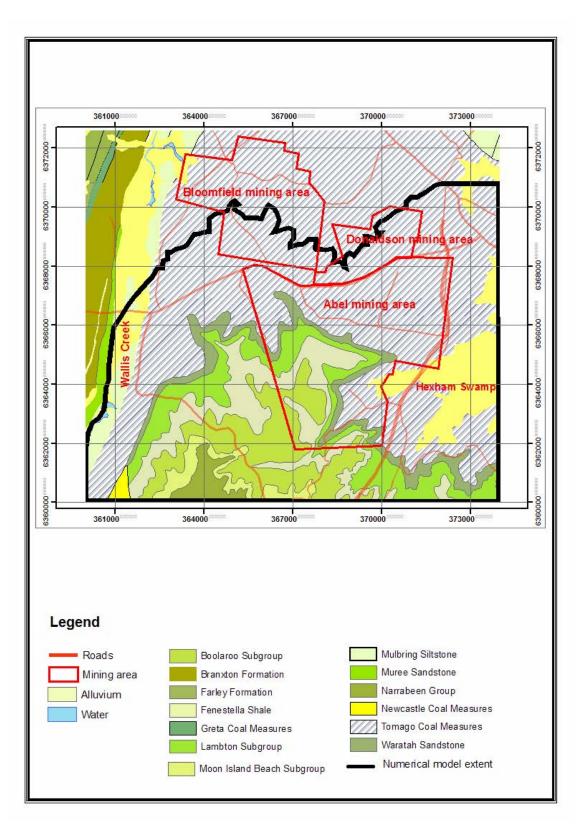
Middlemis, H et al, 2001. *Groundwater flow modelling guideline*. Murray-Darling Basin Commission. URL: <u>www.mdbc.gov.au/nrm/water_management/groundwater/groundwater_guides</u>

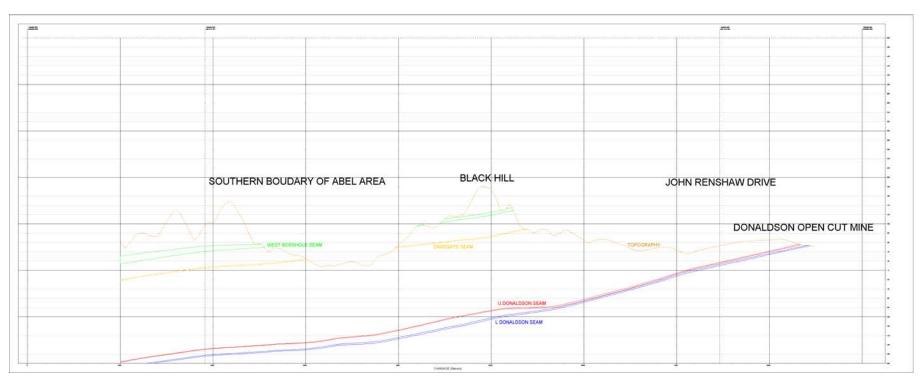

Strata Engineering, 2006. *Mine Subsidence Impact Assessment for the Proposed Mine Layout and Extraction Panels, Abel Underground Mine.*






Legend Abel Project Tasman Project Bloomfield Project Donaldson Project


Date:	23/07/06	Scale:	as shown	Donaldson Coal Pty Ltd	
Initials:	PJD	Job No:	05-0163	Abol Cool Project	
Drawing	No: 05-0163-008 <u></u> A	Rev:	А	Abel Coal Project Project Locality	
Р	eter Dundon & Asso	ciates P	ty Limited	· · · · · · · · · · · · · · · · · · ·	Figure 1



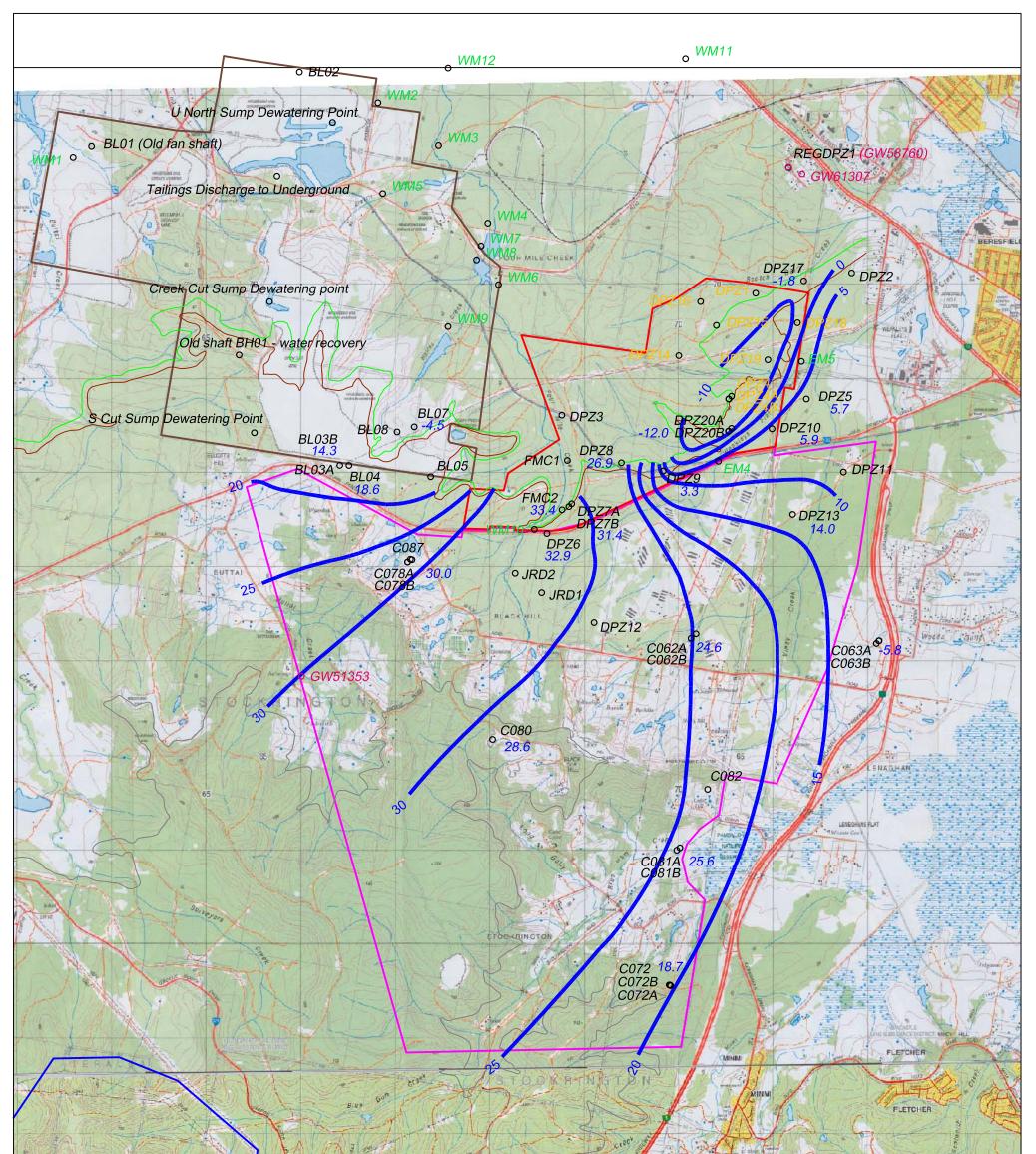




Figure 7: North-South Geological Cross-Section Through Abel Project Area

NORTH

Abel Project						H.E.X
 Tasman Project Bloomfield Project Donaldson Project EM5 Donaldson surface water monitoring point WM11 Bloomfield surface water monitoring point BL02 Bloomfield borehole/piezometer 					0	2000
° C063 Abel piezometer	Date:	23 July 2006	Scale:	as shown	Donaldson Coal Pty Ltd	
 DPZ13 Donaldson piezometer DPZ18 Donaldson piezometer - lost to mining activity 	Initials:	PJD	Job No:	05-0163	Abel Coal Project	
(GW78045) DNR Registered Bore 28.7 Groundwater Level (mAHD)	Drawing No:	: 05-0163-005_C	Rev:	Rev C	Interpreted Groundwater Contou	urs
5 Groundwater Contour (mAHD)	Pete	er Dundon & Asso	ociates P	ty Limited	for the Donaldson Seam	Figure

c:\...\05-0163\Piper\piper.grt

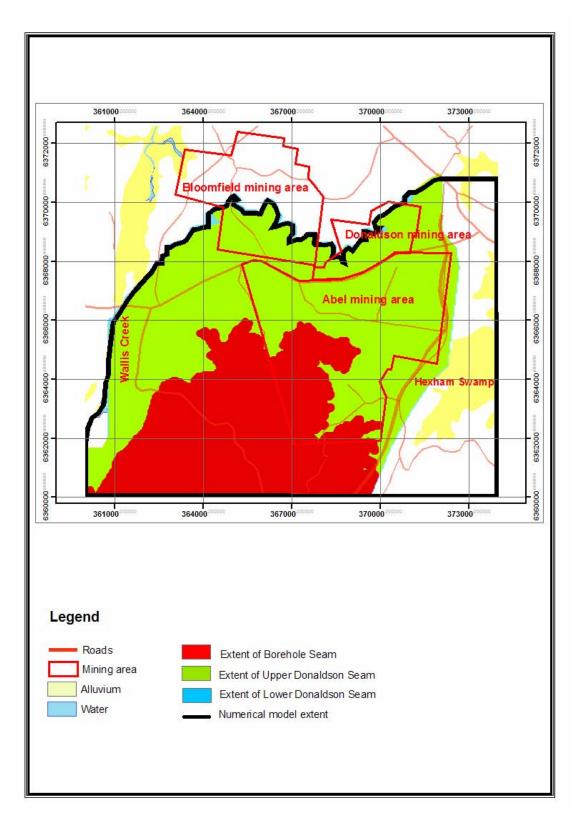


Figure 10: Groundwater Flow Model Area

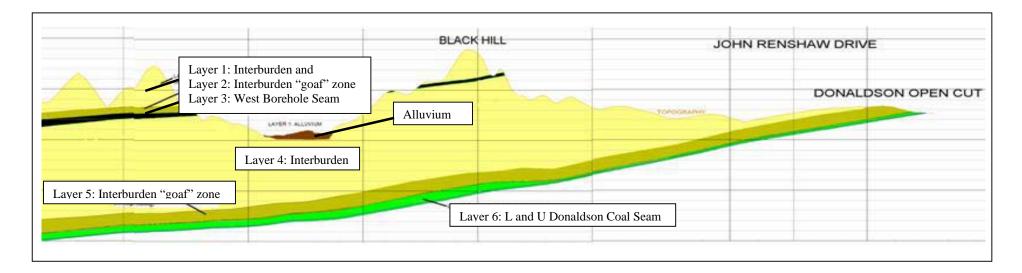


Figure 11: Groundwater Model Layer Definition

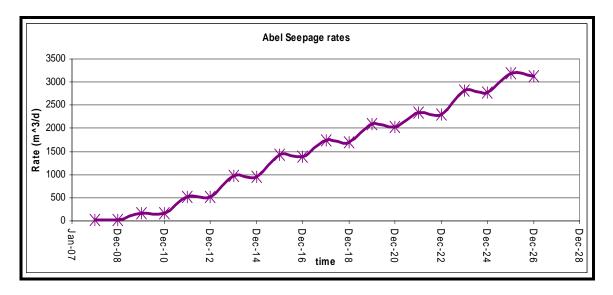
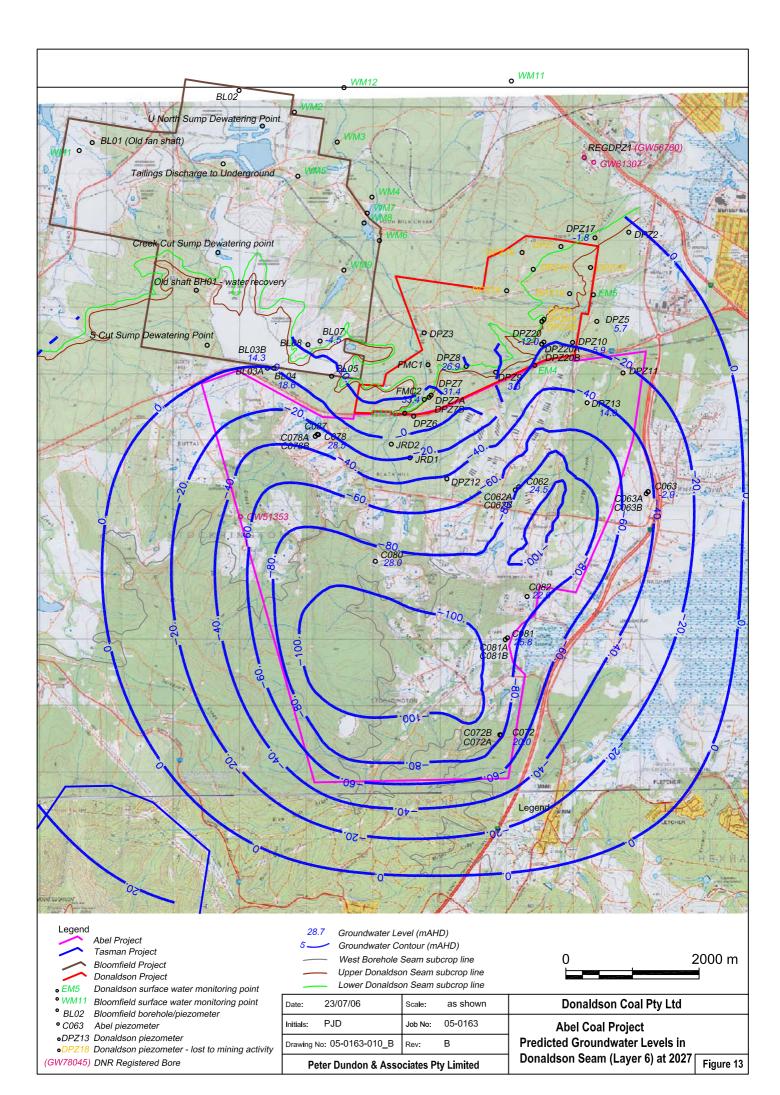
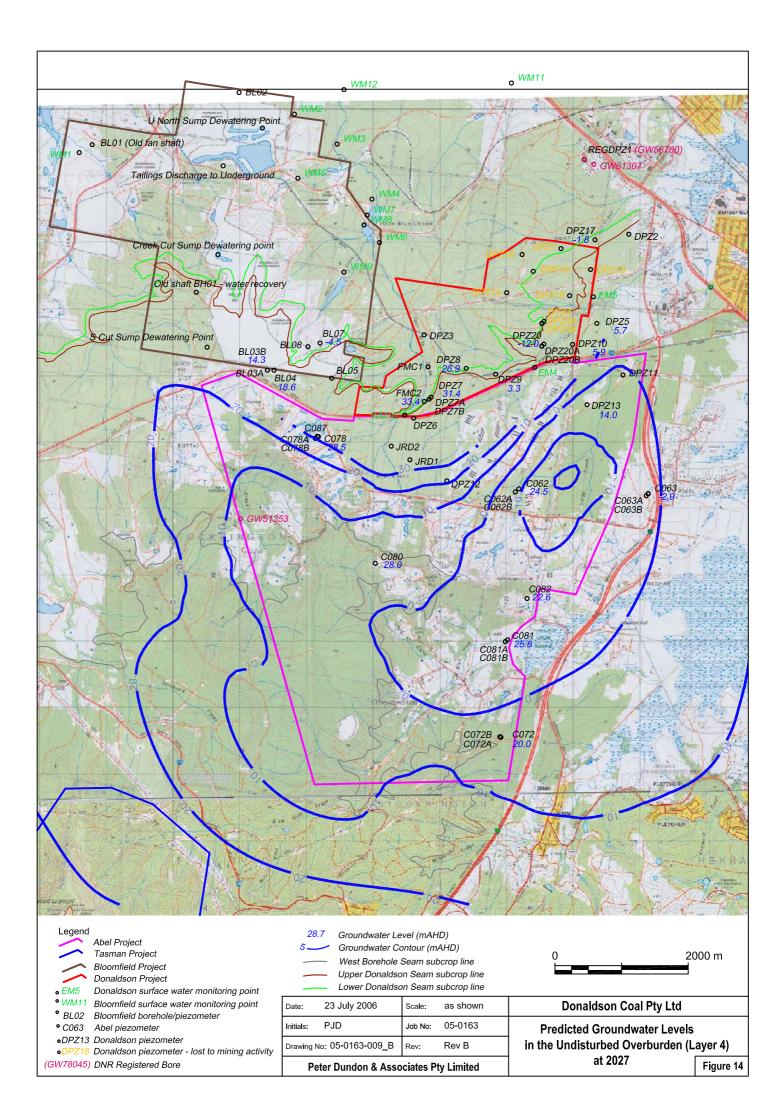




Figure 12: Predicted Groundwater Inflow Rates to the Abel Mine

APPENDIX A

DNR LICENSED BORES WITHIN 10 KM OF ABEL PROJECT

Date/Time :15-Feb-2006 03:02 PM User :RWASKI Report :RMGW001D.QRP Executable :S:\G5\PROD32\Ground.exe Exe Date :18-Apr-2005 System :Groundwater Database :Edbp

DEPARTMENT OF NATURAL RESOURCES Work Summary

GW051353

Converted From HYDSYS

	License :	20BL11	4994										
Wor Construct	ork Type : rk Status : . Method : ner Type :	(Unkno Rotary		rock				Autho DOME STOC	STIC	ırpose(s)	Intend DOME STOCI		5)
	ced Date : tion Date :		-1980		al Dept ed Dept		.70 m .70 m						
Contract	tor Name : Driller :												
	Property : GWMA : GW Zone :	-	BIN HILL					Stand		er Level : Salinity : Yield :		3001-7000 p	ppm
Site De	etails												
Site Chose	en By					Co rm A :NC nsed :NC			ST	rish OCKRINGTON OCKRINGTON	Portio 99 39	n/Lot DP	
	Region : /er Basin : / District :	210 -		R RIVER						Map :9232-3N one :56/1	BERESFIEL Scale :1:25		
	Elevation : n Source :		wn)							ning :6365625 ting :365880		tude (S) :32° : tude (E) :151°	
	GS Map :	0053C4	4 A I	MG Zon	e : 56		c	oordi	nate Sou	Irce :GD.,ACC.N	IAP		
Constr H P Comp 1 1 Casing	onent Type	-	ive depths i		ove Groun om (m) -0.30	d Level;H-H To (m) O 1.50			terval Det	nside Diameter;C-Cem ails ren into Hole	ented;SL-Slot Lengtl	h;A-Aperture;GS-C	Grain Size;Q-Quantity
Water From (m) 22.60 24.90	Bearing To (r 23.7 25.2	n) Thi o 10	1005 ckness WE 0(1510) Fra 0.30 Fra	ctured			S.W.L. (15. 15.	20	D.D.L. (m)	Yield (L/s) 0.12 0.20	Hole Depth (m)	Duration (hr)	Salinity (mg/L) (Unknown) (Unknown)
Drillers From (m) 0.00 0.50 3.90 3.90 10.70 11.90 14.00 15.80 22.60 25.60	Log To (m) Thicl 0.50 3.60 3.90 10.70 10.70 11.90 14.00 15.80 22.60 25.60 49.70	0.50 B 3.10 S 0.30 I 6.80 S 6.80 S 1.20 C 2.10 S 1.80 S 6.80 S 3.00 S	escription andstone ronstone andstone hale Seau oal andstone	Shale White Ms Hard White er Supply	,					Geological Matérial Sandstone Sandstone Shale Coal Sandstone Shale Sandstone Shale Shale	Comm s	lent	

Remarks

*** End of GW051353 ***

GW078045

License :20BL166663							
Work Type :Bore Work Status :(Unknown) Construct. Method :Backhoe Owner Type :				orised Purp IITORING B		Intended Purpose(MONITORING BOR	
Commenced Date : Completion Date :14-Nov-1997	Final Dept Drilled Dept		.50 m .50 m				
Contractor Name :McDERMOTT Driller :	DRILLING DODDS						
Property : - N/A GWMA :017 - HUNTE GW Zone : -	ER		Stan	ding Water Sa	Level : alinity : Yield :		
Site Details							
Site Chosen By Geologist		County orm A :NORTHU nsed :NORTHU			sh WICK WICK	Portion/Lot DP LOT 23 DP 532814 23 532814	
Region :20 - HUNTE River Basin : Area / District :	R			CMA Ma Grid Zor		Scale :	
Elevation : Elevation Source :					ig :6369702 ig :371697	Latitude (S) :32° Longitude (E) :151	
GS Map :	AMG Zone :56		Coord	linate Sourc	e:		
Construction Negative depth	s indicate Above Groun	d Level;H-Hole;P-Pip	be;OD-Outside	Diameter;ID-Insic	le Diameter;C-Ceme	nted;SL-Slot Length;A-Aperture;GS-	Grain Size;Q-Quantity
H P Component Type 1 Hole Hole 1 1 Opening Screen 1 Opening Slots - Horizontal 1 Annulus Waterworn/Rounded	From (m) 0.00 15.80 15.80 5.00	To (m) OD (mm) 30.50 96 27.80 27.80 27.80 55 30.50 55	ID (mm)	PVC; S	s Hole - Water SL: 12mm; A: 5mm ded; GS: 4-5mm		
Water Bearing ZonesFrom (m)To (m)Thickness V17.3030.5013(20)	VBZ Туре		S.W.L. (m) 17.30	D.D.L. (m)	Yield (L/s)	Hole Depth (m) Duration (hr) 30.50	Salinity (mg/L)
Drillers Log From (m) To (m) Thickness(m) Drillers 0.00 2.00 Descripting 2.00 16.00 14.00 SILTSTON 16.50 20.40 3.90 SILTSTON 20.40 20.90 0.50 COAL 20.90 25.00 4.10 MIDSTONE 25.00 30.50 5.50 SILTSTON	ie/mudstone ie/mudstone			N S C S M	ieological Interinizione oal iltstone oal udstone iltstone	Comment s	

Remarks

*** End of GW078045 ***

GW078046

License :20BL166664			
Work Type :Bore Work Status :(Unknown) Construct. Method :Backhoe Owner Type :		Authorised Purpose(s) MONITORING BORE	Intended Purpose(s) MONITORING BORE
Commenced Date : Completion Date :14-Nov-1997	Final Depth :30.40Drilled Depth :30.40		
Contractor Name :McDERMOTT Driller :	DRILLING DODDS		
Property : - N/A GWMA :017 - HUNTE GW Zone : -	R	Standing Water Level : Salinity : Yield :	
Site Details			
Site Chosen By Geologist	County Form A :NORTHUM Licensed :NORTHUM		Portion/Lot DP LOT 92 DP 755260 92 755260
Region :20 - HUNTER River Basin : Area / District :	3	CMA Map : Grid Zone :	Scale :
Elevation : Elevation Source :		Northing :6368552 Easting :368512	Latitude (S) :32° 48' 47" Longitude (E) :151° 35' 45"
GS Map : A	MG Zone :56	Coordinate Source :	
H P Component Type 1 Hole Hole 1 1 Opening Screen 1 1 Opening Slots - Horizontal 1 Annulus Waterworn/Rounded	s indicate Above Ground Level;H-Hole;P-Pipe;C From (m) To (m) OD (mm) 0.00 30.40 96 6.80 18.80 6.80 18.80 55 6.00 30.40	D-Outside Diameter;ID-Inside Diameter;C-Ceme ID (mm) Interval Details Open Hole - Water PVC; SL: 12mm; A: 5mm Ungraded; GS: 4-5mm	anted;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity
Water Bearing ZonesFrom (m)To (m)Thickness W13.6030.4016(m)	/BZ Type S.V	N.L. (m) D.D.L. (m) Yield (L/s) 13.60	Hole Depth (m) Duration (hr) Salinity (mg/L) 30.40
Drillers Log From (m) To (m) Thickness(m) Drillers 9.20 9.20 9.20 Description 9.40 0.20 COAL SILTSTONE 11.20 11.60 0.40 COAL 11.60 30.40 18.80 SILTSTONE	E	Geological Materialne Coal Siltstone Coal Siltstone	Comment S

Remarks

*** End of GW078046 ***

GW078047

License :20E	31 166665							
Work Type :Bor Work Status :(Un Construct. Method : Owner Type :	e			orised Purpos ITORING BORI			ed Purpose(s ORING BOR	,
Commenced Date : Completion Date :14-			4.30 m 4.30 m					
Contractor Name :Mcl Driller :	DERMOTT DRILLING							
Property : - GWMA :017 GW Zone : -	N/A 7 - HUNTER		Stand	ding Water Lev Salini Yie	ty:			
Site Details								
Site Chosen By Driller		County Form A :NORTH Licensed :NORTH	UMBERLAN		RINGTON		n/Lot DP T 13 DP 7552 260	60
Region :20 River Basin : Area / District :	- HUNTER			CMA Map : Grid Zone :		Scale :		
Elevation : Elevation Source :				Northing : Easting :			:ude (S) :32° 4 :ude (E) :151°	
GS Map :	AMG Zone :	56	Coord	inate Source :				
H P Component Type 1 Hole Hole Hole 1 Opening Screen 1 Opening Slots - Hoi 1 Annulus Waterword	rizontal 25) ID (mm) I	nterval Details	4mm; A: 5mm	ented;SL-Slot Length	n;A-Aperture;GS-G	srain Size;Q-Quantity
Water Bearing 2 From (m) To (m) 22.80 54.30	ZONES Thickness WBZ Type 31(60)		S.W.L. (m) 22.80	D.D.L. (m)	Yield (L/s)	Hole Depth (m) 54.30	Duration (hr)	Salinity (mg/L)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Image: Second State State State State 50 Description 50 SANDSTONE 60 SILITSTONE / MUDSTONE 80 COAL 60 SILITSTONE / SANDSTONE 60 SILITSTONE / SANDSTONE 60 SANDSTONE 60 COAL 60 COAL 60 COAL 60 COAL 60 COAL 60 COAL 90 SILITSTONE 30 COAL 90 SILITSTONE			Geold Mater Sanda Silts Coal Silts Coal Sanda Coal Silts Coal Silts Coal Silts Coal Silts	abne stone stone stone stone stone stone	Comm s	ent	

Remarks

*** End of GW078047 ***

GW078120

License :20BL16666	6					
Work Type :Bore Work Status :(Unknown) Construct. Method : Owner Type :			Authorised Pu MONITORING		Intended Purpose MONITORING BOI	
Commenced Date : Completion Date :14-Nov-199	Final Depth : 7 Drilled Depth :	24.00 m 24.00 m				
Contractor Name :McDERMO Driller :	TT DRILLING					
Property : - N/A GWMA :017 - HUN GW Zone : -	TER		Standing Wate	er Level : Salinity : Yield :		
Site Details						
Site Chosen By Geologist		County A :NORTHUMBER d :NORTHUMBER	RLAND HE	rish Xham Xham	Portion/Lot DP LOT 115 DP 24078 115 240782	32
Region :20 - HUNT River Basin : Area / District :	ER		CMA N Grid Zo		Scale :	
Elevation : Elevation Source :				ing :6368400 ting :371037	Latitude (S) :32° Longitude (E) :15	
GS Map :	AMG Zone :56	(Coordinate Sou	irce :		
Construction Negative dep	oths indicate Above Ground Le	vel;H-Hole;P-Pipe;OD-O	utside Diameter;ID-In	side Diameter;C-Ceme	ented;SL-Slot Length;A-Aperture;GS	-Grain Size;Q-Quantity
H P Component Type 1 Hole Hole 1 1 Opening Screen	0.00 2	(m) OD (mm) ID 4.00 96 8.00	(mm) Interval Deta Ope	ails en Hole - Water		
1 1 Opening Slots - Horizontal 1 Annulus Waterworn/Rounded	6.00 1	8.00 55 4.00		C; SL: 12mm; A: 5mm raded; GS: 4-5mm		
Water Bearing ZonesFrom (m)To (m)Thickness6.1024.0017(\$m)	s WBZ Type	S.W.L. 6	(m) D.D.L. (m) 5.10	Yield (L/s)	Hole Depth (m) Duration (hr) 24.00	Salinity (mg/L)
Drillers Log From (m) To (m) Thickness(m) Drillers 0.00 14.00 14.00 Description 14.00 16.00 2.00 SANDST 16.00 24.00 8.00 MUDSTC	CINN/MUDSTONE ONE			Geological Materia bne Sandstone Mudstone	Comment s	

Remarks

*** End of GW078120 ***

GW078121

License :20E	8 166667					
Work Type :Bor Work Status :(Un Construct. Method : Owner Type :	e			orised Purpose(s) IITORING BORE	Intended Purpose MONITORING BO	
Commenced Date : Completion Date :14-	Final Dep Nov-1997 Drilled Dep		3.00 m 3.00 m			
Contractor Name :McI Driller :	DERMOTT DRILLING					
Property:- GWMA :017 GW Zone:-	N/A - HUNTER		Stan	ding Water Level : Salinity : Yield :		
Site Details						
Site Chosen By Geologist		County orm A :NORTH ensed :NORTH	IUMBERLAN			
Region :20 River Basin : Area / District :	- HUNTER			CMA Map : Grid Zone :	Scale :	
Elevation : Elevation Source :				Northing :6367073 Easting :368479	Latitude (S) :32° Longitude (E) :151	
GS Map :	AMG Zone :56		Coord	linate Source :		
Construction	egative depths indicate Above Grou	nd Level;H-Hole;P-P	Pipe;OD-Outside E	Diameter;ID-Inside Diameter;C-C	emented;SL-Slot Length;A-Aperture;GS-	Grain Size;Q-Quantity
H P Component Type 1 Hole Hole Hole 1 1 Opening Screen 1 1 Opening Slots 1 Annulus Waterworn	From (m) 0.00 26.70 26.70 /Rounded 2.00	To (m) OD (mm) 43.00 96 42.50 42.50 55 43.00	3	Interval Details Open Hole - Water PVC; SL: 15.8mm Ungraded; GS: 4-5mm		
Water BearingZFrom (m)To (m)22.3043.00	Cones Thickness WBZ Type 20(//t)		S.W.L. (m) 22.30	D.D.L. (m) Yield (L/	s) Hole Depth (m) Duration (hr) 43.00	Salinity (mg/L)
Drillers Log						
From (m) To (m) Thickness 0.00 14.00 14.1 14.00 16.00 20.1 16.00 20.00 4.1 20.00 22.00 22.10 25.40 32.10 6.1 32.10 32.60 39.0 33.90 35.60 1.1 35.60 36.20 0.1 37.00 38.20 1.3	(m Drillers 10 Description/SHALE 10 SANDSTONE 10 SILTSTONE/SHALE 10 SILTSTONE/SHALE 10 SILTSTONE/SHALE 10 COAL 10 SANDSTONE 10 COAL 10 COAL			Geological Miterial>ne Sandstone Siltstone Coal Sandstone Coal Sandstone Coal Sandstone Coal Sandstone Coal Sandstone Coal Sandstone Coal	Comment s	

Remarks

*** End of GW078121 ***

GW078122

License :20BL166668						
Work Type :Bore Work Status :(Unknown) Construct. Method : Owner Type :			Authorised MONITORI	l Purpose(s) NG BORE	Intended Purpose MONITORING BOI	
Commenced Date : Completion Date :14-Nov-1997	Final Depth : Drilled Depth :	35.40 m 35.40 m				
Contractor Name :McDERMOTT DI Driller :	RILLING					
Property : - N/A GWMA :017 - HUNTER GW Zone : -			Standing V	Vater Level : Salinity : Yield :		
Site Details						
Site Chosen By Geologist		County A :NORTHUMBE d :NORTHUMBE		Parish STOCKRINGTON STOCKRINGTON	Portion/Lot DP LOT 10 DP 11875 10 11875	
Region :20 - HUNTER River Basin : Area / District :				IA Map : d Zone :	Scale :	
Elevation : Elevation Source :				orthing :6367474 Easting :368526	Latitude (S) :32° Longitude (E) :15°	
GS Map : AM	G Zone : 56		Coordinate	Source :		
Construction Negative depths inc H P Component Type 1 Hole Hole Hole 1 Opening Screen 1 Appening Slots - Horizontal 1 Annulus Waterworn/Rounded	From (m) To 0.00 3 19.50 3 19.50 3		Dutside Diameter D (mm) Interval		ented;SL-Slot Length;A-Aperture;GS	-Grain Size;Q-Quantity
Water Bearing ZonesFrom (m)To (m)Thickness WBZ23.1051.3028(00)	Туре	S.W.L	. (m) D.D.L. 3.10	(m) Yield (L/s)	Hole Depth (m) Duration (hr) 35.40	Salinity (mg/L)
Drillers Log From (m) To (m) Thickness(m) Drillers 0.00 12.00 12.00 Description/S 12.00 12.40 0.40 COAL 12.40 16.00 3.60 SANDSTONE 16.00 19.50 3.50 SANDSTONE 19.50 20.90 1.40 COAL 20.90 22.00 1.60 COAL 23.60 24.40 0.80 SANDSTONE 24.40 26.60 2.20 COAL 26.60 28.00 1.40 SINTSTONE 24.40 26.60 2.00 COAL 25.00 31.70 3.70 COAL				Geological Matériabne Coal Siltstone Sandstone Coal Sandstone Coal Siltstone Coal Siltstone Coal Siltstone	Comment s	

Remarks

*** End of GW078122 ***

GW078123

License	:20BL166669									
Work Type Work Status Construct. Method Owner Type	: :(Unknown)					orised Purp ITORING B		Intend	ed Purpose(s	;)
Commenced Date Completion Date		Final Dept Drilled Dept		33.00 m 33.00 m						
Contractor Name Driller	:McDERMOTT DR	ILLING								
Property : - N/A GWMA :017 - HUNTER GW Zone : -				Standing Water Level : Salinity : Yield :						
Site Details										
Site Chosen By Geologist		County Form A :NORTHUMBER Licensed :NORTHUMBER					h CKRINGTON CKRINGTON	Portion/Lot DP LOT 92 DP 755260 92 755260		
Region River Basin Area / District						CMA Ma Grid Zon		Scale :		
Elevation : Elevation Source :						Northing :6367975 Easting :369170		Latitude (S) :32° 49' 6" Longitude (E) :151° 36' 10"		
GS Map	: AMG	Zone : 56			Coord	inate Sourc	e :			
Construction H P Component Typ 1 Hole Hole Hole 1 1 Opening Screet	e e	From (m) 0.00	nd Level;H-Hole; To (m) OD (r 33.00 32.20			iameter;ID-Insid nterval Details Other		nted;SL-Slot Length	n;A-Aperture;GS-G	rain Size;Q-Quantity
1 1 Opening Slot	een s - Horizontal erworn/Rounded	20.20 20.20 12.50	32.20 32.20 32.20	55			L: 12mm; A: 5mm led; GS: 4-5mm			
1 1 Opening Slot: 1 Annulus Wat Water Bearin From (m) To	s - Horizontal erworn/Rounded	20.20 12.50	32.20	S.W.L	. (m) 24.40			Hole Depth (m) 33.00	Duration (hr)	Salinity (mg/L)

Remarks

*** End of GW078123 ***

GW078124

	License	20BL166670									
Wo Construc	/ork Type	:Bore :(Unknown)					NOTISED P	urpose(s) B BORE		led Purpose(TORING BOR	
	nced Date	: :14-Nov-1997	Final Dept Drilled Dept			00 m 00 m					
Contrac	tor Name Driller	McDERMOTT DF	RILLING								
	Property GWMA GW Zone	017 - HUNTER				Stan	ding Wat	er Level : Salinity : Yield :			
Site De	etails										
			County rm A :NORTHUMBERLAND nsed :NORTHUMBERLAND			D S	arish TOCKRINGTON TOCKRINGTON	PT LO	Portion/Lot DP PT LOT 13 DP755260 13 755260		
	Region ver Basin / District							Map : Zone :	Scale :		
Elevation : Elevation Source :				836782 Northing Easting :369744				Latitude (S) :32° 49' 11" Longitude (E) :151° 36' 32"			
	GS Map	: AM(G Zone :56			Coord	linate So	urce :			
Constr	ruction	Negative depths ind	icate Above Grour	d Level;H-H	ole;P-Pipe	;OD-Outside I	Diameter;ID-	Inside Diameter;C-Ceme	nted;SL-Slot Lengt	h;A-Aperture;GS-0	Grain Size;Q-Quantity
1 Hole	H P Component Type 1 Hole Hole		From (m) 0.00 12.50	To (m) O 40.00 36.50	D (mm) 96	ID (mm)	Interval De Op	stails ben Hole - Water			
1 1 Openi 1 Annul	ing Slots us Wate	- Horizontal rworn/Rounded	12.50 11.10	36.50 40.00	55			/C; SL: 24mm; A: 55mm graded; GS: 4-5mm			
		g Zones	_		_		、				
From (m) 18.60	To (1 40.4		Туре		5	5.W.L. (m) 18.60	D.D.L. (m)	Yield (L/s)	Hole Depth (m) 40.00	Duration (hr)	Salinity (mg/L)
Drillers	s Log										
From (m) 0.00 8.10 8.60 10.00 15.50 17.20 19.20 20.00 24.50 27.70 29.90 33.30	To (m) Thic 8.10 8.60 10.00 15.50 17.20 18.30 19.20 20.00 24.50 27.70 29.90 33.30 37.00	<pre>kness(m Drillers 8.10 Description 0.50 coal 1.40 siltstone 5.50 sandstone 1.70 coal 1.10 sandstone 0.90 coal 0.80 mudstone 4.50 siltstone 3.20 coal 2.20 sandstone/c: 3.40 coal 3.70 mudstone</pre>	laystone					Geological Matériabne Coal Siltstone Sandstone Coal Mudstone Siltstone Coal Sandstone Coal Mudstone	Comn s	nent	

Remarks

*** End of GW078124 ***

GW078125

License :20BL166671						
Work Type :Bore Work Status :(Unknown) Construct. Method : Owner Type :		Authorised Pu MONITORING		Intended Purpose(MONITORING BOR		
Commenced Date : Completion Date :14-Nov-1997		.00 m .00 m				
Contractor Name :McDERMOTT Driller :	DRILLING					
Property : - N/A GWMA :017 - HUNTE GW Zone : -	R	Standing Wate	r Level : Salinity : Yield :			
Site Details						
Site Chosen By Geologist	County Form A :NORTHL Licensed :NORTHL	JMBERLAND ST	' ish DCKRINGTON DCKRINGTON	Portion/Lot DP PT LOT 13 DP755260 13 755260		
Region :20 - HUNTER River Basin : Area / District :		CMA N Grid Zo	•	Scale :		
Elevation : Elevation Source :			ing :6368274 ing :370831	Latitude (S) :32° 4 Longitude (E) :151°		
GS Map : A	MG Zone :56	Coordinate Sou	rce :			
H P Component Type 1 Hole Hole 1 1 Opening Screen 1 1 Opening Slots - Horizontal 1 1 Annulus Waterworn/Rounded	indicate Above Ground Level;H-Hole;P-Pip From (m) To (m) OD (mm) 0.00 30.00 96 11.80 29.80 11.80 29.80 55 5.00 30.00	ID (mm) Interval Deta Ope PVC		nted;SL-Slot Length;A-Aperture;GS-C	Srain Size;Q-Quantity	
Water Bearing ZonesFrom (m)To (m)Thickness WI10.2030.0019(mt)	ВZ Туре	S.W.L. (m) D.D.L. (m) 10.20	Yield (L/s)	Hole Depth (m) Duration (hr) 30.00	Salinity (mg/L)	
From (m) To (m) Thickness(m Drillers) 19.00 19.00 19.00 Description 24.00 26.50 26.50 sandstone 26.50 26.90 0.40 coal 26.90 30.00 3.10 siltstone	/sandstone		Geological Materiabne Sandstone Siltstone Coal Siltstone	Comment S		

Remarks

*** End of GW078125 ***

GW078126

License :20BL1666	72				
Work Type :Bore Work Status :(Unknown) Construct. Method : Owner Type :)		Authorised Purpose MONITORING BORE		d Purpose(s) ORING BORE
Commenced Date : Completion Date :14-Nov-19	Final Depth 97 Drilled Depth				
Contractor Name :McDERMO Driller :	OTT DRILLING				
Property : - BERES GWMA :017 - HU GW Zone : -			Standing Water Leve Salinit Yiel	y:	
Site Details					
Site Chosen By Geologist		County m A :NORTHUMBEF ised :NORTHUMBEF		LOT 11	/Lot DP 7 DP 568625 111
Region :20 - HUN River Basin : Area / District :	TER		CMA Map : Grid Zone :	Scale :	
Elevation : Elevation Source :			0: Northing Easting		u de (S) : 32° 49' 21" u de (E) : 151° 37' 49"
GS Map :	AMG Zone :56	(Coordinate Source :		
H P Component Type 1 Hole Hole Hole 1 Opening Screen Screen 1 Opening Slots - Horizontal Materworn/Rounded	From (m) 0.00 17.50 17.50		utside Diameter;ID-Inside Dia (mm) Interval Details Open Hole - PVC; SL: 12 Ungraded; G	Water nm; A: 5mm	A-Aperture;GS-Grain Size;Q-Quantity
Water Bearing Zone.From (m)To (m)Thickne9.0030.00210	ess WBZ Type	S.W.L. g	(m) D.D.L. (m) .00	Yield (L/s) Hole Depth (m) 30.00	Duration (hr) Salinity (mg/L)
17.10 17.80 0.70 coal 17.80 19.50 1.70 silts 19.50 19.90 0.40 coal			Geolog Materia Silts: Coal Silts: Silts:	ione s cone	nt

Remarks

*** End of GW078126 ***

GW078127

License :20BL166673			
Work Type :Bore Work Status :(Unknown) Construct. Method : Owner Type :		Authorised Purpose(s) MONITORING BORE	Intended Purpose(s) MONITORING BORE
Commenced Date : Completion Date :14-Nov-1997	Final Depth : 30.00 Drilled Depth : 30.00		
Contractor Name :McDERMOTT DF Driller :	RILLING		
Property : - NOT KNOWN GWMA :017 - HUNTER GW Zone : -	I	Standing Water Level : Salinity : Yield :	
Site Details			
Site Chosen By Geologist	County Form A :NORTHUME Licensed :NORTHUME		Portion/Lot DP LOT 82 DP 627798 82 627799
Region :20 - HUNTER River Basin : Area / District :		CMA Map : Grid Zone :	Scale :
Elevation : Elevation Source :		Northing :6366216 Easting :368933	Latitude (S) :32° 50' 3" Longitude (E) :151° 36' 0"
GS Map : AM	G Zone : 56	Coordinate Source :	
H P Component Type 1 Hole Hole Hole 1 1 Opening Screen 1 1 Opening Slots - Horizontal 1 Annulus Waterworn/Rounded	licate Above Ground Level;H-Hole;P-Pipe;OI From (m) To (m) OD (mm) 0.00 30.00 96 14.30 26.30 14.30 26.30 55 1.00 30.00	D-Outside Diameter;ID-Inside Diameter;C-Ceme ID (mm) Interval Details Open Hole - Water PVC; SL: 12mm; A: 5mm Ungraded; GS: 4-5mm	ented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity
Water Bearing ZonesFrom (m)To (m)Thickness WBZ16.6030.0013(#t)	Type S.W	.L. (m) D.D.L. (m) Yield (L/s) 16.60	Hole Depth (m) Duration (hr) Salinity (mg/L) 30.00
Tom (m) To (m) Thickness(m Drillers 0.00 13.00 13.00 Béšcription/m 13.00 17.00 4.00 mudstone 17.00 30.00 13.00 siltstone/m		Geological Materia Dne Mudstone Siltstone	Comment s

Remarks

*** End of GW078127 ***

GW078128

License :20BL166674						
Work Type :Bore Work Status :(Unknown) Construct. Method : Owner Type :			Authorised Purpo IONITORING BO		Intended Purpose(MONITORING BOR	
Commenced Date : Completion Date :14-Nov-1997	Final Depth : Drilled Depth :	30.00 m 30.00 m				
Contractor Name :McDERMOTT D Driller :	RILLING					
Property : - BERESFIELD GWMA :017 - HUNTER GW Zone : -)	S		evel : nity : ïeld :		
Site Details						
Site Chosen By Geologist		County :NORTHUMBERI :NORTHUMBERI		AM	Portion/Lot DP LOT 117 DP 568625 30 870411	5
Region :20 - HUNTER River Basin : Area / District :			CMA Map Grid Zone		Scale :	
Elevation : Elevation Source :				:6366733 :370773	Latitude (S) :32° Longitude (E) :151	
GS Map : AM	G Zone : 56	Co	ordinate Source	:		
Hole Hole Hole 1 Opening Screen 1 Opening Slots - Horizontal 1 Annulus Waterworn/Rounded		n) OD (mm) ID (m 0 96 0 55	m) Interval Details Open Ho PVC; SL	Diameter;C-Ceme le - Water : 12mm; A: 5mm d; GS: 4-5mm	nted;SL-Slot Length;A-Aperture;GS-C	Grain Size;Q-Quantity
From (m) To (m) Thickness WB2 7.80 30.00 22(20)	2 Туре	S.W.L. (m 7.8		Yield (L/s)	Hole Depth (m) Duration (hr) 30.00	Salinity (mg/L)
Drillers Log From (m) To (m) Thickness(m Drillers 0.00 8.00 8.00 Bescription 8.00 9.00 1.00 shale 9.00 12.00 3.00 siltstone 12.00 12.80 0.80 shale 12.80 13.40 0.60 coal 13.40 30.00 16.60 siltstone/m	nudstone		Miai Sha Sil Sha Coa	tstone	Comment s	

Remarks

*** End of GW078128 ***

GW078161 - PGMW1

License :20BL153302		Author	ised Purpose(s)	Intended Purpose(s)
Work Type :Bore Work Status :(Unknown) Construct. Method :Other Owner Type :Local Govt			ORING BORE	MONITORINĠ BOŘÉ
Commenced Date : Completion Date :03-Nov-1993	Final Depth : 3 Drilled Depth :	84.00 m 84.00 m		
Contractor Name :intertech drill Driller :1489	ling BARDEN, Colin Leslie			
Property : - N/A GWMA : - GW Zone : -		Standir	ng Water Level : Salinity : Yield :	
Site Details				
Site Chosen By Geologist		Inty RTHUMBERLAND RTHUMBERLAND	Parish HEXHAM HEXHAM	Portion/Lot DP LOT 3 DP800035 34 800036
Region :20 - HUNTE River Basin :210 - HUNT Area / District :			CMA Map :9232-3S Grid Zone :56/1	WALLSEND Scale :1:25,000
Elevation : Elevation Source :			Northing :6359302 Easting :372560	Latitude (S) :32° 53' 49" Longitude (E) :151° 38' 16"
GS Map :	AMG Zone :56			aphic Information System
H P Component Type 1 Hole Hole Hole 1 Casing PVC Class 18 1 1 Casing PVC Class 18 1 1 Opening Screen 1 1 Opening Screen 1 Annulus (Unknown) Unknown)	ths indicate Above Ground Level;H-Hol From (m) To (m) OD 0.00 84.00 -0.50 61.00 -0.50 84.00 57.00 60.00 80.00 83.00 56.00 61.00 76.00 84.00			ed on Bottom crewed
Water Bearing Zones From (m) To (m) Thickness	s WBZ Type	S.W.L. (m) D.	D.L. (m) Yield (L/s)	Hole Depth (m) Duration (hr) Salinity (mg/L)
(m)		ter Bearing Zone De		·····
4.00 40.00 36.00 Sand - 40.00 41.50 1.50 Coal Se 41.50 57.00 15.50 Sand - 57.00 60.00 3.00 Coal Se 60.00 80.00 20.00 Sand - 80.00 83.00 3.00 Coal Se	Siltstone (Grey) Some small b eam Siltstone (Grey)	fractures	Geological Materials:den Sand Coal Bands Sand Coal Bands Sand Coal Bands Sand	Comment s

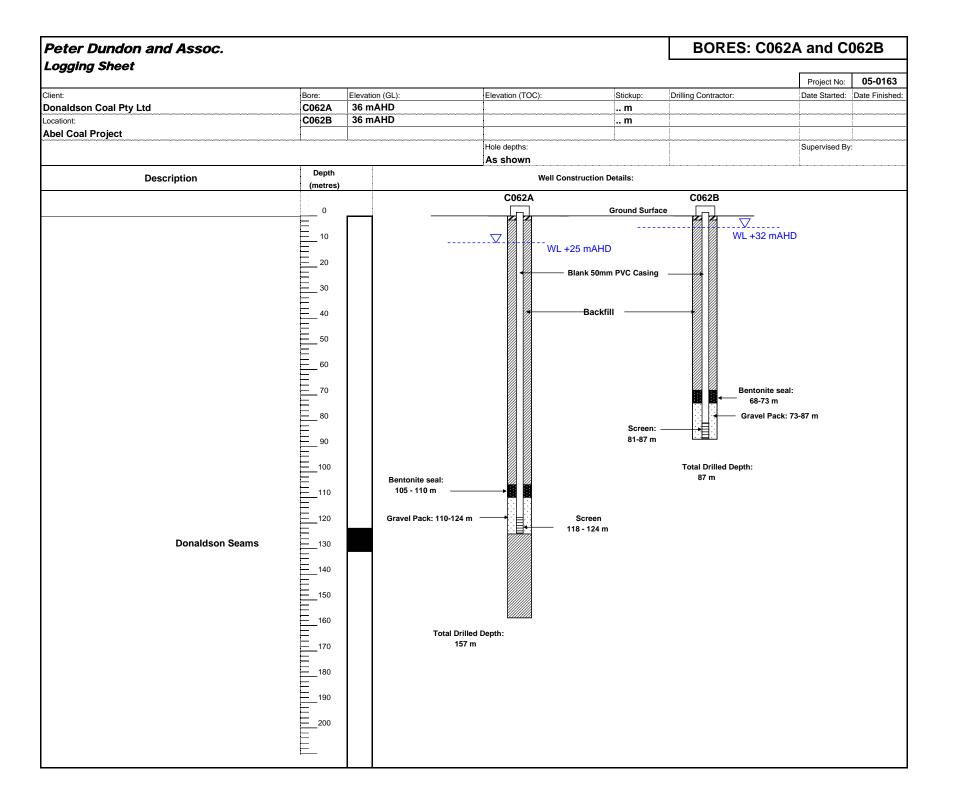
Remarks

Form A Remarks: Newcastle City Council, Sumerhill Waste Management Cetre, PGMW1.

*** End of GW078161 ***

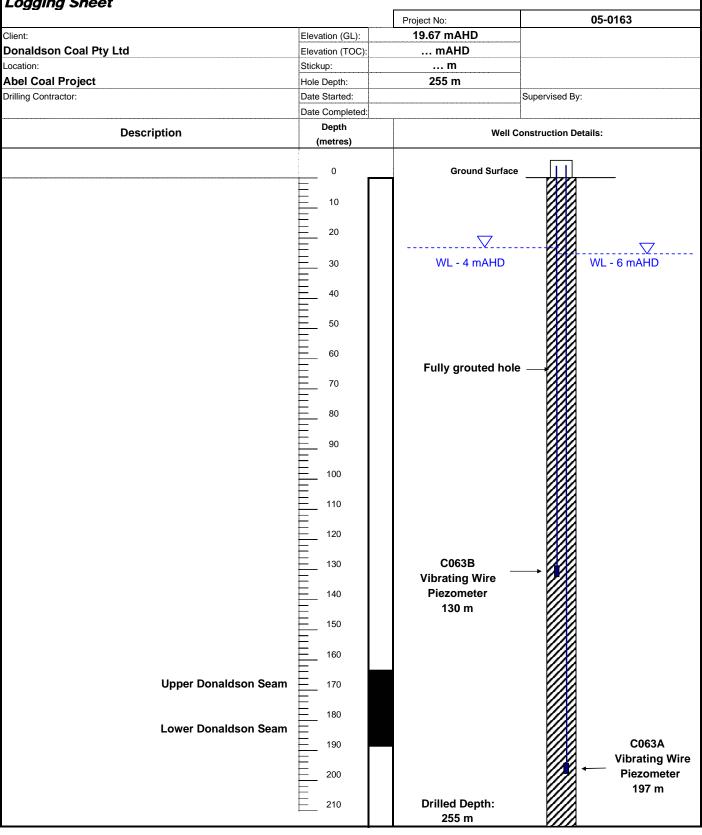
GW079059

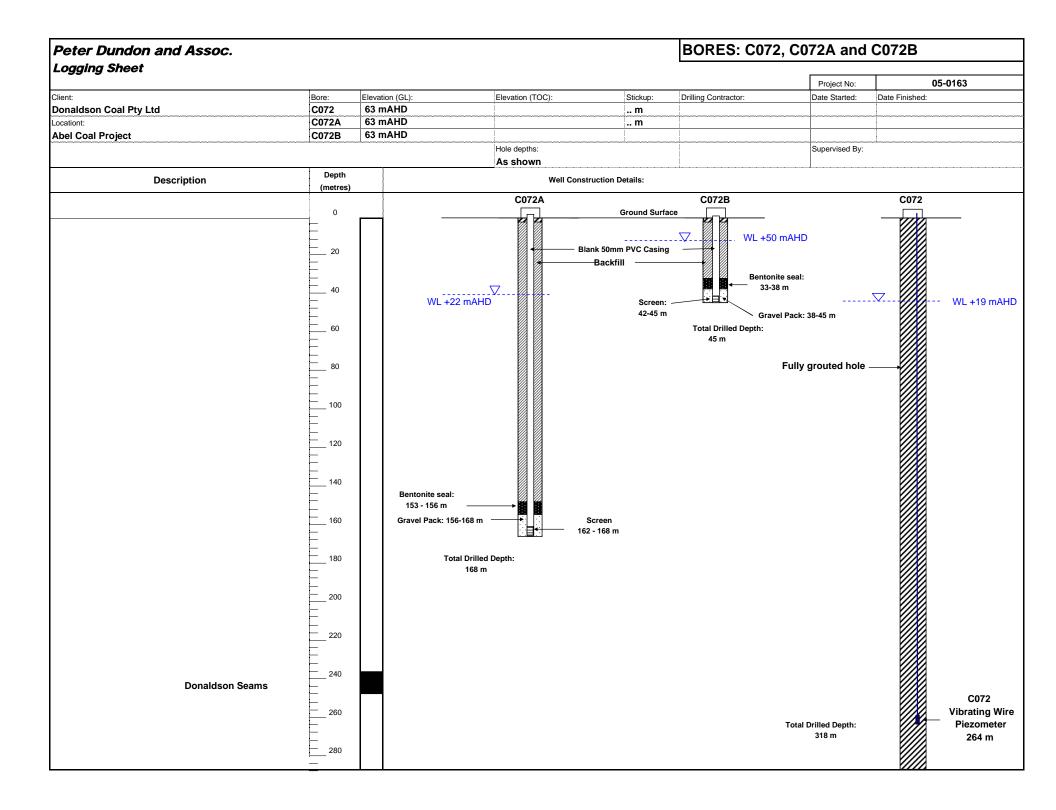
License :20BL153300 Work Type :Bore Work Status :Equipped - bore Construct. Method :Rotary - Percus Owner Type :D.W.R. (NSW D Re Commenced Date : Completion Date :21-May-2000 Contractor Name : Driller : Property : - N/A	sion (Down Hole Har	MONIT mmer) lanning & Nat	ised Purpose(s) ORING BORE ng Water Level :	Intended Purpose(MONITORING BOR	
GWMA : - GW Zone : - Site Details			Salinity : Yield :		
Site Chosen By Hydrogeologist	Form A Licensed	County A : I :NORTHUMBERLAND	Parish HEXHAM	Portion/Lot DP 34 800036	
Region :20 - HUNTER River Basin :210 - HUNTEF Area / District :	RIVER		CMA Map : Grid Zone :	Scale :	
Elevation : 56.00 Elevation Source :Est. Contour 4-8) m (A.H.D.) 3M.		Northing :6359311 Easting :372588	Latitude (S) :32° : Longitude (E) :151°	
GS Map : Al	MG Zone :56	Coordin	ate Source :		
Construction H P Component Type			erval Details	ented;SL-Slot Length;A-Aperture;GS-C	Srain Size;Q-Quantity
Water Bearing Zones From (m) To (m) Thickness WE (m)		S.W.L. (m) D Io Water Bearing Zone D	.D.L. (m) Yield (L/s) etails Found)	Hole Depth (m) Duration (hr)	Salinity (mg/L)
Drillers Log From (m) To (m) Thickness(m Drillers) Description			Geological Material	Comment s	
Remarks Form A Remarks: NEWCASTLE CITY COUNCIL MINMI PGMW1a and PGMW1b at the 1 location. Summerhill Waste facility					

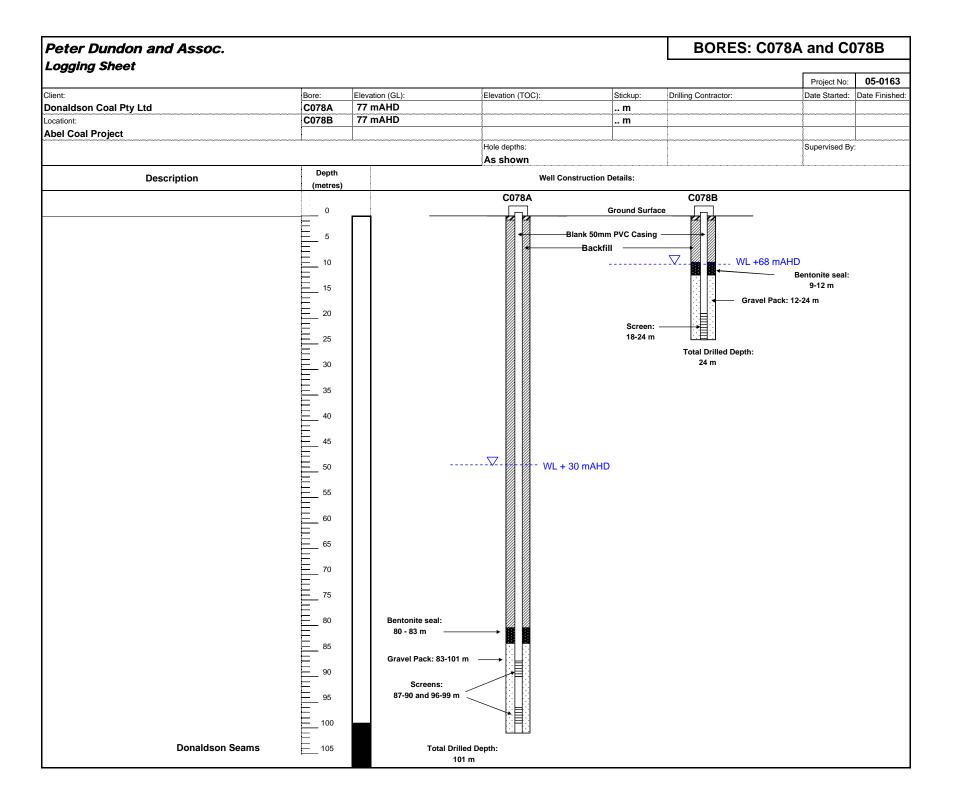

*** End of GW079059 ***

GW079065

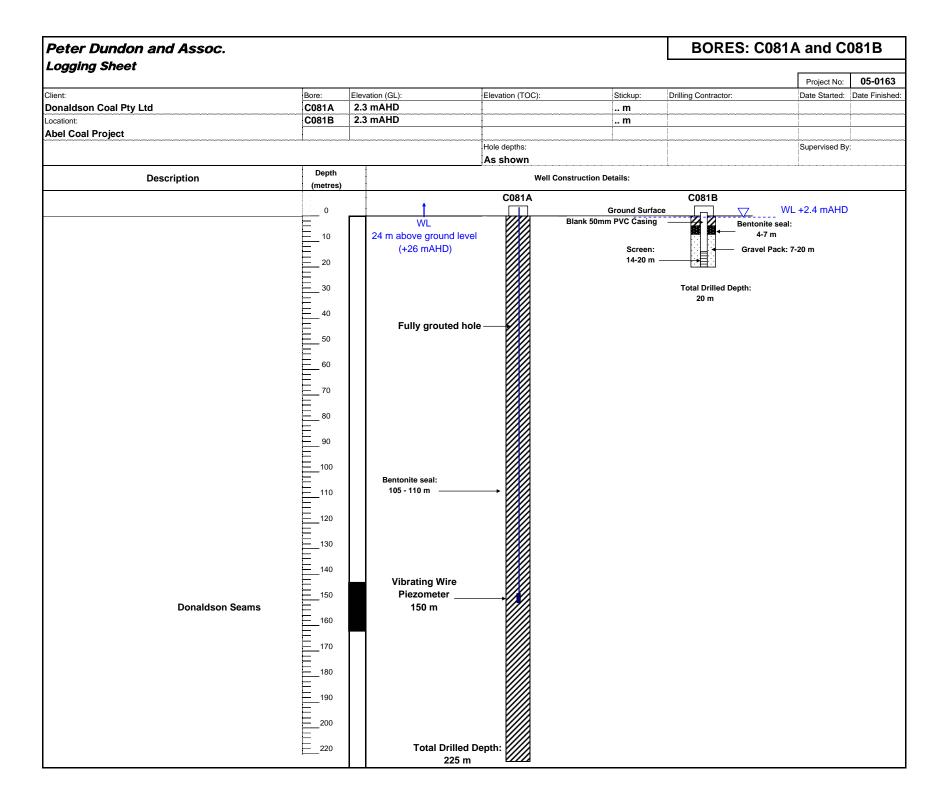
License :20BL	153300				
Work Type :Bore Work Status :(Unkr Construct. Method : Owner Type :	own)		ised Purpose(s) ORING BORE	Intended Purpose(s MONITORING BORE	
Commenced Date : Completion Date :	Final Depth : Drilled Depth :				
Contractor Name : Driller :					
Property : - N/. GWMA : - GW Zone : -	Ą	Standir	ng Water Level : Salinity : Yield :		
Site Details					
Site Chosen By		unty	Parish	Portion/Lot DP	
	Form A : Licensed :NO	RTHUMBERLAND	HEXHAM	34 800036	
Region :20 - River Basin : Area / District :	HUNTER		CMA Map : Grid Zone :	Scale :	
Elevation : Elevation Source :			Northing :6359943 Easting :372557.431	Latitude (S) :32° 5 Longitude (E) :151°	
GS Map :	AMG Zone :56	Coordin	ate Source :		
Construction	ative depths indicate Above Ground Level;H-Ho			ented;SL-Slot Length;A-Aperture;GS-G	rain Size;Q-Quantity
H P Component Type	From (m) To (m) OD	(mm) ID (mm) Inte			
		Construction Detail	s Found)		
Water Bearing Zo From (m) To (m) TI	nickness WBZ Type (m)		D.L. (m) Yield (L/s)	Hole Depth (m) Duration (hr)	Salinity (mg/L)
	(IVO VVa	ater Bearing Zone De	etalis Found)		
Drillers Log From (m) To (m) Thickness(m)	Drillers Description		Geological Material	Comment s	
Remarks					
Form A Remarks: NEWCASTLE CITY COUNCIL MINMI PGMW5 Summerkiil Waste Management Ford	lin.				
Summerhill Waste Management Faci		*** End of GW0790	65 ***		
		*** End of Report	***		


APPENDIX B


PIEZOMETER CONSTRUCTION LOGS



Peter Dundon and Assoc. Logging Sheet


BORE: C063A and C063B

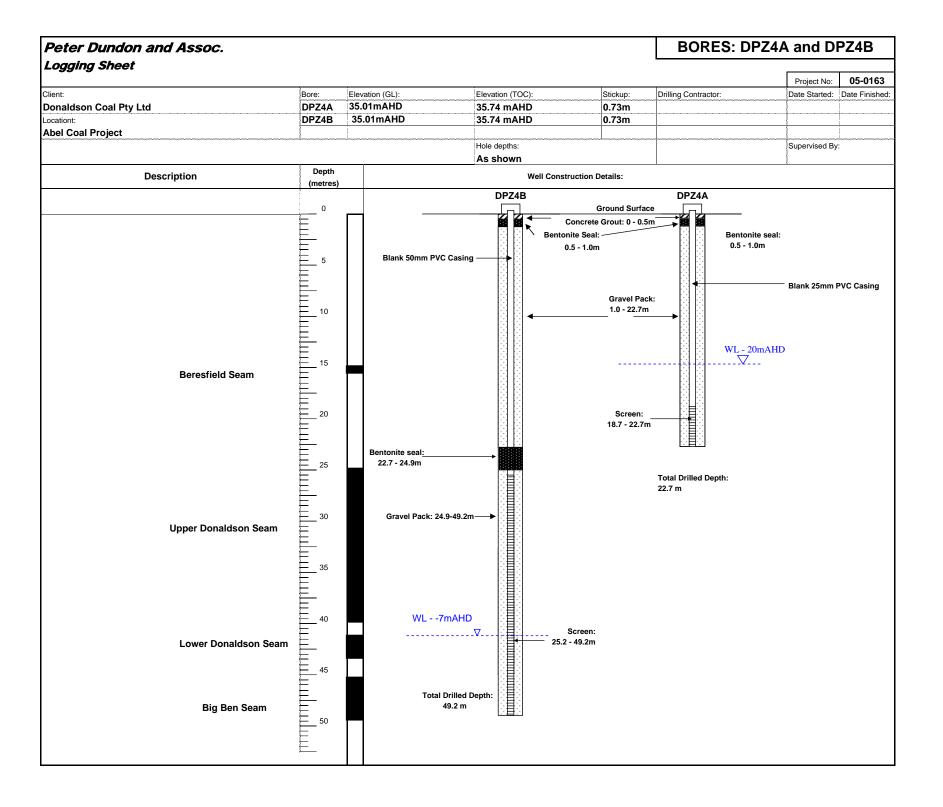
Peter Dundon and Assoc.		BORE: C080	
Logging Sheet			
		Project No:	05-0163
Client:	Elevation (GL):	177 mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC):	mAHD	
_ocation:	Stickup:	m	
Abel Coal Project	Hole Depth:	300 m	
Drilling Contractor:	Date Started:	300 m	Supervised By:
Jining Contractor.	Date Completed:		
Description	Depth (metree)	Well Cons	struction Details:
	(metres)		
	0	Ground Sur	face
	<u> </u>		
	20		
	40		
	60		
	—		
	80		
	-	Fully grouted h	ole
	100		
	_		
	120		
	-		
	140		
	-		······
		WL +29 mAH	
	160		
	180		
	200		
	—		
	220		
	- 240		
	240		
	-		
	260		
		Vibrating Wire	
		Piezometer	
Donaldson Seam	S 280	280 m —	
	<u> </u>	Drilled Depth:	
	300	300 m	

Peter Dundon and Assoc. Logging Sheet

BORE: C082

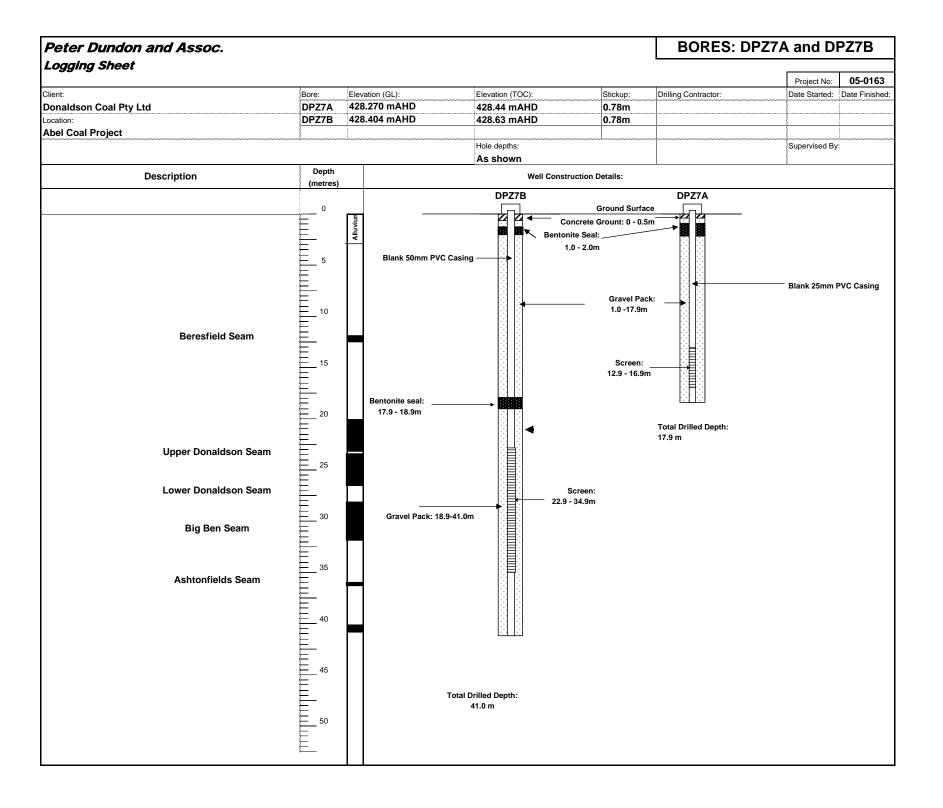
Logging Sheet			
		Project No:	05-0163
Client:	Elevation (GL):	34 mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC):	mAHD	
Location:	Stickup:	m	
Abel Coal Project	Hole Depth:	20 m	
Drilling Contractor:	Date Started:		Supervised By:
	Date Completed:		
Description	Depth	Wo	Il Construction Details:
Description	(metres)	ne	
	0	Ground Surfa	
			Cement grout: 0 - 1
		Backfill:	
	5	1-10 m ——	Cement grout: 0 - 1r
		Blank 50 mm	
		PVC Casing: —	
	10		
	<u> </u>		
	<u> </u>	Bentonite seal: 10-13 m	
	15		O m
			Gravel Pack: 13 - 20 n
	—	Screen: 14 - 20	
	20		
			Total Depth:
	25		20 m
	E		
	30		
	E		
	<u> </u>		
	35		
	40		
	40		
	E		
	45		
	45		
	E		
	50		
	50		

Peter Dundon and Assoc. Logging Sheet

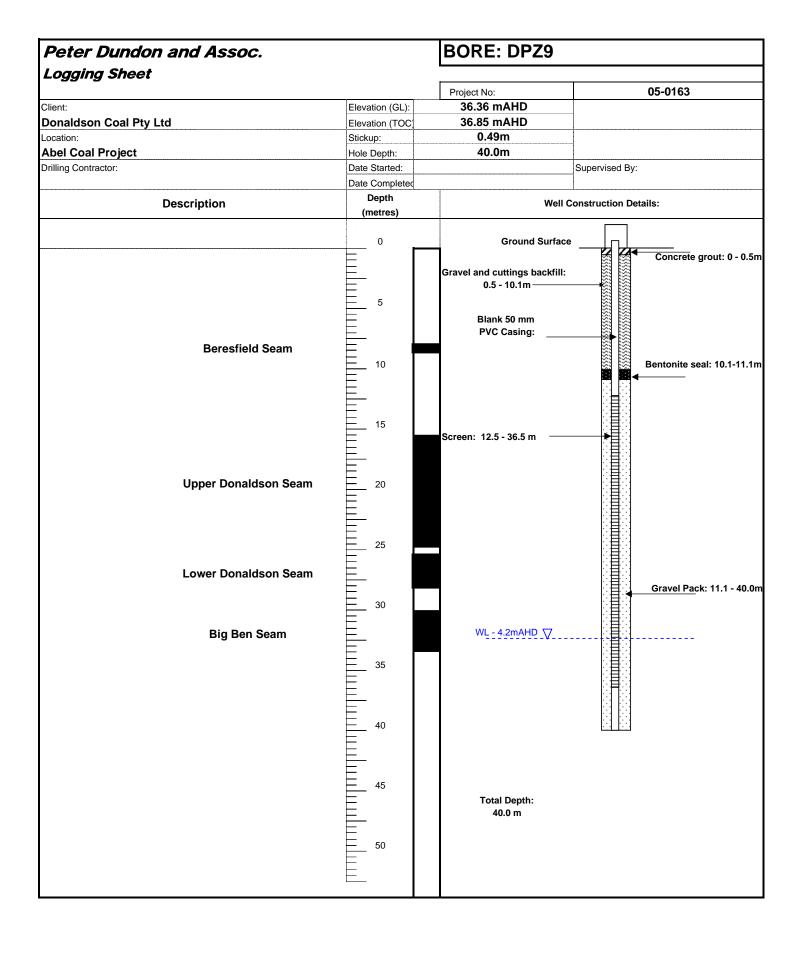

BORE: C087

Logging Sheet			
	e e e e e e e e e e e e e e e e e e e	Project No:	05-0163
Client:	Elevation (GL):	74 mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC):	mAHD	
Location:	Stickup:	m	
Abel Coal Project	Hole Depth:	18.3 m	
Drilling Contractor:	Date Started:		Supervised By:
	Date Completed:		
Description	Depth	w	/ell Construction Details:
Description	(metres)		
	0	Ground Sur	
		Backfill:	Cement grout: 0 - 11
		1-5 m	
		Blank 50 mm	
	5	PVC Casing: -	
	<u>↓</u>		
		Bentonite seal: 5-8 m	
	10		
			₩L +63.5 mAHE
	<u> </u>		18 m Gravel Pack: 8 - 18 n
	15		
		Screen: 12 -	18 m
		ocreen. 12 -	
	20		
	20		Total Depth:
			18.3 m
	<u> </u>		
	25		
	30		
	35		
	40		
	45		
	50		
	50		
	—		

Peter Dundon and Assoc.		BORE: DPZ1	
Logging Sheet		r	
	-,,~~	Project No:	05-0163
Client:	Elevation (GL):	23.08mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC)	23.56mAHD	
Location:	Stickup:	0.48m	
Abel Coal Project	Hole Depth:	30.1m	
Drilling Contractor:	Date Started:		Supervised By:
	Date Completed		
Description	Depth	Well C	Construction Details:
Decemption	(metres)		
	0	Ground Surface	
			Concrete grout: 0 - 0.5m
	F	Gravel backfill:	
	<u> </u>	0.5 - 7.8m	🏽 🇱
		0.0 7.011	
	5		
	<u> </u>		
	F L	Bentonite seal: 7.8-8.4m	
Upper Donaldson Seam	10		WL - 12mAHI
		Blank 50 mm	·····
	—	PVC Casing:	
	E		
	15		
	E		
Lower Donaldson Seam	<u> </u>	Screen: 16.5 - 26.9 m	Gravel Pack: 8.4-30.1r
Lower Donaidson Seam			
	20		Gravel Pack: 8.4-30.1r
	<u> </u>		
	E		
	25		
Big Ben Seam	F		
	E_		
	30		
	E		• •
	E		
	E		
	35		
	⊨ ~ I		
	40		
	40		
	⊢ I		
	E		
	45		
	E I	Total Depth:	
	E_	30.1 m	
	50		
	L		


Peter Dundon and Assoc.		BORE: DPZ2	
Logging Sheet		l	
		Project No:	05-0163
Client:	Elevation (GL):	22.3 mAHD	_
Donaldson Coal Pty Ltd	Elevation (TOC)	23.37mAHD	
Location:	Stickup:	1.07m 30.5m	
Abel Coal Projecy Drilling Contractor:	Hole Depth: Date Started:	30.311	Supervised By:
Dhining Contractor.	Date Completed		Supervised by.
	Date Completed		
Description	(metres)	Well	Construction Details:
	0	Ground Surface	e
			Concrete grout: 0- 0.5m
	—	Gravel backfill:	
		0.5 - 4.0m	
	5		Bentonite seal: 4.0-5.0m
	_		日日
		Blank 50 mm	
	E	PVC Casing:	
	10		
	<u> </u>		
			Gravel Pack: 5.0 - 30.5
	15		
			WL - 5mAH
		Screen: 15.8 - 27.8 n	;==;==;==========================
		Screen. 15.0 - 27.0 h	
Beresfield Seam	20		
Belesileiu Sealli	E		
	_		
	25		
	<u> </u>		
	30		
	<u> </u>		
	—		
	35		
	<u> </u>		
	40		
	E		
	45	Total Dentity	
		Total Depth: 30.5 m	
		00.0 ///	
	50		
	- 50		
	L		

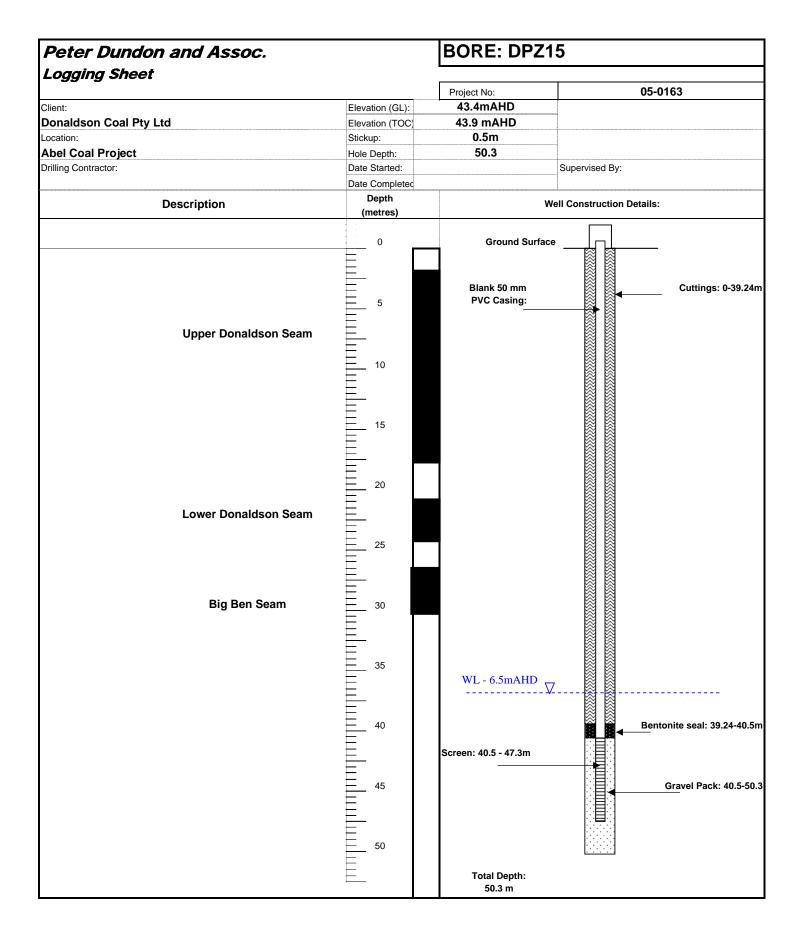
Peter Dundon and Assoc.		BORE: DPZ3		
Logging Sheet				
		Project No:	05-0163	
Client:	Elevation (GL):	49.09mAHD		
Donaldson Coal Pty Ltd	Elevation (TOC)	49.62 mAHD		
Location:	Stickup:	0.53m		
Abel Coal Project	Hole Depth:	30.4m		
Drilling Contractor:	Date Started:		Supervised By:	
	Date Completed		<u> </u>	
Description	Depth (metres)	Well C	construction Details:	
	0	Ground Surface		
			Concrete grout: 0- 0.5m	
		Gravel backfill:		
		0.5 - 5.0m		
	5		Bentonite seal: 5.0-6.0m	
		Blank 50 mm		
	<u> </u>	PVC Casing:		
	EL			
Undifferentiated Coal	10			
		WL - 36.71mAHD		
Undifferentiated Coal		¥		
		Screen: 6.8 - 18.8 m	Gravel Pack: 6.0 - 30.4m	
	15	Screen. 6.6 - 16.6 m		
	—			
Undifferentiated Coal				
Undimerentiated Coar	20			
	20			
			김 희	
	25			
	=			
	E			
	30			
	=			
	E_			
	=			
	35			
	E			
	<u> </u>			
	40			
	45			
	45	Total Depth:		
		30.4 m		
	50			



Peter Dundon and Assoc.		BORE: DF	PZ5
Logging Sheet			05.0400
		Project No:	05-0163
Client:	Elevation (GL):	12.8 mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC	13.58mAHD	
Location:	Stickup:	0.78m	
Abel Coal Project	Hole Depth:	24.0m	
Drilling Contractor:	Date Started:	1 July 2005	Supervised By:
Mitchell Drilling	Date Complete	9 July 2005	A Price
	Depth		
Description	(metres)		Well Construction Details:
	0	Ground Surfac	
	—	Cuttings backfill:	Concrete grout: 0 - 0.5r
		0.5 - 1.0m	Bentonite seal:
			1.0 - 2.0m
	5		
		WL - 6mAHD	
			Gravel Pack: 2.0-24.0r
		Screen: 6.0 - 18.0m	
	10		
			位目的
	<u> </u>		Gravel Pack: 2.0-24.0
	—		
	— ₁₅		
			()目()
	<u> </u>		
	20	Blank 50 mm	
	20	PVC Casing: -	<u></u>
			문 문
	<u> </u>		
	—		
	25		
	<u> </u>		
	30		
	~ ~~		
	35		
	40		
	45		
		Total Depth:	
		24.0 m	
	50		

Peter Dundon and Assoc.		BORE: DPZ6		
Logging Sheet				
		Project No:	05-0163	
Client:	Elevation (GL):	57.7 mAHD		
Donaldson Coal Pty Ltd	Elevation (TOC	58.3mAHD		
Location:	Stickup:	0.6m		
Abel Coal Project	Hole Depth:	43.0m		
Drilling Contractor:	Date Started:	TUIUIII	Supervised By:	
Drining Contractor.	Date Complete			
	Depth			
Description	(metres)		ell Construction Details:	
	0	Ground Surfac		
		Gravel backfill: 0.5 - 1.0m		
		0.5 - 1.011		
	E		1.0 - 2.0m	
	5			
	=		Gravel Pack:	
			2.0 - 43.0 m	
	10	Blank 50 mm	[2]	
	=	PVC Casing:		
		WL - 44mAHD 🗸	- [] []	
	15			
	_ 10			
	20			
	E			
	<u> </u>			
	=			
	25			
Beresfield Seam			[] []	
		Screen: 26.7 - 42.50	om に目い	
Upper Donaldson Seam	35			
	E			
Lower Donaldson Seam				
	40			
			に目に	
	45			
	<u> </u>	Total Depth:		
		43.0 m		
		43.0 III		
	E			
	50			

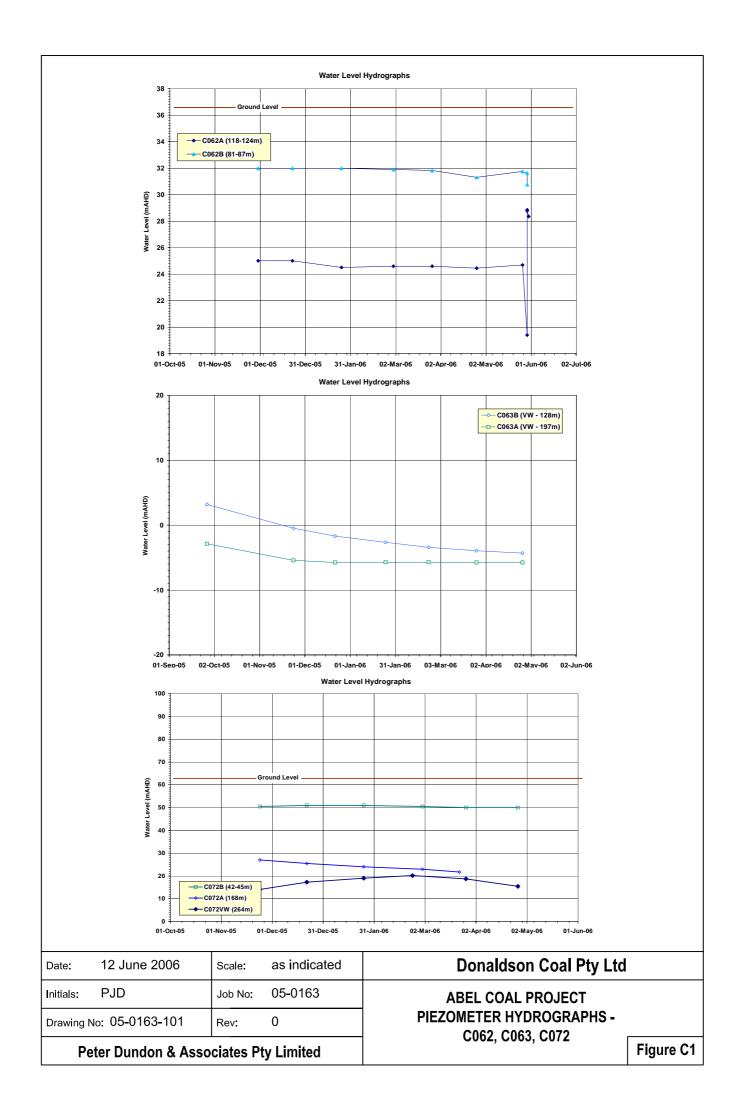
vation (GL): vation (TOC) kup: e Depth: e Started: e Completed Depth (metres)	Project No: 51.8 mAHD 52.43 mAHD 0.63m 33.0m Well (Ground Surface Gravel backfill: 0.5 - 11.5m	Supervised By:	
vation (TOC) kup: e Depth: e Started: e Completed Depth (metres) - 0	51.8 mAHD 52.43 mAHD 0.63m 33.0m Well Ground Surface Gravel backfill:	Construction Det	
vation (TOC) kup: e Depth: e Started: e Completed Depth (metres) - 0	52.43 mAHD 0.63m 33.0m Well Ground Surface Gravel backfill:	Construction Det	
kup: e Depth: e Started: e Completed Depth (metres) - 0 -	0.63m 33.0m Well o Ground Surface Gravel backfill:	Construction Det	
e Depth: e Started: e Completed Depth (metres) - 0 -	33.0m Well o Ground Surface Gravel backfill:	Construction Det	
e Started: e Completed Depth (metres) 0 -	Well Ground Surface Ground Surface Gravel backfill:	Construction Det	
e Completed Depth (metres)	Ground Surface Gravel backfill:	Construction Det	
Depth (metres)	Ground Surface Gravel backfill:		tails:
(metres) 0	Ground Surface Gravel backfill:		tails:
0	Gravel backfill:	•	
-	Gravel backfill:		
-	Gravel backfill:		
- _ 5 _			Concrete grout: 0 - 0.5
5			
5			
-			
-			
	Blank 50 mm		
_ 10	PVC Casing:		
-	Bentonite seal: 11.5-12.5m		
_ 15			Gravel Pack: 12.5 - 33.0
-	Screen: 20.2 - 32.2 m		
20			
- 20			
	WI - 27mAHD		
-			
25			
_			
30			
-			
05			
_ 35			
-			
40			
45			
	Total Depth:		
-	33.0 m		
50			
_ ~~			
-	- 35 - 40 - 45 -	- 30 - 35 - 35 - 40 - 45	25 30 31 35 40 45 Total Depth: 33.0 m

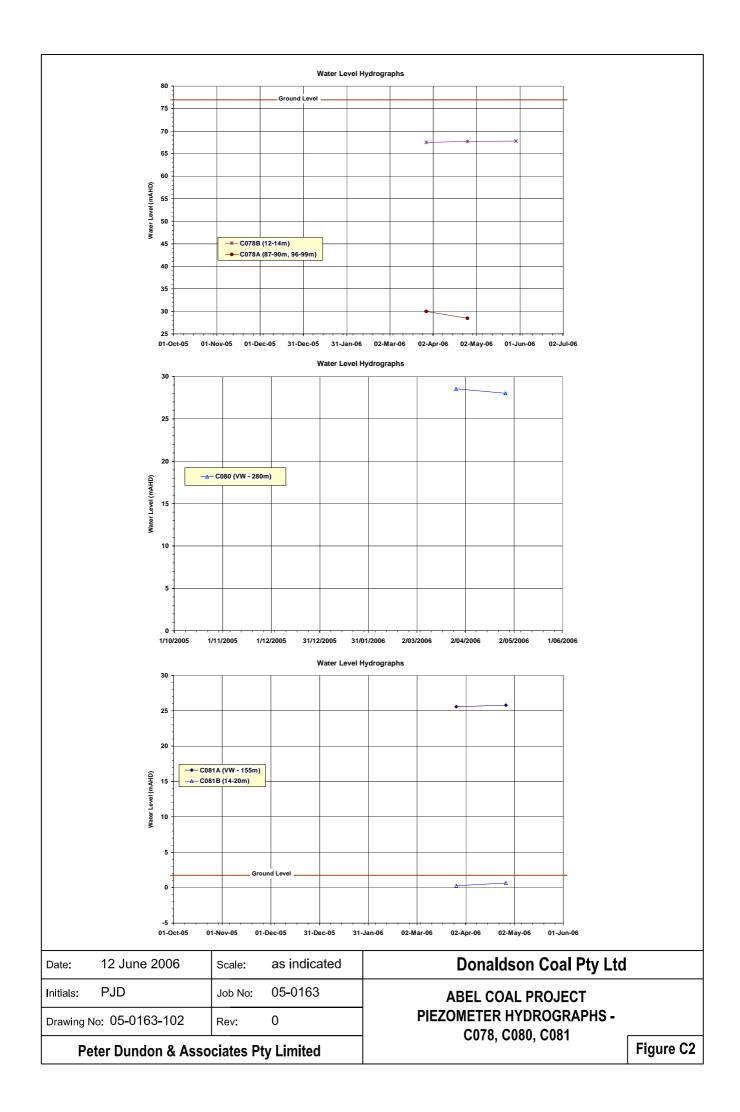

Peter Dundon and Assoc.		BORE: DPZ10		
Logging Sheet				
		Project No:		05-0163
Client:	Elevation (GL):	19.81 mAHD		
Donaldson Coal Pty Ltd	Elevation (TOC)	20.1 mAHD		
Location:	Stickup:	0.29m		
Abel Coal Project	Hole Depth:	30.0m		
Drilling Contractor:	Date Started:	50.0 m	Supervised By:	
Bhing Contractor.	Date Completed		Supervised by.	
	Date Completed Depth			
Description	(metres)		Well Construction Det	ails:
	(1101100)			
	0	Ground Surf	iace 🗖	
		Cuttings backfill:		Concrete grout: 0 - 0.5
		0.5 - 4.0m		
				Bentonite seal: 4.0-5.0
	5			Bentonite Scal. 4.0 0.0
		Disult 50 mm		
	\equiv	Blank 50 mm PVC Casing:		
	5	i to dasing		Gravel Pack: 5.0 - 30.0
	10			
	=			
	<u> </u>	Screen: 11.8 - 29.8 m	「「「「」「「」」	WL - 6mAH ▽
				V
	15			
	<u> </u>			
	20			
	20			
	<u> </u>			
	25			
	_			
	25			
Beresfield Seam	[
	E			
	30			
	E			
	<u> </u>			
	35			
	=			
	40			
	— I			
	– I			
	45			
		Total Depth:		
		30.0 m		
	35 40 45 50			
	=			
		1		

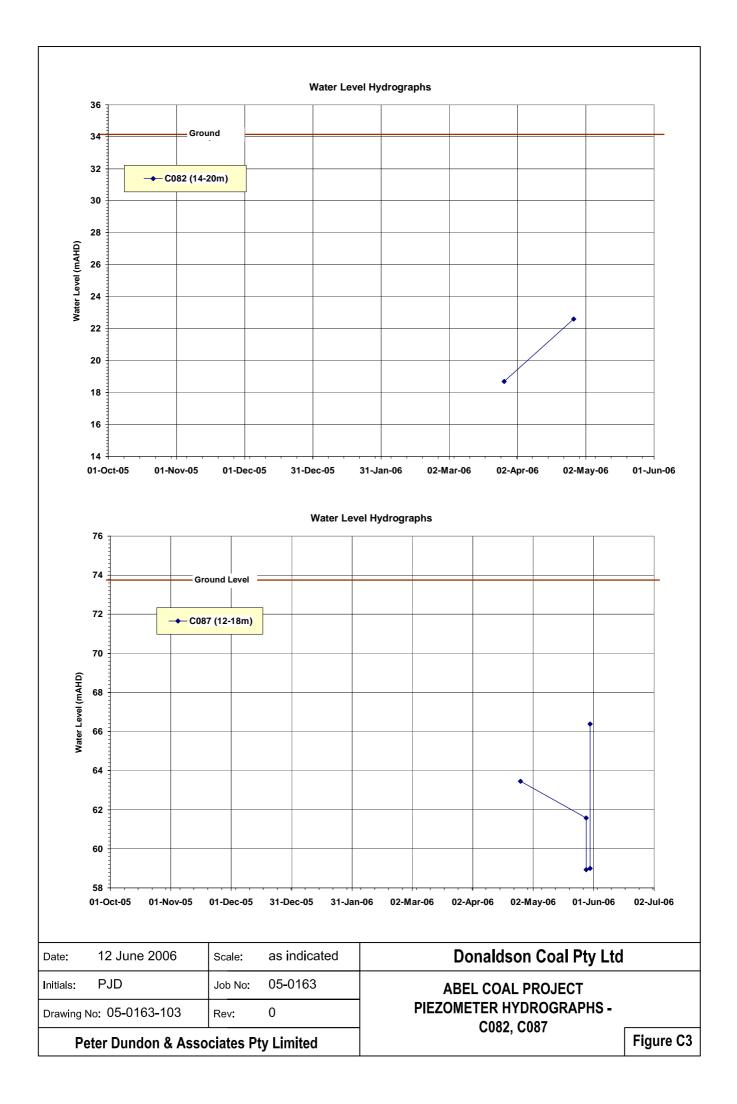
Peter Dundon and Assoc.		BORE: DPZ11		
Logging Sheet				
		Project No:	05-0163	
Client:	Elevation (GL):	19 mAHD		
Donaldson Coal Pty Ltd	Elevation (TOC	19 mAHD		
Location:	Stickup:	Om		
Abel Coal Project	Hole Depth:	30.0m		
Drilling Contractor:	Date Started:	50.011	Supervised By:	
Dhing Contactor.	Date Complete		Supervised by:	
	Date Completer Depth			
Description	(metres)	weil Construction Defails:		
	(ineties)		Lockable Cap	
	0	Ground Surfac		
			Cement grout: 0 - 0.5n	
		Cuttings backfill: 0.5 - 1.0m		
		0.5 - 1.011	Bentonite seal: 1.0 - 2.0m	
	5			
		Blank 50 mm	Gravel Pack:	
		PVC Casing:	2.0 - 30.0 m	
	10			
	<u> </u>			
	15			
	<u> </u>			
Undifferentiated Coal				
	E		m → m → m → m	
Undifferentiated Coal	20			
		Screen: 17.5 - 29.50	n [:]=]:]	
	25			
	23			
	<u> </u>			
	30			
	— 35			
	<u> </u>			
	E			
	40			
	- 45			
		Total Depth:		
		30.0 m		
		50.0 111		
	50			
	50			

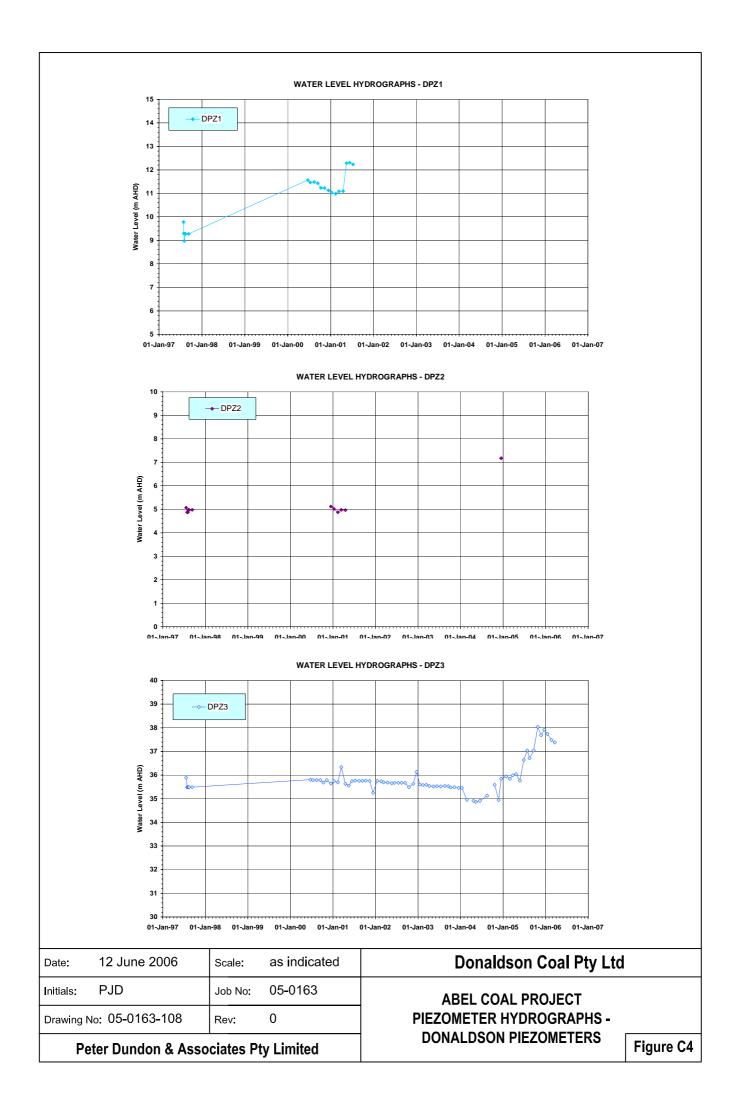
Peter Dundon and Assoc.		BORE: DPZ	12
Logging Sheet			I
		Project No:	05-0163
Client:	Elevation (GL):	59.5mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC	60 mAHD	
Location:	Stickup:	0.5m	
Abel Coal Project	Hole Depth:	24.0m	
Drilling Contractor:	Date Started:		Supervised By:
	Date Completed		
Description	Depth	10/-	U Construction Details
Description	(metres)	VVE	ell Construction Details:
	0	Ground Surfac	
		Concrete grout: 0-0.5m	Bentonite seal:
	—		0.5 - 1.0m
	E	Blank 50 mm	
	5	PVC Casing:	
	Ē Č		
		Screen: 6.0 - 18.0m	
		Screen: 0.0 - 18.0m	
	10		Gravel Pac
	E		1.0 - 24.0
	15		
	E		
	<u> </u>	WL - 42mAHD 🛛 🗸	
	_		·····
	20		
	—		
	25		
	—		
	<u> </u>		
	30		
	35		
	E		
	E I		
	40		
	45		
	40	Tet-I Dentha	
		Total Depth:	
		24.0 m	
	50		
	·		

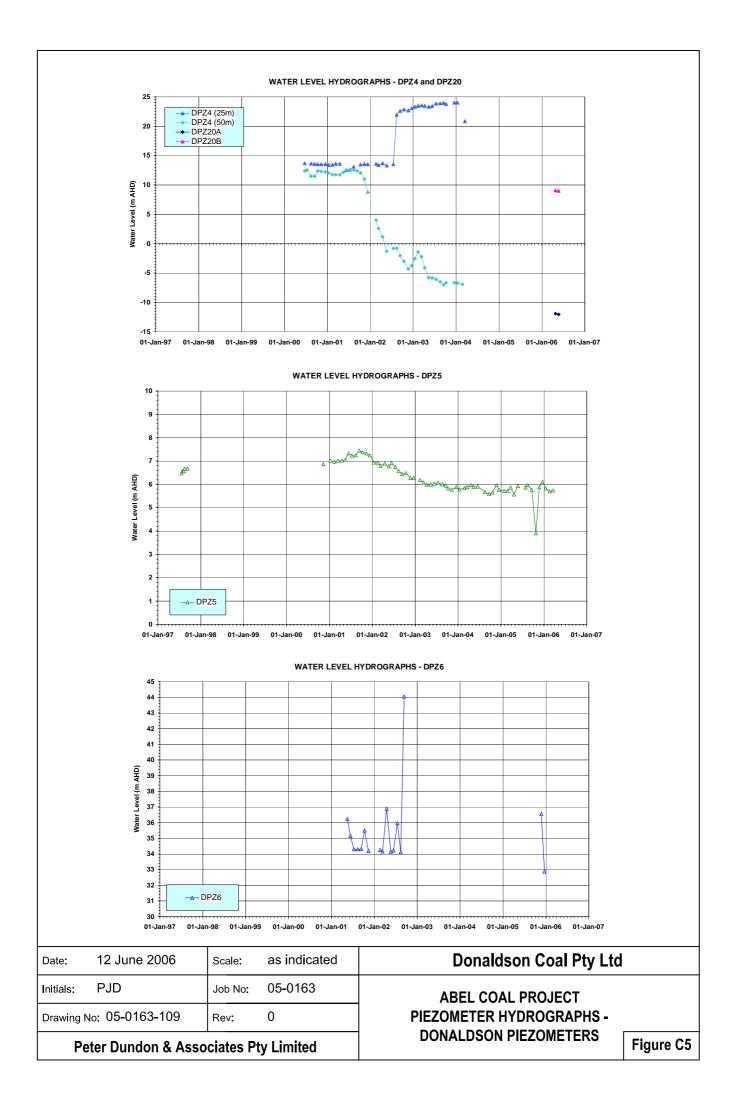
Peter Dundon and Assoc.		BORE: DF	PZ13
Logging Sheet			
		Project No:	05-0163
Client:	Elevation (GL):	21.48 mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC	21.97 mAHD	
Location:	Stickup:	0.49m	
Abel Coal Project	Hole Depth:	30.0m	
Drilling Contractor:	Date Started:		Supervised By:
	Date Complete		
Description	Depth Well Construction De		Well Construction Details:
•	(metres)		
		0	
	°	Ground Surfac	
	E	Cuttings backfill:	
	<u> </u>	0.5 - 1.0m	Bentonite seal:
	E		1.0 - 1.7m
	5		
		Blank 50 mm	WL - 14.2mAHI
		PVC Casing:	·····
	10		Gravel Pack:
			1.7 - 30.0 m
Undifferentiated Coal			
Undifferentiated Coal	- 15		
	EI		
Undifferentiated Cool			m
Undifferentiated Coal	20	0	
		Screen: 18.0 - 30.0	
	E		
	25		
	E I		
	30		
			_
	E		
	35		
	°°		
	E		
	40		
	45		
	E	Total Depth:	
	E I	30.0 m	
	50		
	50		
	└───		

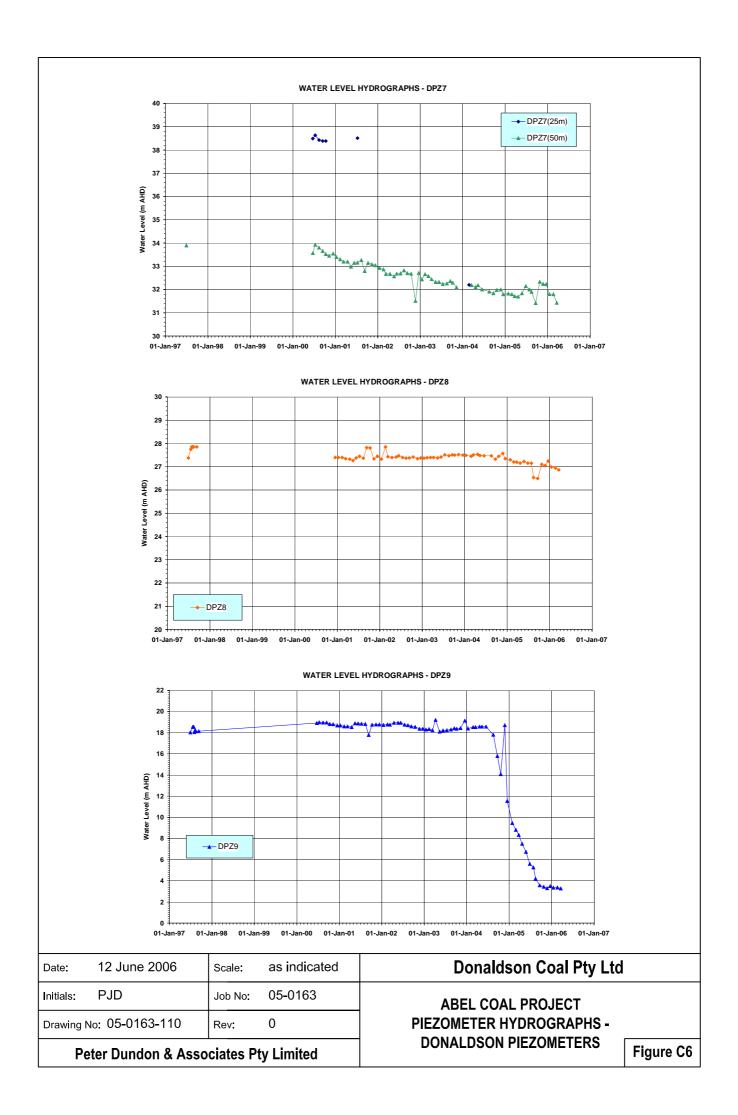

Peter Dundon and Assoc.		BORE: DPZ14		
Logging Sheet			I	
		Project No:	05-0163	
Client:	Elevation (GL):	47.44 mAHD		
Donaldson Coal Pty Ltd	Elevation (TOC)	47.94 mAHD		
Location:	Stickup:	0.5m 32.3		
Abel Coal Project Drilling Contractor:	Hole Depth: Date Started:	52.5	Supervised By:	
	Date Completed			
Deserintien	Depth			
Description	(metres)		Well Construction Details:	
	0	Ground Surfac		
	E			
		-		
Upper Donaldson Seam		Blank 50 mm PVC Casing:	Cuttings: 0-22.23n	
opper Donaidson Seam	5	1 VO Odding		
	E			
Lower Donaldson Seam	10			
	=			
	E			
	15			
Big Ben Seam	E			
	E_			
	=			
	20			
	E			
	<u> </u>		Bentonite seal: 22.23-23.75n	
	Ē			
R Buchanan Seam	25		Gravel Pack: 23.75-32.0n	
	=	Screen: 23.94 - 31.76m		
8		Screen: 23.54 - 31.70m	<u>WL-20m</u> AHE	
S Ashtonfields Seam	30			
Ashtoimeius Jean	30			
	Ξ			
	E			
	35			
	E			
	<u> </u>			
	E			
	40			
	=			
	Ē.			
	E			
	45			
	E	Total Depth: 32.3 m		
	<u> </u>	32.3 m		
	50			
	<u> </u>			

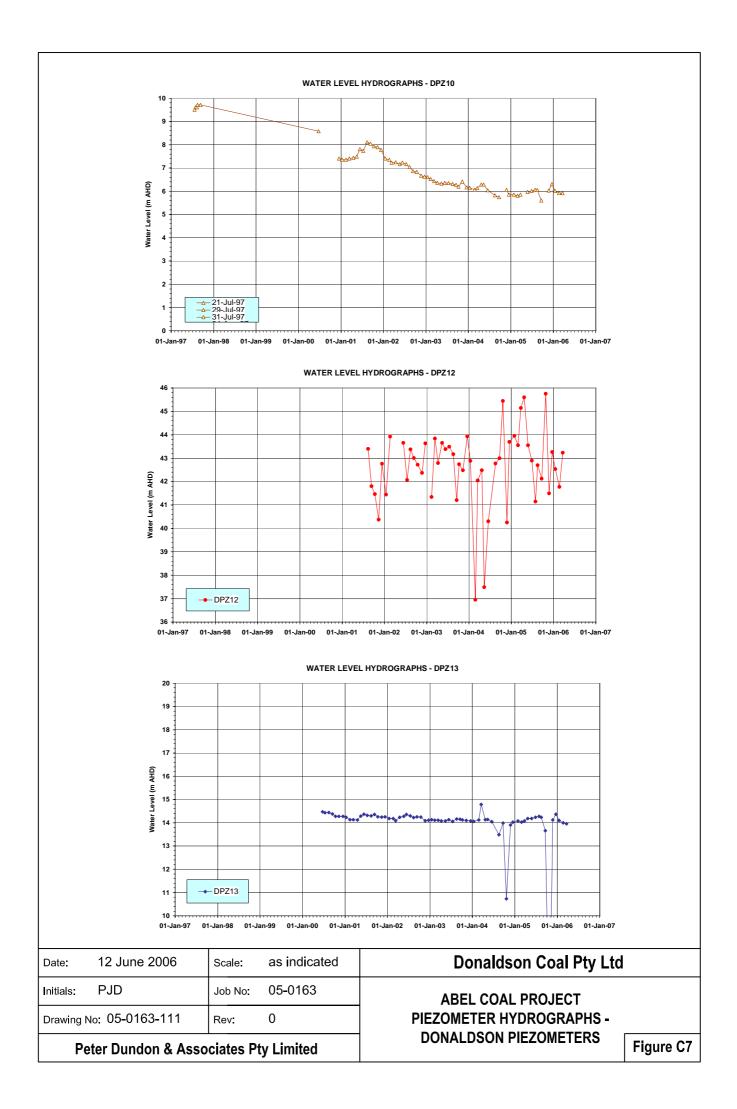


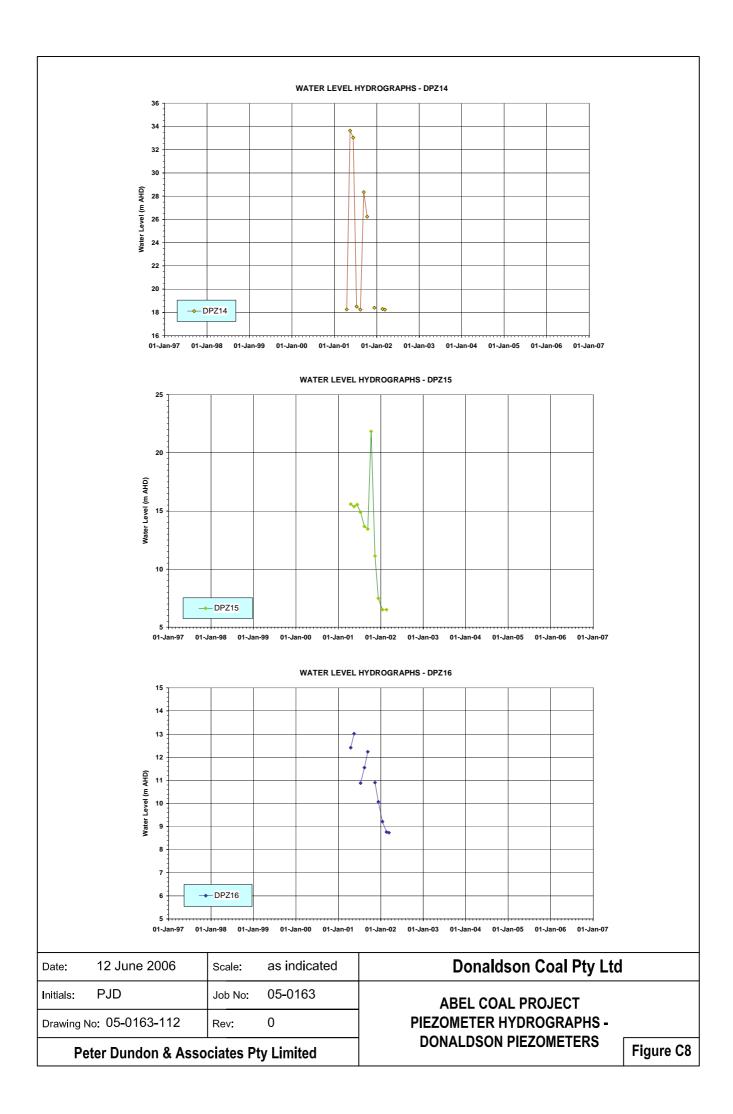

Peter Dundon and Assoc.		BORE: DPZ1	6
Logging Sheet			1
		Project No:	05-0163
Client:	Elevation (GL):	26.83 mAHD	
Donaldson Coal Pty Ltd	Elevation (TOC)	27.33 mAHD	
Location:	Stickup:	0.5m	
Donaldson Coal Project	Hole Depth:	27.3 m	
Drilling Contractor:	Date Started:		Supervised By:
	Date Completed		
Description	Depth (metres)	We	ell Construction Details:
	(metres)		
	0	Ground Surface	
		Blank 50 mm	Cuttings: 0-20.0m
Lower Donaldson Seam	5	PVC Casing:	
	10 15 20 25		
Big Ben Seam	10		
2.9 2011 00001	E		
	15		
	15		
		Final WL +8.6mAHD	
Buchanan Seam			
Buchanan Seam	20		
	—		Bentonite seal: 20-21.14n
Ashtonfield Seam		Screen: 21.14-24.0m	
Ashtonfield Seam	_	Screen: 21.14-24.0m	
	25		Gravel Pack: 21.14-27.3n
	<u> </u>		
			Total Depth:
	30		27.3m
	35		
	=		
	40		
	—		
	<u> </u>		
	_		
	45		
	50		
	50		

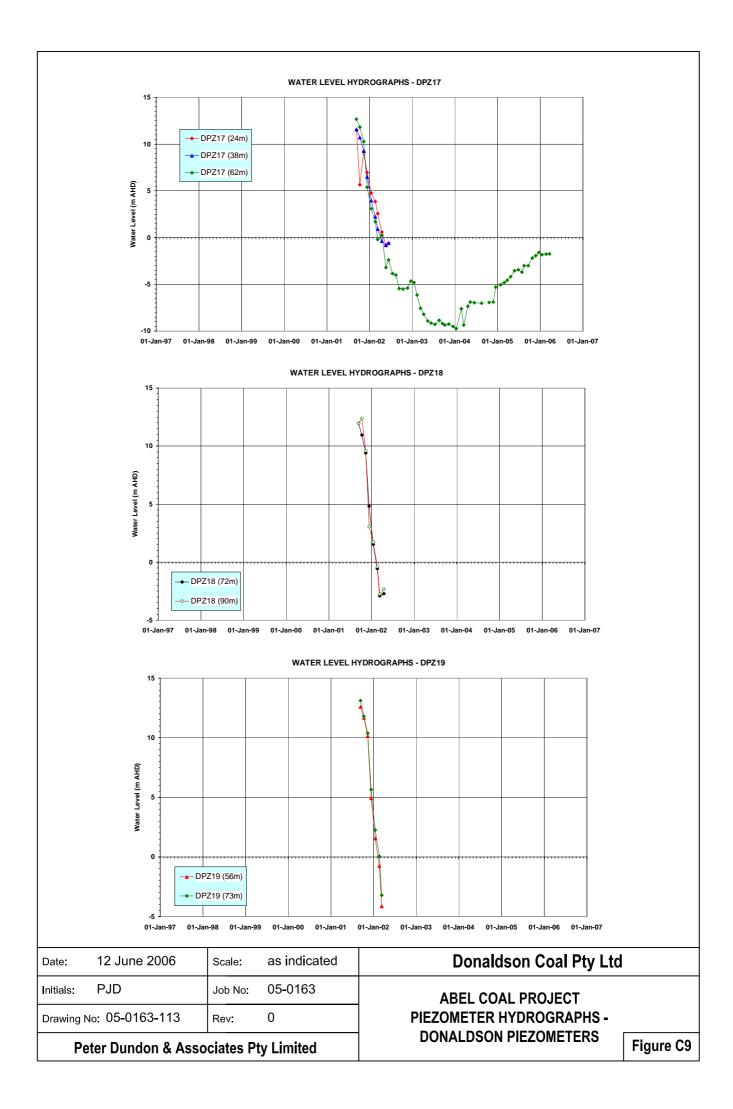

APPENDIX C

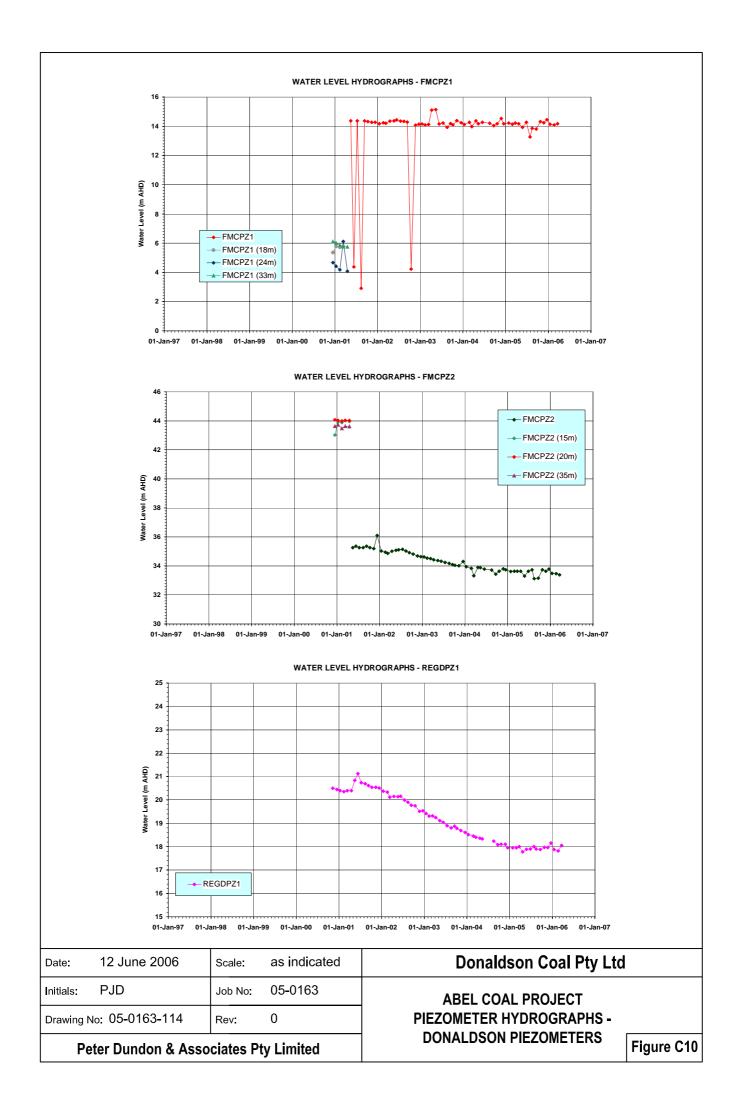

GROUNDWATER LEVEL HYDROGRAPHS

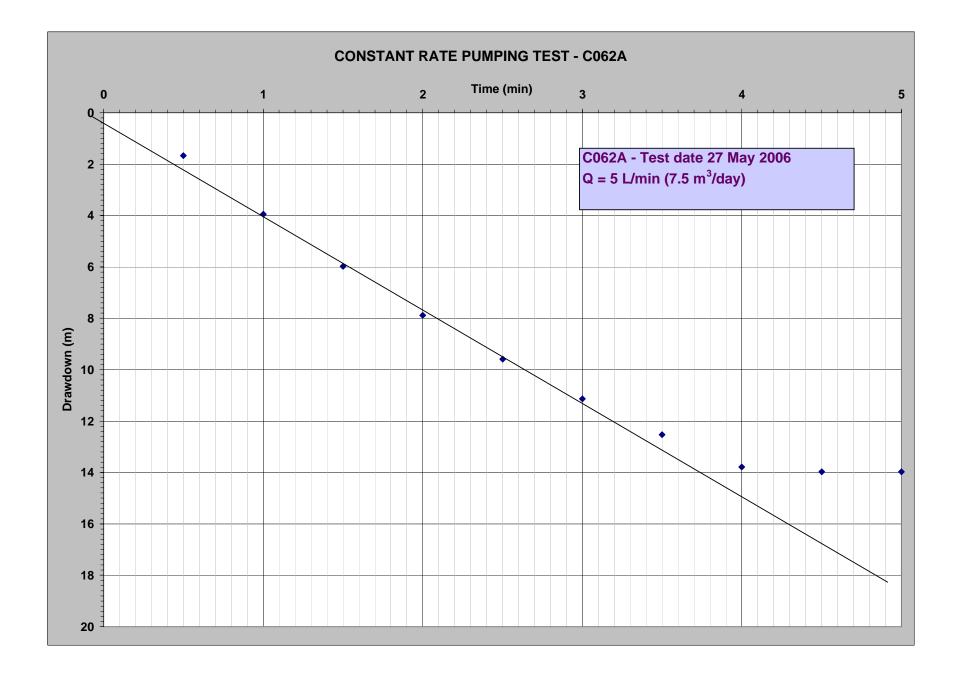


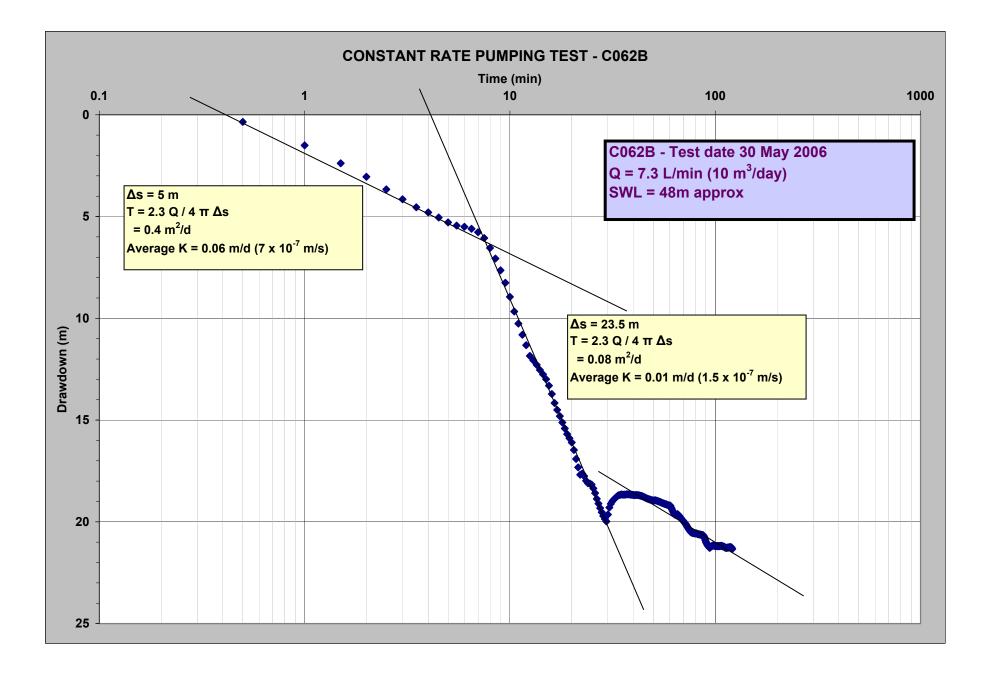


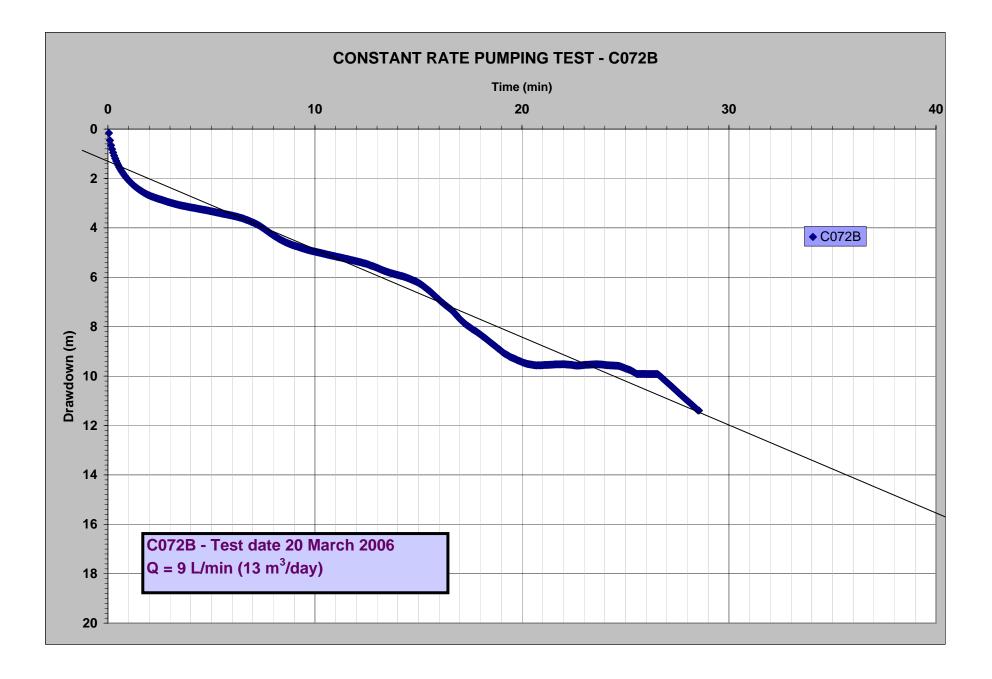


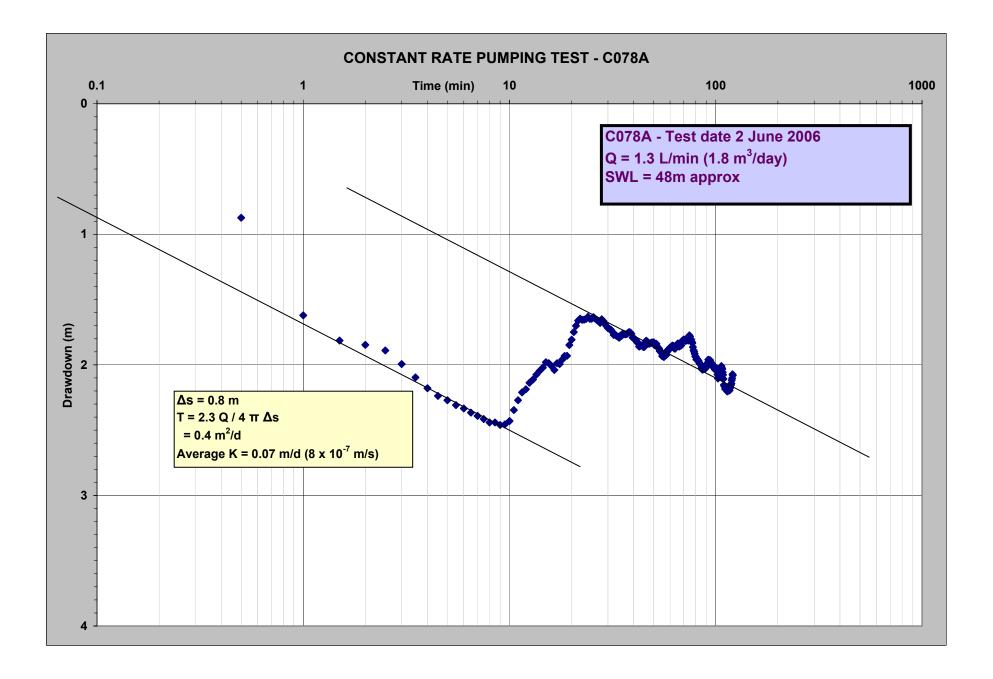


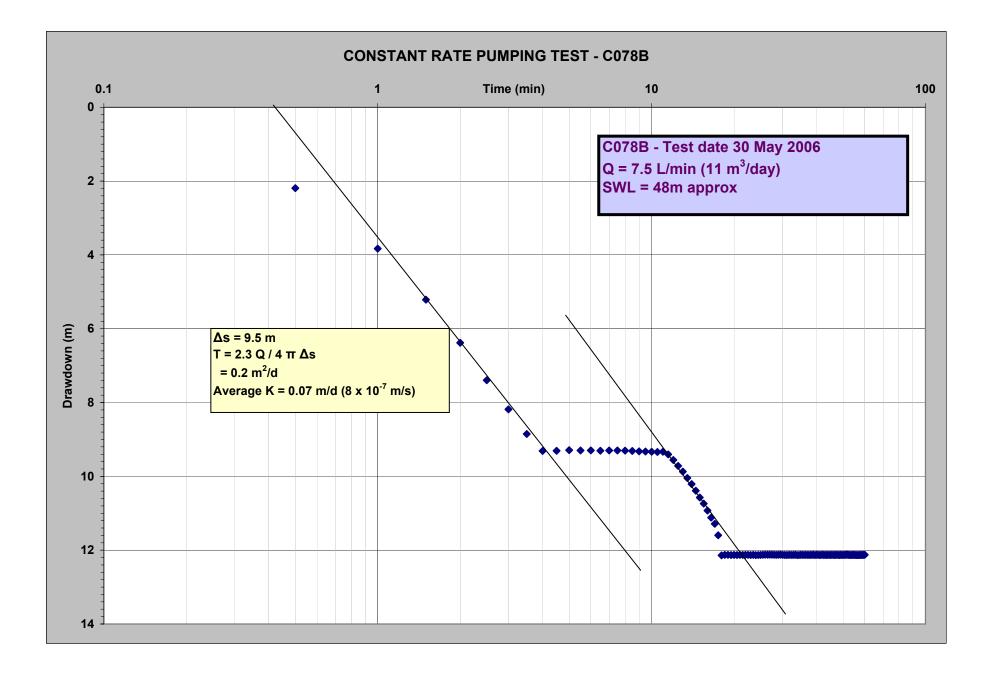


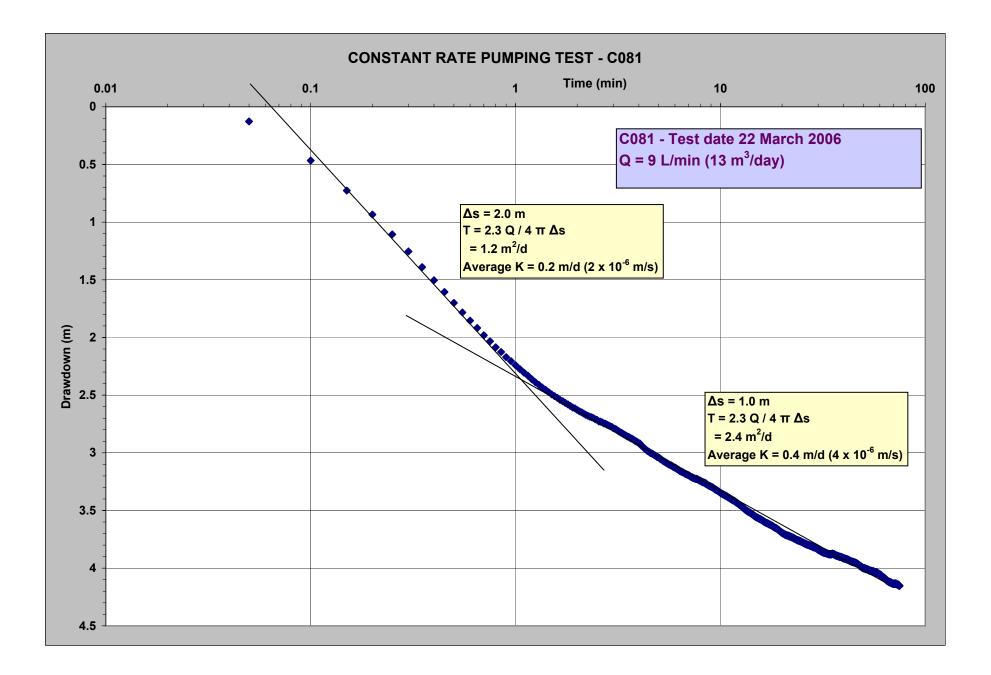


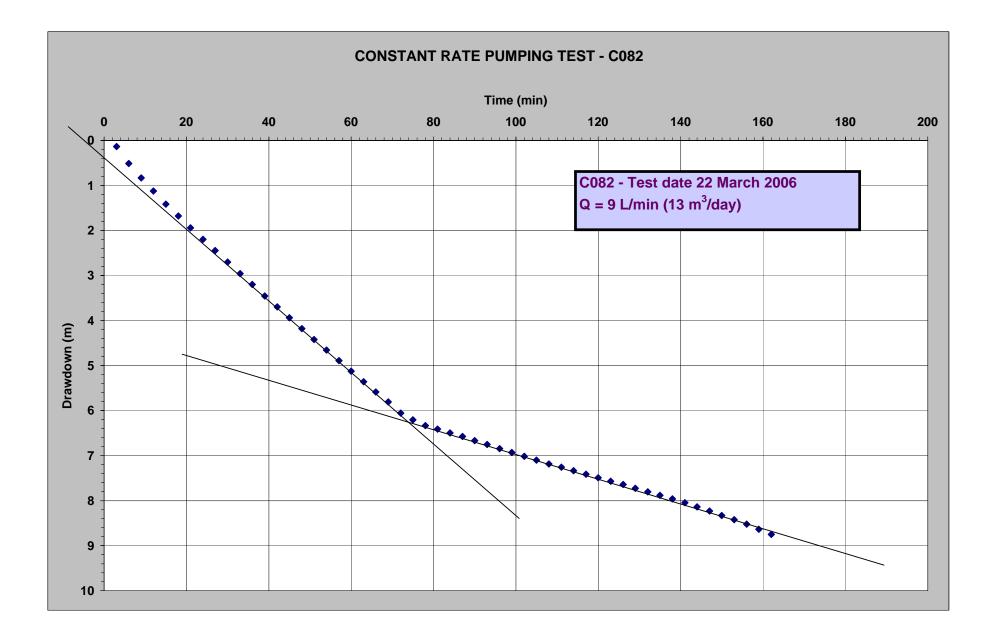


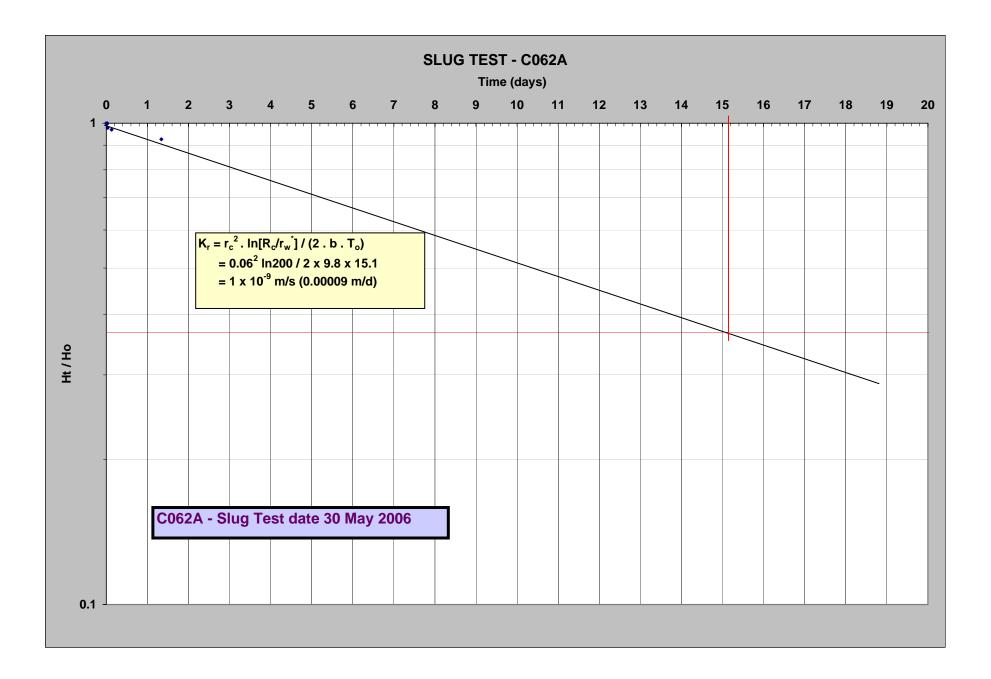


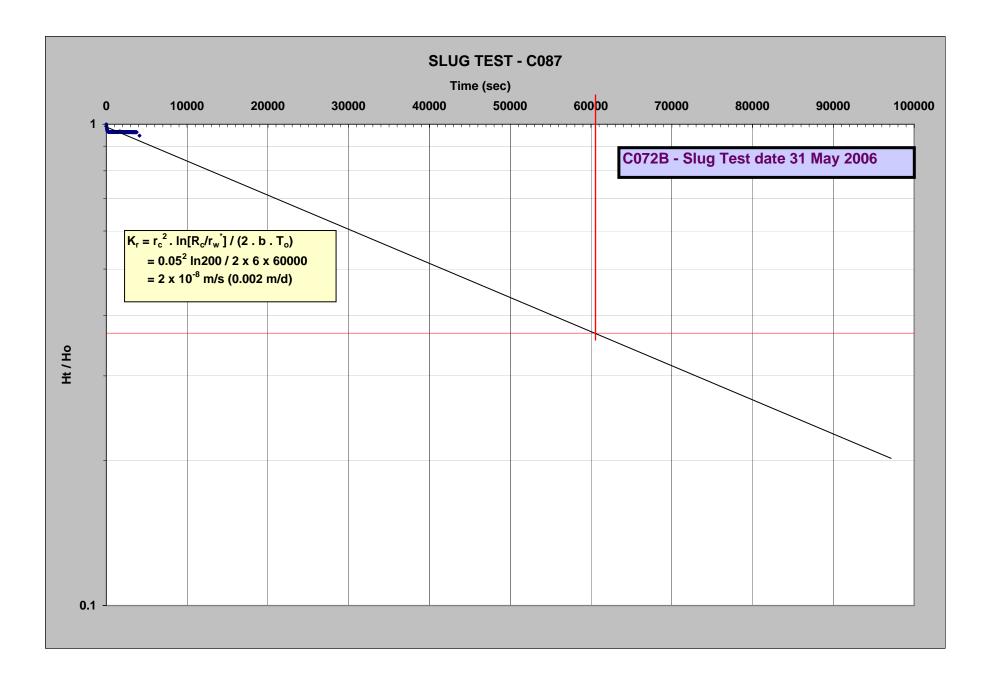

APPENDIX D


HYDRAULIC TESTING RESULTS









APPENDIX E

GROUNDWATER MODELLING REPORT

PETER DUNDON & ASSOCIATES

GROUNDWATER MODELLING OF IMPACTS OF ABEL UNDERGROUND MINING OPERATION FINAL

JULY 2006

Ilka Wallis Senior Hydrogeologist Hugh Middlemis Principal Water Resources Engineer

Prepared by:

Aquaterra Simulations ABN 49 082 286 708 PO Box 2043, Kent Town SA 5071 Suite 3, 17 Hackney Road, Hackney SA 5069

> Tel: (08) 8363 9455 Fax: (08) 8363 9199

> > 20 July, 2006

VALIDITY STATEMENT

We certify that we have prepared this modelling study and to the best of our knowledge it contains all available, current information relevant to the proposed development.

The modelling assessment does not, through its presentation or omission of information, materially mislead.

Study review: Hugh Middlemis Principal Water Resources Engineer

Study preparation: Ilka Wallis Senior Hydrogeologist/Modeller

TABLE OF CONTENTS

SEC	TION 1 -	INTRODUCTION	1
SEC	TION 2 -	CONCEPTUAL HYDROGEOLOGY	3
2.1	Geology		3
2.2	Hydrogeol	ogy	9
2.3	Recharge		10
2.4	Groundwa	ter discharge	11
2.5	Surface dr	ainage	11
2.6	Estimate o	of Drainage into Mine workings using Analytical Solutions	12
SEC	TION 3	IMPLEMENTATION OF CONCEPTUALISATION IN MODEL	15
3.1	Model Sel	ection and Complexity	15
3.2	Model Exte	ent, Boundaries, Layers and Grid	15
SEC	TION 4	MODEL CALIBRATION	18
4.1	Calibration	Approach	18
4.2	Calibration	Points	18
SEC	TION 5	STEADY STATE MODEL	
SEC	TION 6	MODEL PREDICTION AND SENSITIVITY ANALYSIS	25
6.1	Set up of [Dewatering Prediction model	25
6.2	Results of	prediction model and recovery model runs	27
6.3	Sensitivity	Analysis	35
SEC	TION 7	MODEL LIMITATIONS	39
SEC	TION 8	CONCLUSIONS	41
SEC	TION 9	REFERENCES	43

TABLES

Table 1	Parameters of hydrogeological units	9
Table 2	Mean monthly rainfall at East Maitland Bowling Club	10
Table 3	Mean daily evaporation data for Cessnock and Paterson Stations (mm)	11
Table 4	Long term seepage rates per metre length of mine workings for a range of aquifer parameters	13
Table 5	Existing observation points around the Donaldson Mining area	19
Table 6	Piezometers in the Abel mining lease area	19
Table 7	Abel Model parameters after calibration	22
Table 8	Steady state water balance [m ³ /d]	23
Table 9	Steady state model statistics	23
Table 10	Stress period set-up of the dewatering run	25
Table 11	Set-up of the dewatering and recovery models	25
Table 12	Transient water balance	
Table 13	Summary of sensitivity runs	35

FIGURES

Figure 1	Location of study area	1
Figure 2	Geological map of the study area	4
Figure 3	Cross section through Abel mining area from north to south (courtesy of Ellemby Resources Pty Ltd)	5
Figure 4	Extent of the West Borehole coal seam and the Lower and Upper Donaldson seams	6
Figure 5	Topographical contour map of the study area (mAHD)	7
Figure 6	Contour map of the West Borehole coal seam floor elevation (mAHD)	7
Figure 7	Contour map of the Upper Donaldson coal seam floor elevation (mAHD)	
Figure 8	Contour map of the Lower Donaldson coal seam floor elevation (mAHD)	8
Figure 9	Long term seepage rates for various length of mine workings and various aquifer parameters	14
Figure 10	Model layers in the Abel model	17
Figure 11	Location of calibration points within the model area	20
Figure 12	Sketch of water levels in the Lower and Upper Donaldson Coal seam (courtesy of Peter Dundon)	21
Figure 13	Observed vs. simulated water levels	23
Figure 14	Water level map for the LD/UD coal layer (Layer 6)	24
Figure 15	Water level map for the interburden above the Donaldson Coal seam (Layer 4)	24
Figure 16	Mine plan for the Abel mining lease area	26
Figure 17 6)	Predicted pressure heads (mAHD) above the Donaldson coal at 2027, the end of mining operations (La 29	ayer
Figure 18	Predicted piezometric contours at 2027 (mAHD) in the undisturbed interburden (Layer 4)	29
Figure 19	Selected hydrographs showing the decline in piezometric heads in the Abel mining lease area	30
Figure 20	Rates and cumulative seepage volumes into the Abel mine workings over time	32
Figure 21	Water balance of the dewatering model run over time	32
Figure 22	Water balance of the recovery model run over time	32
Figure 23	Recovery of piezometric heads in the Abel mining lease area after mining	33
Figure 24	Seepage rates into the Abel under ground mine over time for various model sensitivity runs	36
Figure 25	Sensitivity of final mine inflows to varying mine drain conductance	36
Figure 26	Selected hydrographs showing the decline in water levels over time during mining operations	37

APPENDICES

Appendix A Model input parameters

Appendix B Piezometric pressure above Donaldson coal during mining

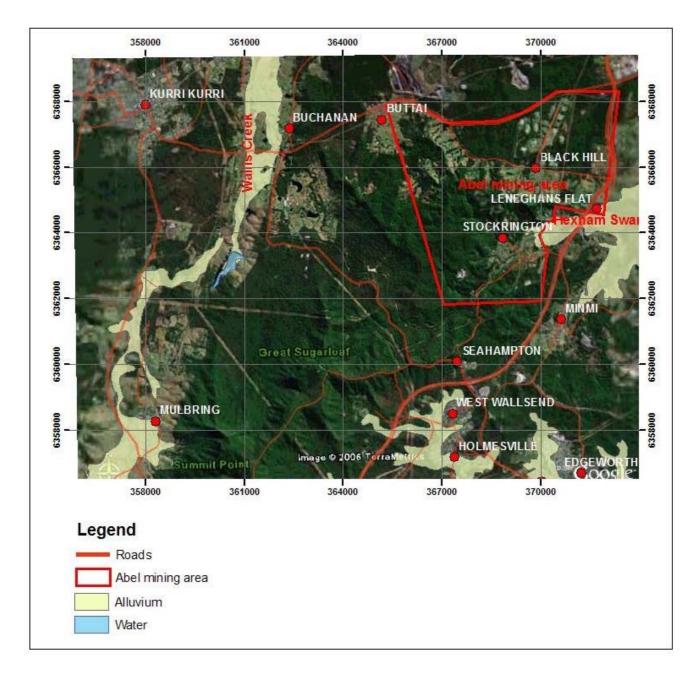
Executive Summary

A groundwater model of the proposed Abel underground coal mine in the Hunter Valley of New South Wales has been developed by Aquaterra Simulations for Peter Dundon and Associates, who were engaged to undertake hydrogeological investigations to support the preparation of an EA for the Abel Coal Mine Project.

The model was developed to predict the potential impacts of the underground mining on groundwater levels in the area and on surface water resources including Pambalong Nature Reserve and Hexham Swamp; and to assess the potential inflow into the mine workings during operation.

A 6-layered MODFLOW finite-difference model was set up, based on the most up to date data on geology and hydrogeology in the area. Calibration of the model was undertaken in steady-state mode and a good fit between observed and simulated water levels was achieved. The calibrated model was then used in predictive mode, simulating the impacts of mining at Abel from 2008 to 2027 and a simulation of recovery was undertaken thereafter.

Uncertainties exist in various model input parameters which lead to limitations of the model, and are detailed in the report. Uncertainties which are believed to have the greatest effect on simulated drawdowns and seepage influx rates into the mine, were evaluated through sensitivity analysis.


Based on the model predictions and sensitivity runs, drawdowns in the coal measures are expected to be in the order of 60 metres at the margins of the Abel mining lease area and up to 120 metres in the centre of the lease. The best estimate for the maximum rate of mine inflow at the end of mining is 3 ML/day, with a likely upper limit of 4.5 ML/day.

The impact of mining on the alluvium adjacent to Pambalong Nature Reserve is predicted to be a drawdown of about 10 cm. However, predicted water levels around Hexham Swamp are sensitive to the applied vertical permeability underneath the swamp.

Model results presented in this report are regarded as current best estimates based on the available data. Due to inherent uncertainties in input parameters such as recharge and evaporation and inhomogenities of the subsurface model results should be used with some caution and predicted seepage rates and drawdowns regarded as indicative, order-of-magnitude estimates. Ongoing monitoring is essential to confirm the predictions as mining progresses

SECTION 1 - INTRODUCTION

The Abel Coal Mine Project is a proposed underground mining operation located near Black Hill in the Hunter Valley of NSW, about 20 km NW of Newcastle, and about 10km south of Maitland. The project site is located just west of the F3 Freeway and immediately south of John Renshaw Drive (Figure 1).

Figure 1 Location of study area

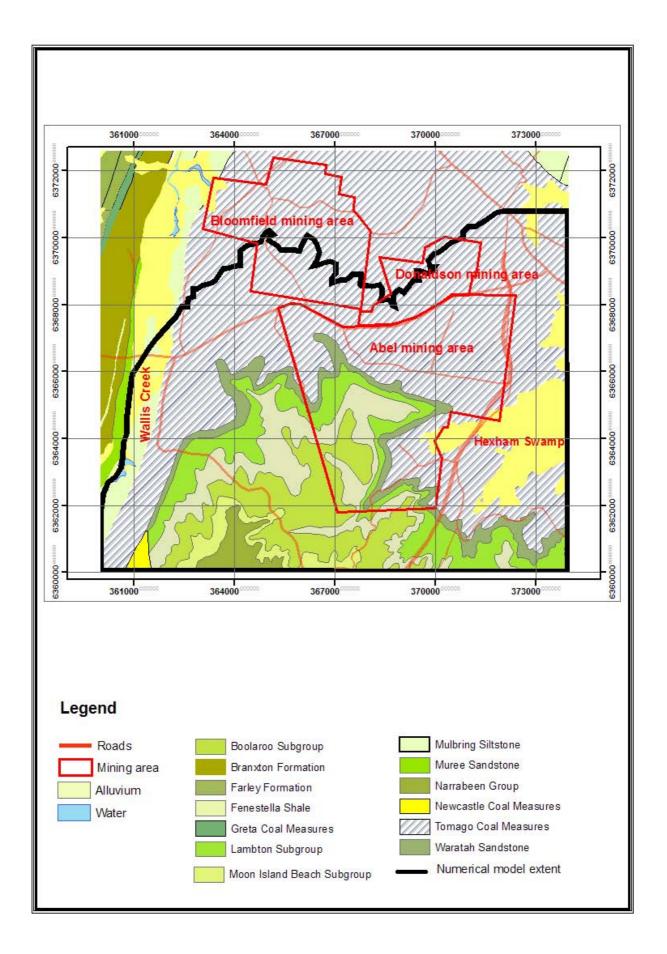
The Abel Coal Mine Project has engaged Peter Dundon and Associates to undertake hydrogeological investigations to support the preparation of an EIS. As part of these investigations, Peter Dundon and Associates has engaged Aquaterra to develop a numerical groundwater flow model. The modelling studies are to investigate the potential impacts of the underground mining activity on the local aquifers and the surface water courses in the area, and Pambalong Nature Reserve and Hexham Swamp to the east. It will also be used to estimate potential water ingress into the underground workings during the life of the mine through vertical leakage.

The main **objectives** of the Abel Coal Groundwater Model are to:

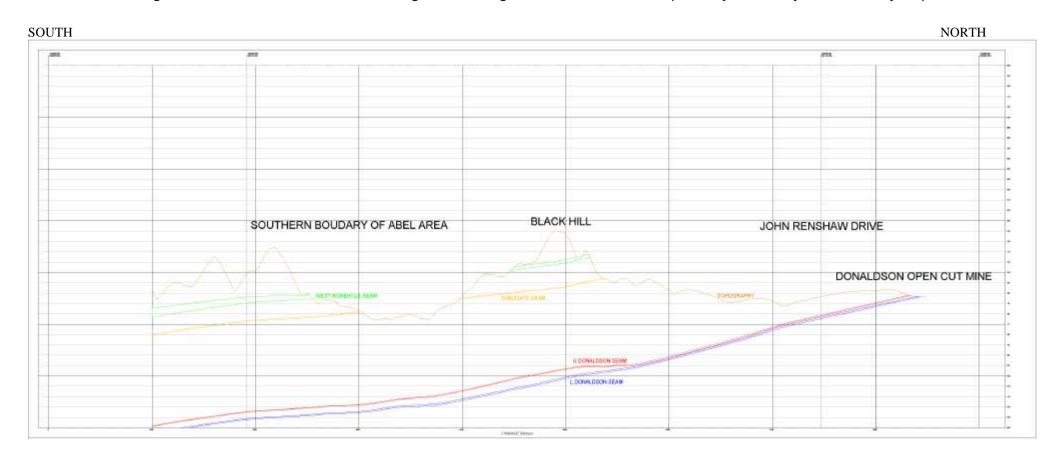
- (i) predict the potential impacts of the underground mining on groundwater levels in the area and on surface water resources, including Pambalong Nature Reserve and Hexham Swamp; and
- (ii) assess the potential inflow into the mine workings during operation.

The conceptual hydrogeological model for the area is based to a large degree on investigations undertaken by Peter Dundon and Associates and is summarized below.

2.1 GEOLOGY


The project area is underlain by Permian Tomago and Newcastle Coal Measures (Figure 2). The target coal seam of the proposed Abel mine is the Donaldson Seam, which divides into separate Upper and Lower units in the southern half of the lease. Sediments above and below the coal seams comprise predominantly interbedded mudstone, siltstone and sandstone. The strata dip generally towards the south and south-east, although the structure is complicated by the presence of faults (Figure 3).

Surface topography in the Abel project area ranges from less than 5 to more than 180 mAHD (Figure 5).


The West Borehole Seam is present only in the southern part of the Abel mining lease (Figure 4), and was the subject of previous mining. It is stratigraphically about 200m above the Donaldson Seam, on average 7.7 m thick, and crops out in the south-west of the project area. Due to the dip of the strata, the seam reaches depths of over 200 m below surface in the south of the study area, while it is absent due to erosion in the north (Figure 6).

The Upper and Lower Donaldson seams are on average 1.5 and 2.2 m thick, respectively. The seams are present throughout the proposed Abel mining area and crop out about 800 m north of the site. Due to the southerly dip, the seams reach depths of about -360 mAHD in the south of the study area (Figure 7 and Figure 8).

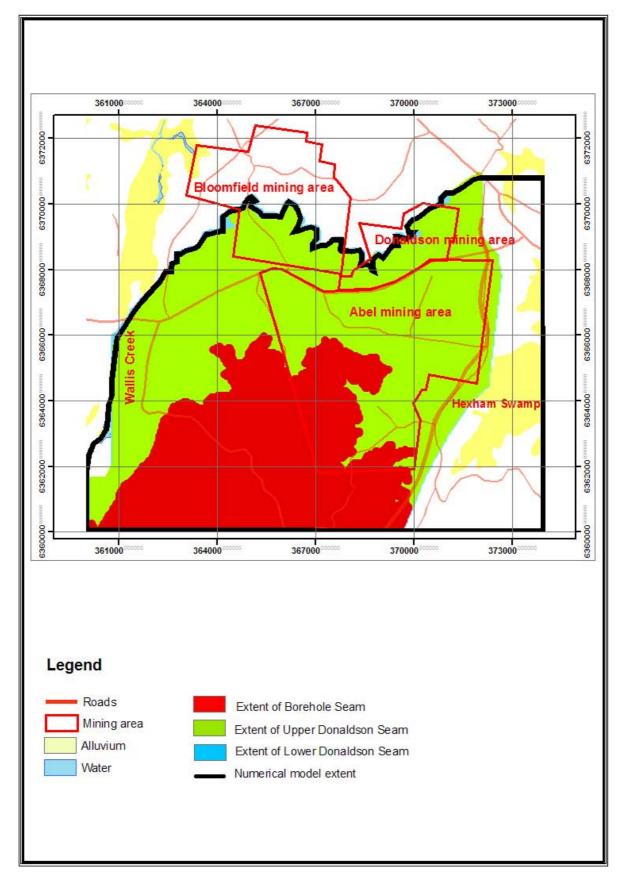

Around the Hexham Swamp and the floodplain of the Hunter River to the east of the site, the bedrock is overlain by Quaternary alluvial deposits including gravel, sand, silt and clay. To the west, alluvium also occurs along Wallis Creek.

Figure 2 Geological map of the study area

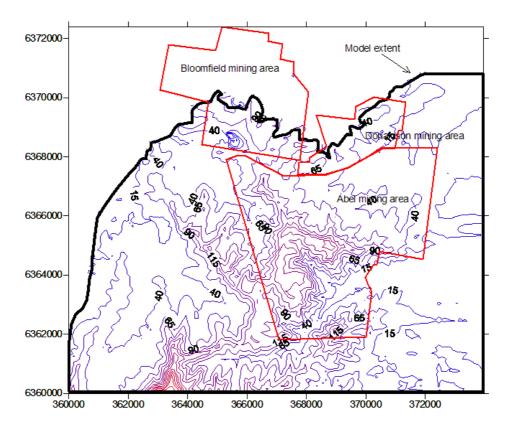


Figure 3 Cross section through Abel mining area from north to south (courtesy of Ellemby Resources Pty Ltd)

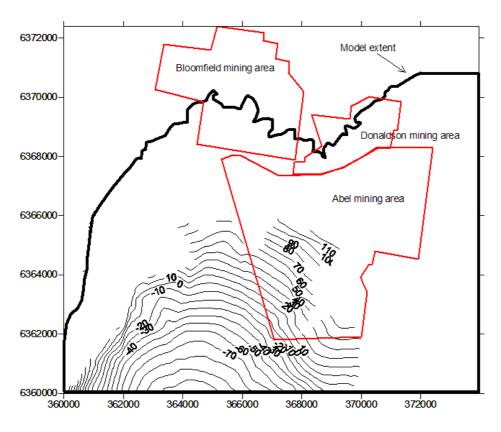
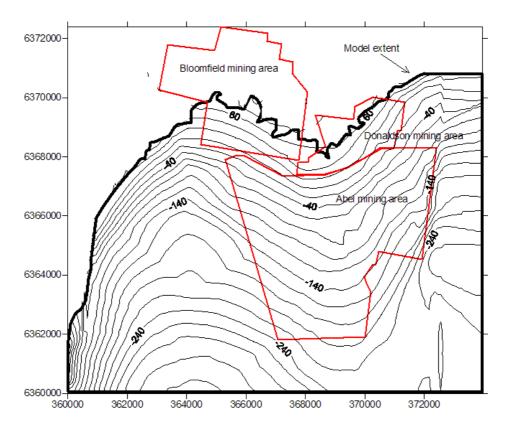
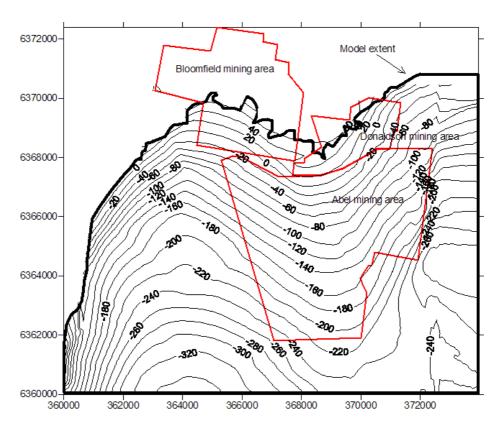
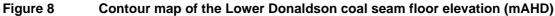


Figure 4 Extent of the West Borehole coal seam and the Lower and Upper Donaldson seams.


(Note: seams extend further to the East than indicated on the map, but data is not available for this area)





2.2 HYDROGEOLOGY

Overall, the coal measures are poorly permeable, but in the study area permeability is generally highest in the coal seams and areas of significant fracturing or faulting. The interbedded sandstone and siltstones are of lower permeability (by at least one order of magnitude) and offer very limited intergranular porosity and little secondary permeability and storage in joints.

Groundwater also occurs in the alluvium, which comprises mainly swamp, floodplain and estuarine sediments. Groundwater also occurs locally in the shallow weathered Permian, which extends to depths of 10-20 metres, and is more closely related hydrogeologically to the alluvium than to the deeper groundwater in the Permian coal measures. Groundwater levels measured in the alluvium and weathered Permian are quite variable, because the water levels are generally related to the local topographic elevations (eg C081B and C082 at low-lying sites; and C087, C078B and C072 at higher level sites - see Table 6). The alluvium around Pambalong Nature Reserve and Hexham Swamp is in hydraulic continuity with the swamp.

The potentiometric head within the Lower and Upper Donaldson Coal seams is regionally-controlled, shows a more consistent pattern across the project area, and is unrelated to the local topographic elevation. The deep piezometer C081A shows that the Donaldson seams at this site is fully artesian with a water level more than 20 metres above ground level¹, and 25 metres higher than the alluvium water level in the shallow piezometer C081B (Table 6). At more elevated sites, deeper piezometers show the groundwater levels to be up to 40m lower than the near-surface groundwater. Water levels within the coal measures show a progressive decline with depth.

The large head differences between the shallow groundwater and deeper Permian groundwater levels, and the presence of artesian groundwater in the Permian in low-lying areas, are both indications of limited hydraulic connectivity between the alluvium/weathered overburden and the deeper coal measures.

A summary of representative aquifer properties of the hydrogeological units in the study area is given in Table 1. These are based on limited hydraulic testing on the Abel site, supplemented by previous investigations in the Tasman and Donaldson mining areas, and experience in other parts of the Hunter Valley coalfields.

Units	Horizontal Hydraulic Conductivity (m/d)	Confined Storativity	Unconfined Specific Yield
Coal Seams	0.01 to 0.1	0.0001	0.01
Interburden (undisturbed)	0.001	0.00001	0.005
Interburden (disturbed through mining)	0.1 to 10	0.0001	0.01 to 0.05
Alluvium	5 to 1 m/d	0.0001	0.1

Table 1 Parameters of hydrogeological units

\\Aquaadldc01\at1\adelaide\jobs\A38_Abel\B1\600_Report\022e.docPage 9

¹ Water levels above ground surface in deeper piezometers generally occur only in low-lying areas, because the groundwater is confined, and is under pressure. The water level in a bore represents the groundwater pressure or head within the part of the aquifer that is screened, and the head is controlled by the elevation of the recharge zone for that horizon, usually some distance updip where that particular horizon outcrops.

In the unconfined alluvium or weathered bedrock aquifers, the water level represents the level of saturation. A bore water level at the same elevation as the ground surface would be accompanied by seepage or boggy conditions around the bore.

Horizontal hydraulic conductivities in the coal measures are believed to be at least 10 times the vertical hydraulic conductivities.

Groundwater within the coal measures is controlled by the recharge discharge process, with highest groundwater levels in the northern parts of the lease area where the coal measures outcrop. Groundwater levels generally fall to the south and south-east in the direction of groundwater flow downdip to the locations of primary discharge. There is believed to be a component of lateral flow in the Coal Measures out of the model area over the southern and eastern boundaries. The rate of flow across the model boundaries is believed to be limited due to the substantial burial of the coal seams under extensive cover of overburden material (several hundred metres thick).

Data on water levels within the Abel mining lease area is summarised in Section 4. Additional water level records are available for the area around the Donaldson Mining lease just to the north of the Abel mining area. The data indicates the influence of dewatering in the Donaldson Mine area with a cone of depression located to the north of John Renshaw Drive (see Section 4).

2.3 RECHARGE

Long term records of rainfall data are available for the station at the East Maitland Bowling Club (32.7483S, 151.5833E; about 10 km NNE of the Abel mining area). Table 2 lists the mean monthly and annual rainfall, based on more than 100 years of daily rainfall data since 1902.

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Mean (mm)	89.0	94.1	96.5	87.4	70.3	84.2	58.1	52.2	54.8	65.5	61.6	81.3	895.0

Table 2 Mean monthly rainfall at East Maitland Bowling Club

Rainfall recharge occurs to both the coal seams where at outcrop, and to the surficial alluvium/weathered Permian aquifer system. The alluvial aquifers are believed to be in hydraulic continuity with Pambalong Nature Reserve and Hexham Swamp in the east, and with Wallis Creek to the west of the Abel mining area. During periods of high stream flow, surface water courses are likely to contribute to recharge to these alluvial aquifers. However, stream flows from rainfall runoff are reported to be short-lived after rainfall events.

The coal seams are recharged in areas of outcrop and shallow subcrop by direct infiltration of rainfall. Where covered by overburden, the coal seams are recharged primarily by lateral flow down-gradient from the outcrop areas, possibly also with a smaller component of downward percolation through the less permeable overlying sediments.

Rainfall recharge rates within the hard rock outcrop area are believed to be relatively low (i.e. below 10 mm/yr). However, where alluvial deposits occur, recharge rates may be as high as 100 mm/yr. Rainfall recharge occurs in practice as an intermittent process, related to specific larger rainfall events. However, for the steady-state ("long term average") groundwater model, rainfall recharge has been modelled by applying constant assumed effective recharge rates to the alluvium and hard-rock areas, rather than a time-dependent recharge mechanism. If, at a later stage the model is upgraded with transient (time-varying)

history-match capability, the recharge rate may be varied according to the seasonal change in rainfall and evaporation.

2.4 GROUNDWATER DISCHARGE

In outcrop or shallow subcrop areas, groundwater discharge from the coal measures can occur through evaporation, seepage and spring flow where the water table intersects the land surface, and through baseflow contributions to creeks, rivers and the Hexham Swamp, including discharge to the alluvium where it occurs. Away from outcrop, discharge from the coal measures occurs by slow down-dip flow along bedding or other zones of enhanced permeability to the south and south-east to areas where the groundwater heads are lower, with ultimate discharge probably to the ocean.

Groundwater discharge from the alluvium and shallow weathered bedrock can occur by evapotranspiration, seepage and discharge to creeks or to the wetlands of Pambalong Nature Reserve and Hexham Swamp.

Due to the high groundwater salinity and low bore yields, there is almost no existing groundwater abstraction in the study area other than for coal mine dewatering (Donaldson, Bloomfield, etc).

Average A Class pan evaporation data is available for Cessnock (32.8093S 151.3490E, about 20 km WNW of Abel mining area) and Paterson, and provide the closest data to the Abel mining area. Table 3 summarises mean monthly evaporation rates, based on a 34 year period.

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Cessnock	5.7	5.0	4.0	3.0	2.0	1.6	1.8	2.6	3.6	4.4	5.2	5.9
Paterson	6.0	5.2	4.2	3.4	2.4	2.2	2.5	3.4	4.4	5.2	5.9	7.0

Table 3 Mean daily evaporation data for Cessnock and Paterson Stations (mm)

The data presented in Table 2 and Table 3 indicates that evaporation exceeds mean monthly rainfall during the summer period, while it is comparable or slightly above rainfall during winter. If the model were upgraded for transient (history match) calibration, then it would be appropriate to specify recharge as a seasonal process.

Evaporation is included in the model using the Evapotranspiration (EVT) package of MODFLOW. The EVT parameter values adopted were a constant rate of 250 mm/yr and an extinction depth of 5 m, which allows E_T to be active in areas of shallow water table, such as in areas of low topography along surface water courses such as Wallis Creek and the Hexham Swamp area.

2.5 SURFACE DRAINAGE

The land surface within the Abel mining lease area is located within the lower section of the Hunter River catchment and consists of low undulating hills. There are several surface water catchments in the study area, with associated creeks being generally ephemeral, with the possible exception of Wallis Creek to the west.

The western part of the Abel mining area lies within the Buttai Creek Catchment, which drains westwards into Wallis Creek and then into Hunter River east of Maitland. Wallis Creek is characterized by substantial alluvial deposits developed along the river bed. Such deposits are also present in the east, around Hexham Swamp, which is partly tidal, and which also receives drainage from the Long Gully/Blue Gum Creek catchment from the southern part of the study area. A ridgeline associated with Black Hill running east-west through the proposed underground mine lease area results in drainage directed to the north and north-east from this ridgeline via the Weakleys Flat Creek, Viney Creek and Four Mile Creek catchments to the Hunter River.

The numerical model incorporates river/aquifer interactions, to enable quantification of the impacts of groundwater pumping on surface water features. This is important to assess whether mining is likely to lower water levels and reduce baseflow to permanent streams, although it should be noted that the streams in the Abel project area are mainly ephemeral because baseflow support is relatively short, and extensive periods of no flow occur naturally.

2.6 ESTIMATE OF DRAINAGE INTO MINE WORKINGS USING ANALYTICAL SOLUTIONS

One aim of the modelling study at Abel is to estimate likely seepage rates from the overlying interburden into the Abel underground workings over the life of the mine. Underground mining and dewatering activity will be represented in the model using drain cells within the mined coal seams (Layer 6, see Section 4). Drain cells will be emplaced where workings occur and progress in accordance to the mine plan requiring a transient model set-up. At the same time, the aquifer properties of the interburden above the workings (Layer 5, see Section 4) will change with time to reflect the increased permeability of goaf zones. The drain conductance should reflect the resistance to flow between the interburden material and the mine void. This is a critical model parameter which determines the simulated seepage inflow into the workings will be calculated on the basis of analytical methods to support the selection of drain conductances in the numerical model.

A commonly used analytical method of predicting seepage into open voids (such as tunnels) is the method of Goodman et al. (1965). It is an approximate formula based on theory modified by laboratory experimental results, and predicts groundwater inflow into a drained tunnel based on several simplifying assumptions :

- homogeneous and isotropic permeability
- steady flow
- circular tunnel cross section, held at constant hydraulic potential

These simplifications are in most cases not met entirely, however, the obtained solutions are still valuable for rough estimations. Also, the high level of uncertainty with respect to the highly non-homogenous distribution of hydraulic conductivity in the subsurface does not allow for anything more than a rough estimation of seepage. Nevertheless, the solution will serve as a first approximation, but should be regarded as an upper limit.

The equation proposed by Goodman et al., (1965) for calculation of groundwater inflow during tunnel driving is:

$$q = \frac{1}{\sqrt{t}} \sqrt{\frac{KH^3 Sy}{3}}$$

where: $q = inflow [m^{3}/day]$, t = time [day], K = hydraulic conductivity [m/day], H = depth of void below initialwater table [m], Sy = specific yield.

Table 4 presents the long-term leakage rates per metre length of mine opening for a range of aquifer parameters, which also highlights the sensitivity of the seepage calculation to aquifer properties. Figure 9 presents the results in graphical format for varying length of the underground workings. The results indicate that seepage into the workings is likely to be in the order of 0.0024 m³/day per metre length of workings for a Kv of 0.0001 m/d, given the generally deep burial and the consequent likely low permeability of the interburden through which leakage may occur. If highly conductive geologic formations (eg faults or fracture zones) are encountered during mining they could produce inflows greater than the predicted values. There are no infinitely large sources of water, such as a lake, over the proposed mine. Accordingly, the only longterm source of water is likely to be infiltration of precipitation.

For the purpose of the numerical modelling, a leakage rate in the order of 0.0024 m³/d, corresponding to an assumed interburden permeability of 0.0001 m/d, will serve as a guide on the to expected seepage volumes. Accordingly, a leakage volume of about 9.6 ML/day can be calculated for the entire Abel underground mine area. This is regarded as an upper limit, or worst-case scenario for full drainage of the overlying bedrock.

		parameters		
Kv interburden [m/d]	Sy	Depth of mine below water table [m]	Seepage [m ³ /d]	Seepage [L/s]
0.01	0.005	50	0.0239	0.000277

Table 4 Long term seepage rates per metre length of mine workings for a range of aquifer narameters

[m/d]	Sy	water table [m]	Seepage [m ³ /d]	Seepage [L/s]
0.01	0.005	50	0.0239	0.000277
0.001	0.005	50	0.0076	0.000087
0.0001	0.005	50	0.0024	0.000028
0.00001	0.005	50	0.0008	0.000009
0.000001	0.005	50	0.0002	0.000003

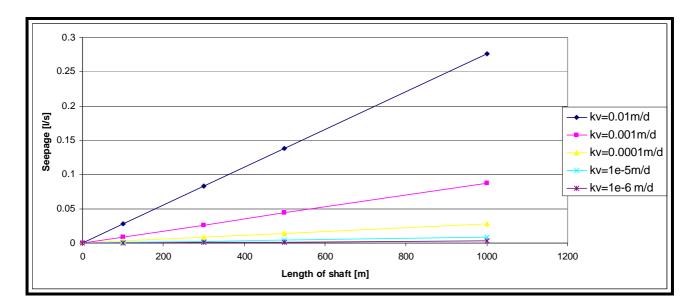


Figure 9 Long term seepage rates for various length of mine workings and various aquifer parameters.

3.1 MODEL SELECTION AND COMPLEXITY

The MODFLOW numerical groundwater flow modelling package has been used for this study, operating under the Processing Modflow for Windows software package (IES), and also the Vistas software package (ESI).

The MODFLOW numerical code is adequate for this study, particularly due to its industry-leading modules for simulating surface water and groundwater interaction. Perhaps as importantly for future capabilities, there have been recent advances in the development of other modules. Already available modules include a package for density-coupled flow (SEAWAT), in case density (salinity) effects may (eventually) become significant in the case of the mine post-closure. MODHMS is a module with which saturated/unsaturated flow conditions can be simulated which could become important for the simulation of unsaturated underground workings in surrounding saturated rock.

The degree of model complexity required to accomplish the study objectives is a key issue (MDBC, 2001). In this case, a **medium complexity model** was required for impact assessment purposes and to support the feasibility and bankability aspects of the Abel project.

The hydrogeological investigations (including modelling) were also undertaken with reference to the 'Guidelines for Management of Stream/Aquifer Systems in Coal Mining Developments – Hunter Region' (DNR, April 2005), with the model developed in accordance with the best practice guidelines on groundwater flow modelling (MDBC, 2001). The Dept of Planning report on *Coal Mining Potential in the Upper Hunter Valley - Strategic Assessment* (October 2005) has also influenced the methodologies applied to these investigations.

3.2 MODEL EXTENT, BOUNDARIES, LAYERS AND GRID

The model area of about 120 km² is shown in Figure 4. It includes the Abel mining area and extends to the north and west as far as the outcrop line of the Lower Donaldson seam, which is represented using a no-flow boundary. The southern boundary has been set at Northing 6,360,000, about 1.8 km south of the Abel mining area. At this latitude, the coal seam aquifers are under considerable overburden: the lower Donaldson seam occurs at a depth of about 240 m below surface in the west, increasing to over 400 m depth towards the east. The depth of the coal seam aquifer units along this boundary warrants that only limited flow occurs across it. Additionally, it has been set far enough south to avoid any interference with the mining activities to be simulated in the Abel mining area to the north. This boundary will be represented numerically using a head-dependent flux (using Modflow's General Head Boundary "GHB" package), with water level set to observed heads.

In model layers representing the coal seams and interburden material, the eastern boundary is represented using GHB cells, as some groundwater flow may occur across the boundary towards the sea. This flow however is believed to be minimal with seams buried under more than 200 m of overburden at this location.

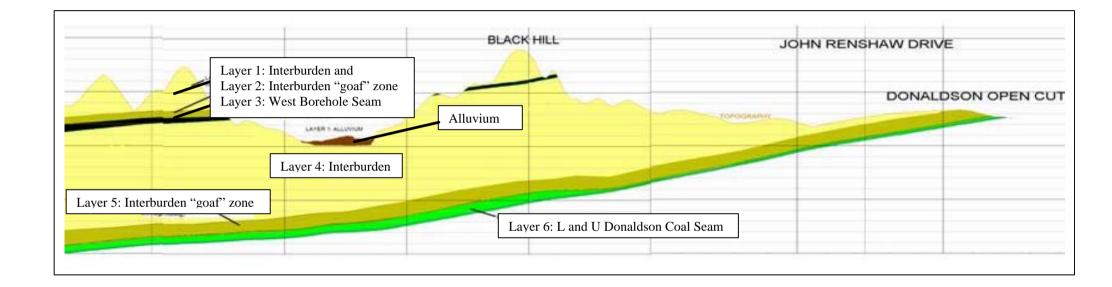
The eastern model boundary is located within the Hexham Swamp at Easting 374,000, about 2 km east of the F3 Freeway. The Hexham Swamp area will be represented using river cells, allowing water to flow into and leak out of the swamp according to the difference in heads in the aquifer and swamp.

For the steady state model, Wallis Creek is represented using river cells to allow for stream-aquifer interaction due to leakage from the creek and/or baseflow from the alluvial aquifer. Smaller creeks, where flow is known to occur only through minor baseflow and after rainfall events, are represented using drain cells to allow for the predominant process of groundwater discharge (baseflow) to these minor streams. Such creeks included in the numerical model are: Buttai Creek, Blue Gum Creek, Weakleys Flat Creek, Viney Creek and Four Mile Creek. The representation of surface watercourses may be revised during future modelling work when more data on their interaction with the groundwater system becomes available.

The cell size throughout the model is uniform at 100m by 100m, however further grid refinement is possible at any time. A total of 109 rows and 140 columns are used.

The hydrogeological model can be represented numerically with a 6 layer model (Figure 10), where coal seams and interburden are represented independently. Alluvial deposits are not represented as a specific layer but are included in layers 1 to 6 according to their location and surface elevation.

Summary of model layers:


- Layer 1: Interburden (to represent the undisturbed interburden)
- Layer 2: Interburden (to represent the disturbed "goaf" interburden section after mining)
- Layer 3: West Borehole Coal Seam
- Layer 4: Interburden (to represent the undisturbed interburden)
- Layer 5: Interburden (to represent the disturbed "goaf" interburden section after mining)
- Layer 6: Upper and Lower Donaldson Seam including the narrow interburden between the seams.

The interburden above coal seams is to be divided into two parts. The basal unit, a "goaf" zone of about 50 metres thickness above the coal seams, represents the interburden where subsidence during and after mining may result in increased vertical and horizontal hydraulic conductivity. The remaining part represents the undisturbed interburden sediments. As the Lower and Upper Donaldson Seams are separated by a thin interburden layer of only 10.7 m average thickness and are believed to act as one hydrogeological unit, they are represented by one model layer.

Underground mining and dewatering activity will be represented in the model using drain cells within the mined coal seams (Layer 6). These will be emplaced where workings occur and progress in accordance to the mine plan requiring a transient model set-up. For the post-mining recovery model run, aquifer properties of the interburden above the mine workings (Layer 5) will be changed to reflect the increased permeability of goaf zones. For the dewatering predictions, aquifer parameters will not change with time.

Given the current hydrogeological knowledge, using drain cells to model the underground development progressively down-dip is believed to adequately represent the flow processes. Future modelling should seek to refine the approach, perhaps using Modflow-Surfact to represent the dewatering conditions with more detail. The drain conductance should reflect the resistance to flow between the interburden material and the mined-out seam. This is a critical model parameter which determines the simulated seepage inflow into the workings and care needs to be taken to select appropriate permeabilities. Leakage rates into the workings will be compared to the results of analytical methods (see Section 2.6) to support the selection of drain conductances in the numerical model.

Figure 10 Model layers in the Abel model

4.1 CALIBRATION APPROACH

The groundwater model will be set up and run initially in steady state mode. Calibration will be based on the available water level data matching what is deemed to be a long term average water table level. No long term transient water level records are available, and at this stage, transient model calibration is not possible due to the lack of detailed time series data.

Model calibration performance will be demonstrated in quantitative (head value matches) and qualitative (pattern-matching) terms, by:

- contour plans of modelled head, with posted spot heights of measured head
- hydrographs of the water balance components
- scatter plots of modelled versus measured head, and the associated statistical measure of the scaled root mean square (SRMS) value.

The scaled RMS value is the RMS error term divided by the range of heads across the site and it forms the major quantitative performance indicator. Given uncertainties in the overall water balance volumes (eg it is difficult to directly measure evaporation and baseflow into the creeks), it is proposed that a 10% scaled RMS value would be an appropriate target for this project, with an ideal target for long term model refinement suggested as 5% or lower. This approach is consistent with the Australian best practice groundwater modelling guideline (MDBC, 2001).

Having achieved acceptable calibration of the model, the model will be used for predictive transient modelling (Section 6) to assess the impact of progressive underground mining on the water balance in the study area. Particular interest will be placed on the regional change in groundwater levels during mining and after mine closure, on changes in flows to surface water courses, including Pambalong Nature Reserve and Hexham Swamp, and on the potential water ingress into the mine workings through vertical leakage during the life of the mine.

4.2 CALIBRATION POINTS

There are several observation boreholes covering different depths within the geological profile available from the Donaldson Mine area which fall within the Abel groundwater model area. Boreholes, which have not been lost to mining and are within the model area have been used for model calibration. As the model includes the Donaldson and Bloomfield mining operations, calibration was based on the current water levels, i.e. mining water levels. Where water levels are available from various depths at the same location, but fall within one model layer, the longest records of water levels were used. Table 5 and Table 6 summarise the bores used for model calibration, with their location shown in Figure 11.

The vertical hydraulic gradients within the same geological unit, as seen from some of the piezometer readings, cannot be represented in the model due to the vertical discretisation being restricted to one to two model layers per geological unit. Bore C063 was discarded, as the reported water levels below sea level appear erroneous. Bores C078B, C087, C072B, and C082 represent water levels in the shallow weathered Permian (pers. comm. Peter Dundon), a unit not explicitly represented in the model. Bore C081B represents the water level in the alluvium close to Pambalong Nature Reserve.

No long term water levels are available for those bores.

In total, the model is calibrated using 17 piezometer points and in addition the match between the simulated water table and the observed water table map can be assessed at Figure 12.

Table 5 Existing observation points around the Donaldson Mining area

Name	Surface Level (mAHD)	Depth of Piezo (m)	Level of Base of Piezo (mAHD)	Average water level (mAHD)	Typical level before mining (mAHD)	Typical current level (ie mining- influenced) (mAHD)	Number of records
DPZ2	22.27	27.8	-5.53	4.97	5.0	7.0	11
DPZ4B*					12.4	-6.9	
DPZ5	12.77	18	-5.23	6.39	6.9	6.0	60
DPZ7@50*	55.4	41	37.4	32.60	33.9	31.9	59
DPZ8*	51.75	32.2	19.55	27.44	27.4	26.5	62
DPZ9*	36.36	36.5	-0.14	17.02	18.9	4.2	68
DPZ10	19.81	29.8	-9.99	7.00	8.6	6.0	61
DPZ13	21.48	30	-8.52	14.13	14.5	14.2	62
DPZ17@62*	15.25			-4.26	12.7	-3.0	46

(location of bores is shown in Figure 11)

* = Water levels of the Lower and Upper Donaldson coal seam

Table 6 Piezometers in the Abel mining lease area

Bore_Name	Easting	Northing	Average WL (mAHD)	Min WL (mAHD)	Max WL (mAHD)	Screen (mAHD)	Penetrated geol. unit
C062A(SP)	370143	6366248	24.69	24.45	25.00	124-118	UD seam
C062B(SP)	370143	6366248	31.84	31.30	32.00	87-81	Interburden above UD
C063A(VW) ²⁾	372109	6366193	-5.47	-6.00	-3.04	197	Below LD seam
C063B(VW) ²⁾	372109	6366193	-2.08	-4.51	+3.21	128	Interburden above UD
C072A(SP)	369919	6362569	24.25	21.73	27.00	168	Interburden above UD
C072B(SP) ¹⁾	369911	6362570	50.51	50.01	51.00	45-42	Colluvium/weathered Permian
C072(VW)	369927	6362562	17.46	14.12	20.13	264	LD and UD seam
C078A(SP)	367140	6367054	29.22	28.44	30.00	99-96 and 90- 87	LD and UD seam
C078B(SP) ¹⁾	367140	6367054	67.60	67.48	67.72	24-18	Colluvium/weathered Permian
C080(VW)	368040	6365176	28.29	28.03	28.56	280	LD seam
C081A(VW)	369992	6364001	26.07	25.96	26.18	155	Base of LD seam
C081B(SP)	369992	6364001	1.84	1.65	2.02	20-14	Alluvium - Pambalong Nature Reserve
C082(SP) ¹⁾	370319	6364647	20.66	18.70	22.61	20-14	Colluvium/weathered Permian
C087(SP) ¹⁾	367187	6367079	63.46	63.46	63.46	18.3-12.3	Colluvium/weathered Permian

(location of bores is shown in Figure 11)

¹⁾ discarded for purpose of model calibration as water levels represent shallow, possibly perched water table in the shallow colluvium/weathered Permian, a unit not explicitly represented in the model; ²⁾ discarded for purpose of model calibration as water levels appear erroneous.

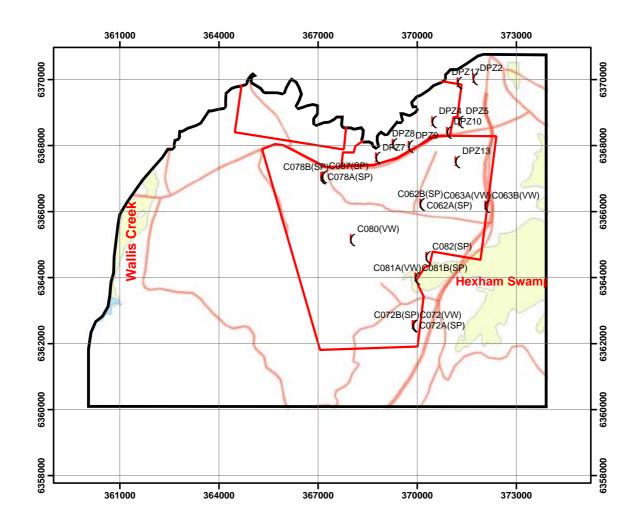
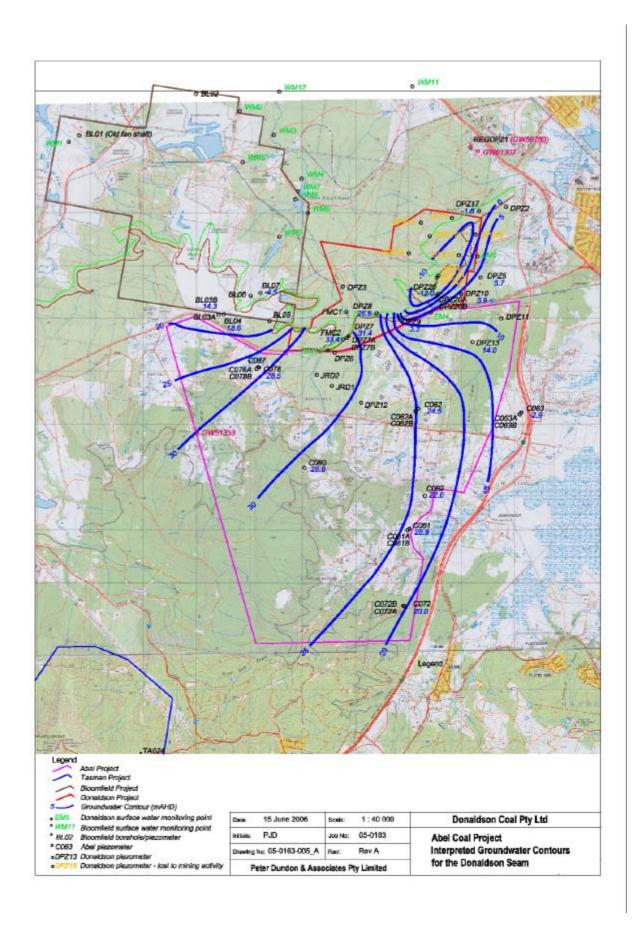



Figure 11 Location of calibration points within the model area

Figure 12 Sketch of water levels in the Lower and Upper Donaldson Coal seam (courtesy of Peter Dundon)

The Abel groundwater model was run firstly in steady-state ("long term average") mode. Pre-mining conditions were simulated for the Abel mining lease area, while Donaldson mine dewatering was included using drain cells north of the John Renshaw Drive.

Parameters of the steady-state model run after calibration are detailed in Table 7 and are graphed in Appendix A. The calibrated model has a scaled RMS error of 6.07% (Table 9) and simulated water levels fit the observed pattern well (Figure 13 and Figure 14). Figure 14 and Figure 15 show the simulated water levels for the Lower and Upper Donaldson Coal seam and the interburden above the coal. The model simulates a vertical hydraulic gradient from higher to lower model layers within the coal and interburden layers, with lowest water levels being measured in the Donaldson coal seam. Water levels in the vicinity of Pambalong Nature Reserve are simulated to be around 1 to 5 mAHD (C081B observed: 1.84mAHD), being perched and with very limited hydraulic connectivity to the layers below. However, the simulated water table in the swamp is sensitive to the underlying vertical hydraulic conductivity. In general, the model has been calibrated to reflect the observed vertical hydraulic gradient by varying the vertical hydraulic conductivity. Data on the vertical head gradients cannot be verified by field data. However, the simulated head gradient around the swamp is consistent with the head differences observed at other locations in the model area.

The steady-state water balance is summarised in Table 8. The main inflow component to the model area is recharge, with most water being lost to the rivers and creeks and some groundwater also discharging over the model boundaries towards the south and south-east. Discharge due to mining at Bloomfield and Donaldson mines is simulated to be around 150 m³/d. The modelled groundwater discharge into Donaldson mine amounts to about 70 m³/d, which is slightly lower, but comparable to the estimated discharge volumes from Donaldson mine at 2002 of 160 m³/d (Hughes Trueman and Dundon, 2003). An exact match is not attempted, as the discharge rate at 2002 (i.e. 160 m³/d) is not measured, but estimated roughly on the basis of total hours of pumping and the rated capacity of the pump, with some allowance made for surface water inflows. It is not possible to apply a high level of confidence to the calculated inflow rate, however it is the best information available and the model is able to simulate inflow rates in the same order of magnitude.

Table 7	Abel Model	parameters after	calibration
---------	------------	------------------	-------------

Layer	Geological unit	Kh [m/d]	Kv [m/d]	Confined S*	Unconfined Sy*
1	Interburden above WB seam (undisturbed)	0.001	0.0001	0.00001	0.005
2	Interburden above WB seam (undisturbed)	0.001	0.0001	0.00001	0.005
3	WB seam/Alluvium	0.15 Alluvium = 6.0	0.001 Alluvium= 0.0005	0.0001	0.01 Alluvium = 0.1
4	Interburden above LD/UD seam (undisturbed)	Under confinement: 0.001 At outcrop/Under Alluvium: 0.0005 - 0.01	0.0001 under swamp: 0.00001	0.00001	0.005
5	Interburden above LD/UD seam (undisturbed)	0.001 At outcrop : 0.005	0.00005	0.00001	0.005
6	LD/UD seam	0.1 – 0.001	0.001	0.0001	0.01

* only applicable for the transient model runs

Recharge was applied at rates of 1.5 to 3 mm/yr generally, except for the alluvium areas, which received 100mm/yr. Evapotranspiration is active in low lying areas such as around creeks and the swamp area to the east and operates at maximum rates of 250 mm/yr.

Due to limited data on pumping rates and schedules in the Bloomfield and Donaldson mine areas, the impact of these operations on the water table has been simulated in a simplistic way, using drain cells set to observed water levels in the area.

	Recharge	ET	Drains (dewatering @ Donaldson/Bloomfield and flow into creeks)	River flows (Wallis Creek and Hexham Swamp)	
Inflows into model [m³/d]	1785	-	-	16.4	8.45
Outflows [m ³ /d]	-	22	149	1402	236

Table 8	Steady	state wat	er balance	[m ³ /d]
1 4 5 1 5 5	0.0000	otato mat	or salanoo	[,∞]

····· · ··· · ···· · ·················			
CALIBRATION PARAMETE	VALUE		
Sum of Residuals	SR		m
Scaled Mean Sum of Residuals	SMSR	-0.31	%
Root Mean Square	RMS	2.57	m
Scaled RMS	SRMS	6.07	%
Root Mean Fraction Square	RMFS	53.58	%
Scaled RMFS	SRMFS	21.41	%
Coefficient of Determination	CD	0.95	

Table 9 Steady state model statistics

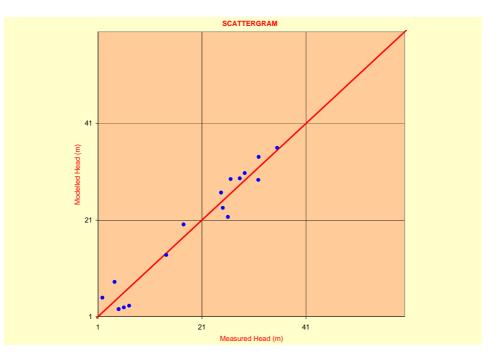


Figure 13 Observed vs. simulated water levels

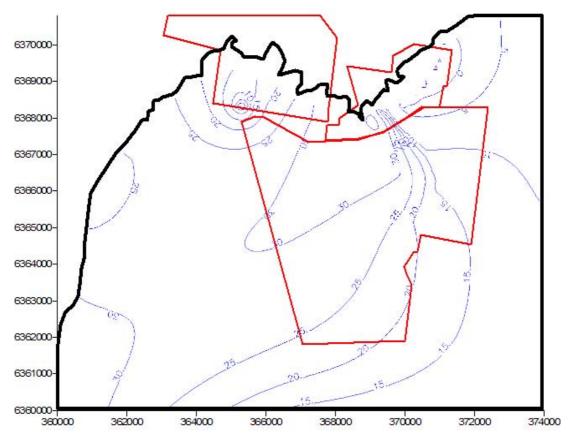


Figure 14

Water level map for the LD/UD coal layer (Layer 6)

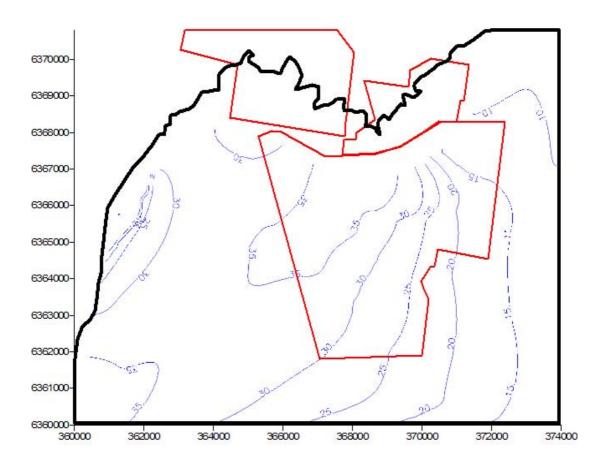


Figure 15 Water level map for the interburden above the Donaldson Coal seam (Layer 4)

6.1 SET UP OF DEWATERING PREDICTION MODEL

Having achieved calibration of the model in steady-state mode, the Abel groundwater model was applied to prediction simulations of mining actions from 2007 onwards as envisaged by the Abel mine plan (Figure 16).

The transient dewatering model comprises 11 stress periods. The duration and start and end date of each stress period are detailed in Table 10. At 2027 a post mining recovery model run is set up to simulate the recovery of the water levels after mining operations have ceased.

Underground mining and dewatering activity is represented in the dewatering model using drain cells within the mined coal seam (Layer 6). These are emplaced where workings occur and progress in accordance to the mine plan. The available mine schedule summarises mine progress within two year time steps, which has been replicated in the model by applying stress periods of 730 days length. Panels are assumed to be excavated instantly at the start of each stress period. This is a simplification of the actual mining progress, which is continuous rather than step-wise, and may lead to a slight overestimate of the actual drainage volumes, as model cells are "mined" in advance of what will occur in reality. The drain conductivity has been set to double the Kv of the overlying interburden (i.e. resulting in a drain conductance of 0.01 m²/d) in the actively mined area. This changes to a 5 times higher drain conductance (i.e. 0.05 m²/d) for already mined out areas, to reflect the increased permeability of "goaf" zones above the mine workings (Layer 5) have been changed to reflect the increased permeability of "goaf" zones, while drain cells are switched off (Table 11).

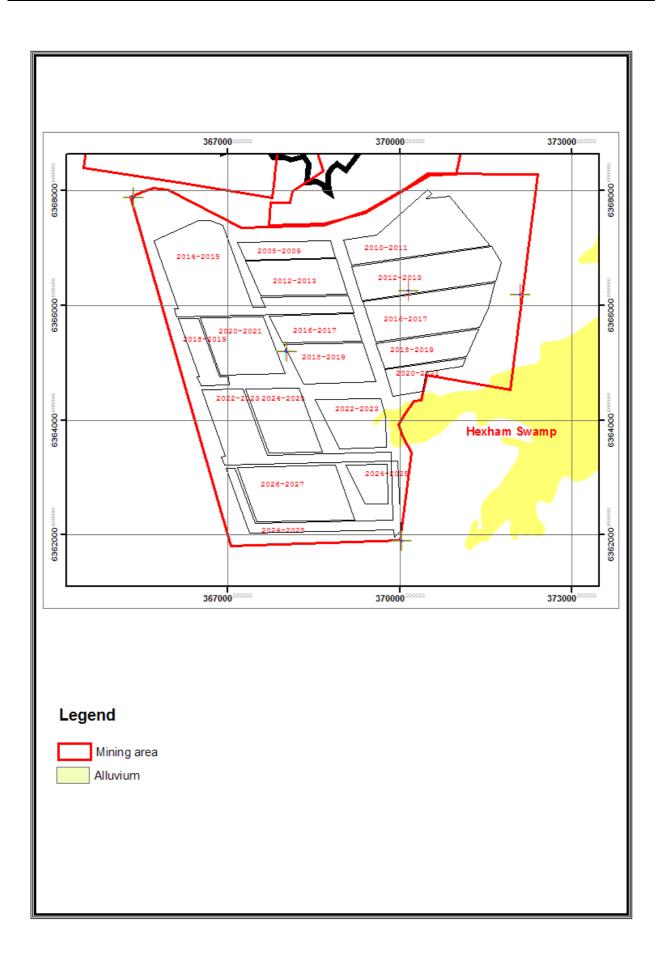

Stress period	Time	Features implemented in the model
1*	Jan 2007 – Dec 2007	The drop-cut is being introduced north of the John Renshaw Drive and progressively deepened to base of coal.
2*	Jan 2008 – Dec 2009	Underground mining in Abel. Open cut mining in Donaldson progresses towards Abel portal
3*	Jan 2010 – Dec 2011	Underground mining in Abel. Open cut mining in Donaldson progresses towards Abel portal
4*	Jan 2012 – Dec 2013	Underground mining in Abel. Open cut mining in Donaldson has progressed to Abel portal and then ceases
5 to 11*	Jan 2014 – Dec 2027	Underground mining in Abel progresses down-dip according to mine plan

 Table 10
 Stress period set-up of the dewatering run

* All stress periods are divided into 200 time steps

Table 11	Set-up of the dewatering and recovery models
	oct-up of the dewatering and recovery models

Layer		Dewatering run	Recovery run
1 to 4	Interburden, Alluvium and West Borehole seam and undisturbed interburden above LD/UD	No change to steady state model	No change to steady state model
5	Interburden above LD/UD seam (disturbed)	No change to steady state model	Aquifer parameters changed to reflect disturbed interburden (i.e. Kh, Kv times 100)
6	LD/UD seam	Introduction of drain cells in accordance with the mine plan. Drain conductance in actively mined area: 0.01 m ² /d, in mined-out areas: 0.05m ² /d	No change to steady state model. Drain cells are switched off.

Figure 16 Mine plan for the Abel mining lease area

6.2 RESULTS OF PREDICTION MODEL AND RECOVERY MODEL RUNS

The results of the dewatering run are presented in form of piezometric head maps in Figure 17 and Figure 18 for the year 2027 (i.e. end of mining). A complete set of water table maps from 2008 onwards is presented in Appendix B. Selected hydrographs (C072, C080, C082, C081a, C081b, C062b, see Figure 11 for location) are shown in Figure 19, while the seepage rates in the mine workings over time are shown in Figure 20. The water balance over time for the entire dewatering model is summarised in Table 12 and shown in Figure 21.

Seepage into the mine works starts at 2008 and increases with the progressively enlarged underground mine area (Figure 20). By 2027, at the largest extent of the mine, a seepage rate of 3100 m³/d is predicted to enter the mine workings. Accordingly, the cumulative seepage volume increases with time from zero to 11.6x10³ ML at 2027. This is accompanied by a drawdown in hydraulic heads in the coal layer of about 60 metres at the fringes of the mining lease, increasing to a maximum of about 120 metres in the centre of the area. Figure 18 shows the influence of the mining operations on the undisturbed interburden above the Donaldson seam (model layer 4). While a cone of depression is clearly present in year 2027, drawdowns in this formation are much less significant with a maximum decline in heads of about 30 metres (i.e. -10mAHD). Hydrograph C081b (Figure 19) demonstrates the impact of the underground mine on the water levels in the alluvium around Hexham Swamp in the East. There is an insignificant decline in predicted water levels for the swamp, which remains at about 10 cm at 2027.

Following on from the dewatering model, the recovery of the water table after mining ceases (i.e. after 2027) was simulated over a period of 60 years (Figure 22 and Figure 23). Hydrographs show the recovery of heads in the mining lease area with the sharpest adjustment recorded in the coal layer within the first few years after mining closure. Pressure heads above the Donaldson Coal recover to within 80% of the premining level after 6 years of recovery. Undisturbed interburden water levels show a much slower recovery due to their low permeabilities and show an apparent incomplete recovery. This is caused by the introduction of "goaf" zone aquifer parameters at the beginning of the recovery model run. The 100 times higher aquifer permeabilities in the disturbed interburden material forces a reduction in heads. The same reason causes a temporary artificial reduction in water levels in the first 3 years in observation bores penetrating the interburden material.

The water balance flow volumes also show a return to pre-mining levels. Inflow over the model boundaries reduces by 80% in the first 6 years while outflow over the model boundaries increases and approaches premining levels at the end of the recovery model run.

It should be noted that this is a predictive modelling exercise. Due to limited observation data in the Abel area, there is considerable uncertainty about the behaviour of the aquifer under stress induced through mining. Results are based on the best available data at present, however, they cannot be robustly verified at this stage and hence predicted seepage rates and drawdowns should be used with caution. When transient observation data becomes available on the decline of water levels at the start of the underground mining, model results should be compared to observed data and, if necessary, the model adjusted accordingly.

Due to the degree of uncertainty, sensitivity analysis was carried out on the dewatering model and this is reported in Section 6.3, to derive the "likely range" of seepage rates for the mine workings over time.

It is also pointed out that, during the dewatering simulation, the cone of depression caused by the mining activity encroaches on the model boundaries. This is not ideal, as models should preferably extend beyond the zone of influence of any aquifer stresses to avoid boundary interference effects. However, the model was properly restricted to the area of detailed geological information. To reduce boundary effects in the chosen model area, the model design involved general-head boundaries, which were implemented to allow inflow and outflow over the model boundaries in response to changes in piezometric heads. This approach is believed to be adequate given the lack of information on layer geometry and heads on a more regional scale and ensures that the current model boundaries minimise any effect on model results. Ellemby Resources have committed to future modelling studies, in which an enlarged model domain is envisaged, comprising all mining operations, i.e. Bloomfield, Donaldson, Abel and Tasman, which should address the current limitation on model boundary locations.

	Model Water Balance Inputs (m^3/d)					N	Model Water Balance Outputs (m ³ /d)						
	Release from Storage	River discharge to the aquifer	Flow across boundaries	Recharge	Total in	Replenishm ent of storage	River/creek/ swamp baseflow	E	Flow across boundaries	Abel dewatering	Bloomfield/ Donaldson dewatering	Total out	% Errors
31/12/08	71	16.4	18.7	1784	1890	18.0	1446	22.1	216	19.7	140	1862	0.01
31/12/09	61	16.4	18.7	1784	1880	12.6	1442	22.1	216	19.5	139	1851	0.01
31/12/10	165	16.4	19.6	1784	1985	43.8	1424	22.0	208	175	88.9	1961	0.01
31/12/11	153	16.4	19.7	1784	1972	37.1	1421	21.9	207	172	87.5	1946	0.01
30/12/12	395	16.4	48.0	1784	2243	67.9	1415	21.8	186	524	0.0	2216	0.01
30/12/13	364	16.4	50.4	1784	2215	59.4	1413	21.7	182	511	0.0	2187	0.01
30/12/14	729	16.4	90.2	1784	2620	32.1	1409	21.4	166	983	0.0	2611	0.00
30/12/15	687	16.5	94.8	1784	2582	27.1	1405	21.2	158	955	0.0	2567	0.00
29/12/16	1070	16.5	120	1784	2990	9.9	1401	20.7	135	1420	0.0	2987	0.00
29/12/17	1011	16.5	125	1784	2937	6.5	1398	20.4	125	1379	0.0	2928	0.00
29/12/18	1267	16.5	195	1784	3263	4.2	1394	19.8	95.1	1748	0.0	3261	0.00
28/12/19	1197	16.6	206	1784	3204	3.3	1391	19.4	84.6	1701	0.0	3199	0.00
27/12/20	1508	16.6	255	1784	3563	3.1	1388	18.7	53.9	2097	0.0	3561	0.00
27/12/21	1406	16.7	273	1784	3480	3.0	1384	18.2	40.4	2039	0.0	3485	0.00
27/12/22	1615	16.7	341	1784	3757	3.2	1380	17.5	18.3	2349	0.0	3768	0.00
27/12/23	1534	16.8	364	1784	3698	2.5	1376	16.8	14.6	2294	0.0	3704	0.00
26/12/24	1870	16.8	537	1784	4207	2.2	1372	16.0	10.7	2822	0.0	4222	0.00
26/12/25	1792	16.9	556	1784	4149	3.0	1368	15.2	8.8	2766	0.0	4160	0.00
26/12/26	2008	16.9	740	1784	4548	3.1	1363	14.2	7.0	3183	0.0	4571	0.00
26/12/27	1924	17.0	762	1784	4487	2.6	1360	13.4	5.9	3123	0.0	4504	0.00

Table 12Transient water balance

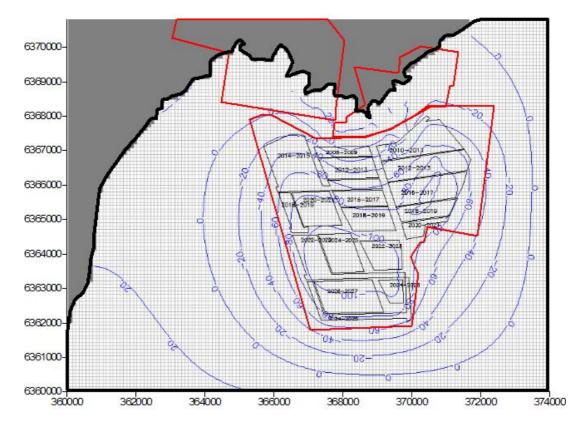


Figure 17 Predicted pressure heads (mAHD) above the Donaldson coal at 2027, the end of mining operations (Layer 6)

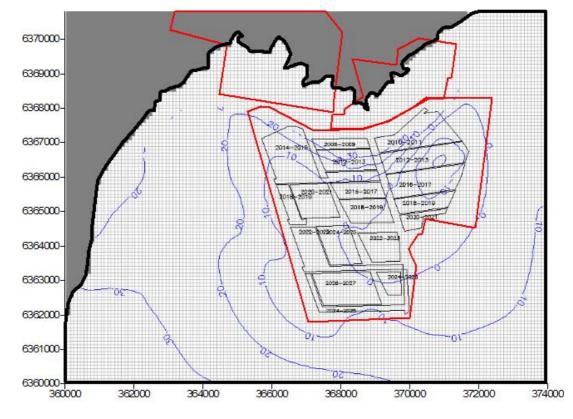
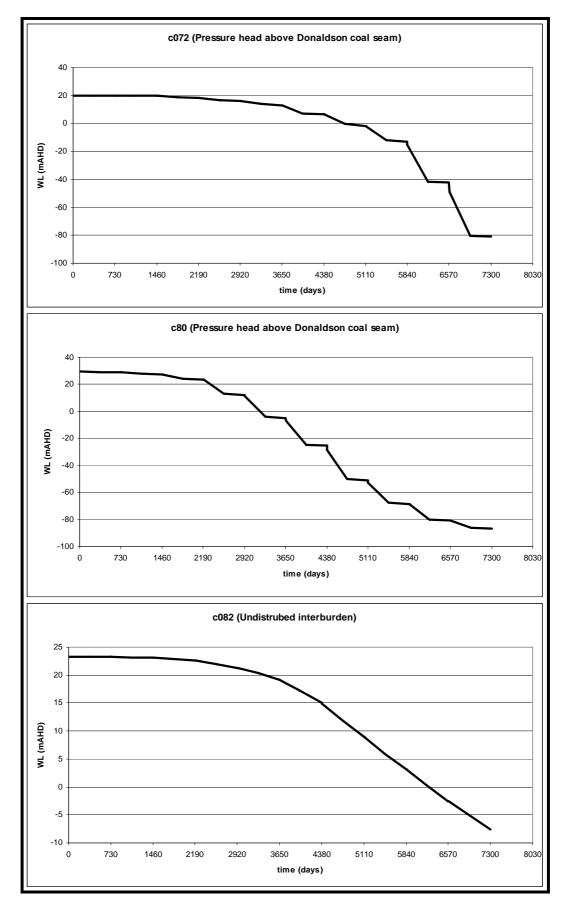
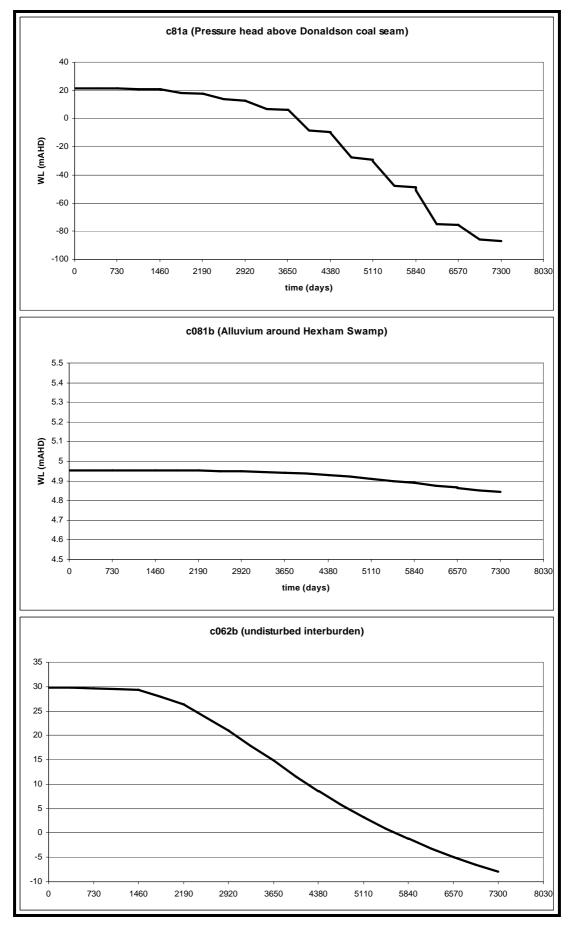




Figure 18 Predicted piezometric contours at 2027 (mAHD) in the undisturbed interburden (Layer 4)

Figure 19 Selected hydrographs showing the decline in piezometric heads in the Abel mining lease area

Figure 19 continued

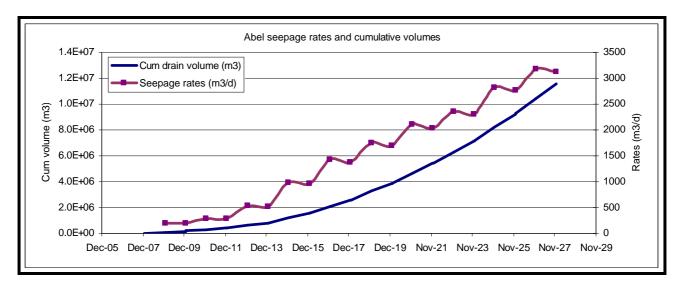


Figure 20 Rates and cumulative seepage volumes into the Abel mine workings over time

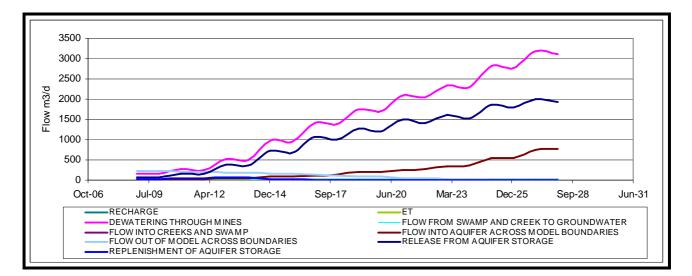


Figure 21 Water balance of the dewatering model run over time

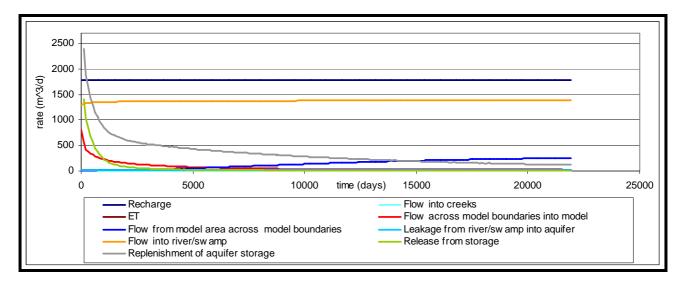


Figure 22 Water balance of the recovery model run over time

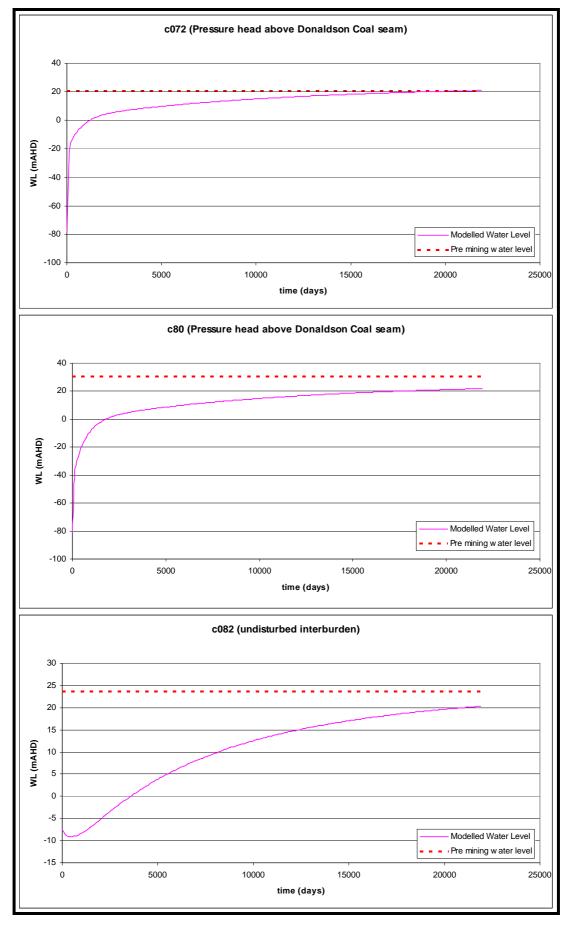
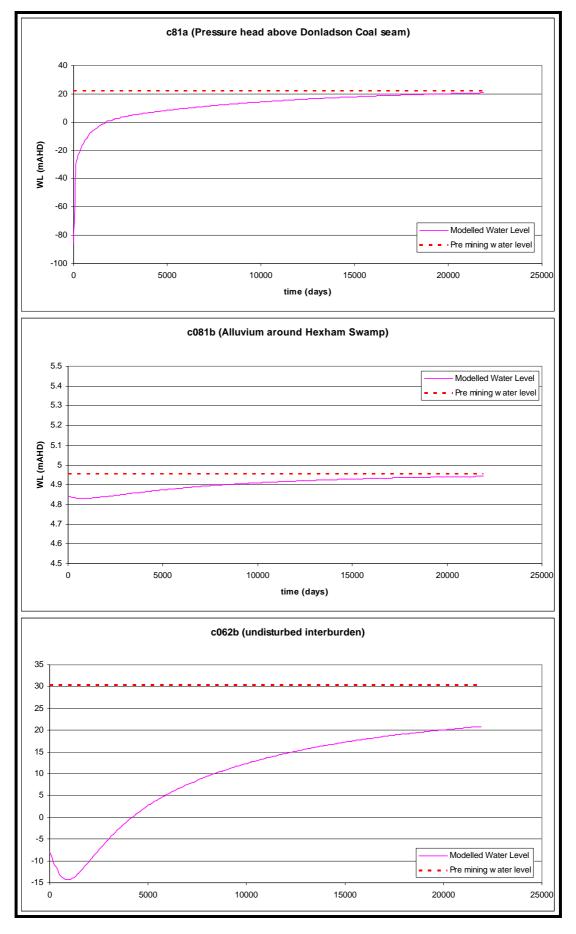



Figure 23 Recovery of piezometric heads in the Abel mining lease area after mining

Figure 23 continued

After completion of the prediction model, a new mine plan was devised by Ellemby Resources. The new mine plan is almost identical to the old mine plan used in this modeling study, except for an extension of the mined area in the north-east corner of the Abel mining lease area by about 800 metres.

While the numerical model has not been re-run using the new mine plan, it is believed that the predicted drawdowns and seepage rates will not change significantly under the new mining proposal. Drawdowns will extend further towards the NE and also the simulated seepage rates will be slightly higher. The additional drawdown will be experienced mainly in the coal layer and the interburden above the coal. Overall, it is anticipated that the impact of the additional dewatering will be small with regards to drawdowns and seepage influx into the mine workings, due to the very limited additional mining area compared to the already simulated underground mine extent.

6.3 SENSITIVITY ANALYSIS

Due to the degree of uncertainty of the dewatering prediction results, sensitivity analysis was carried out on the dewatering model. This gives information on the uncertainty of the model results caused by uncertainty in the estimates of aquifer parameters and stresses, and leads to a "likely range" of seepage rates into the mine workings.

To a large degree, the critical model parameter that influences the seepage rate into the mine workings is the applied drain conductance. To establish its influence on model results, the drain conductance was systematically changed within a plausible range. Table 13 summarises the sensitivity runs undertaken and the parameters applied. The model was also run introducing the "goaf" zone parameters (i.e. higher vertical and horizontal permeability values) in the interburden above the Donaldson coal seam to establish the influence of enhanced permeability during mining. The results of these runs are demonstrated in Figure 24 and Figure 26.

	Kh/Kv	S/Sy	Drain conductance (m ² /d)
Dewatering model	As per steady state model	See Table 7	Drain conductance: actively mined: 0.01m ² /d, mined-out area: 0.05 m ² /d
Sensitivity Run 1	Parameters of dewatering model	Parameters of dewatering model	Drain conductances ÷ 2 (i.e. 0.005/0.025)
Sensitivity Run 2	Parameters of dewatering model	Parameters of dewatering model	Drain conductances x 2 (i.e. 0.02/0.1)
Sensitivity Run 3	Parameters of dewatering model	Parameters of dewatering model	Drain conductances ÷ 5 (i.e. 0.002/0.01)
Sensitivity Run 4	Kh/Kv x 100	Parameters of dewatering model	Parameters of dewatering model
Sensitivity Run 5	Parameters of dewatering model	Parameters of dewatering model	Drain conductances x 5 (i.e. 0.05/0.25)

Table 13	Summary o	of sensitivity	/ runs

The sensitivity analysis shows that predicted seepage rates into the mine workings increase with higher drain conductances, as the resistance to flow between interburden and mine workings is reduced. For the applied range of parameters, seepage rates are calculated to be in the order of 1500 m³/d to 4500 m³/d. For the highest drain conductance applied, the accompanying maximum reduction in piezometric heads is about 170 metres, which is regarded as the upper limit of likely drawdowns, based on experience in other areas of underground mine workings. Also, Figure 25 shows a "saturation effect" whereby the increase in mine seepage rates due to an increase in drain conductance tapers off for higher multipliers, supporting a likely

upper limit of about 4.5 ML/d. This is consistent with the results obtained using the Goodman equation, which delivered a "worst-case" seepage rate of about 9.6ML/day for full drainage of the overlying rock.

Using disturbed aquifer properties during the prediction run (i.e. vertical and horizontal hydraulic conductances increased by two orders of magnitude) results in higher leakage rates and demonstrates the strong dependence of seepage volumes on the geological structure present. However, the increase in the goaf zone parameters results in an increase in the final mine seepage rate of only 14%, also supporting a likely upper limit of seepage rates of about 4.5 ML/d.

In conclusion, the sensitivity analysis established a likely range of seepage rates to be expected in the Abel mining lease area, which is between 1500 m³/d and 4500 m³/d. Based on experience of drawdowns observed in other underground mining operations, drawdowns of 100 to 150 metres are plausible, which narrows the most likely rate of seepage to around 3100 m³/d or 3.1 ML/day, based on the assumed aquifer properties.

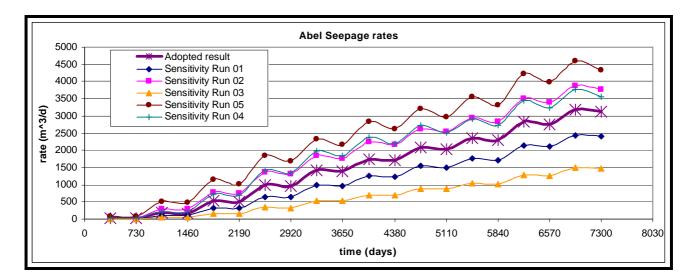
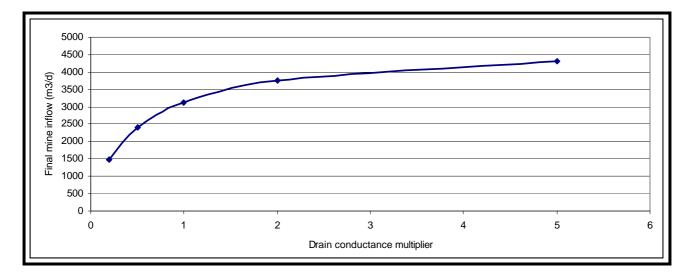



Figure 24 Seepage rates into the Abel under ground mine over time for various model sensitivity runs

Figure 25 Sensitivity of final mine inflows to varying mine drain conductance

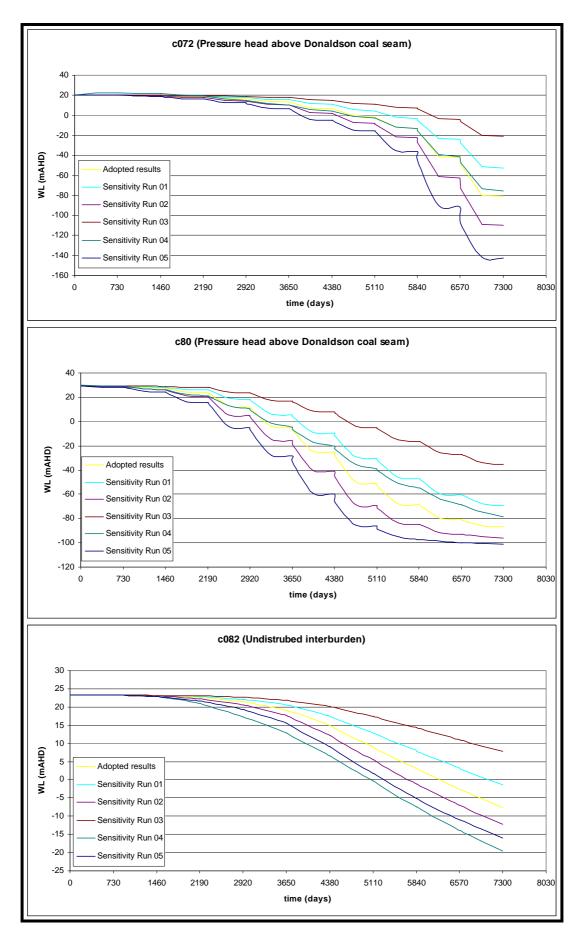
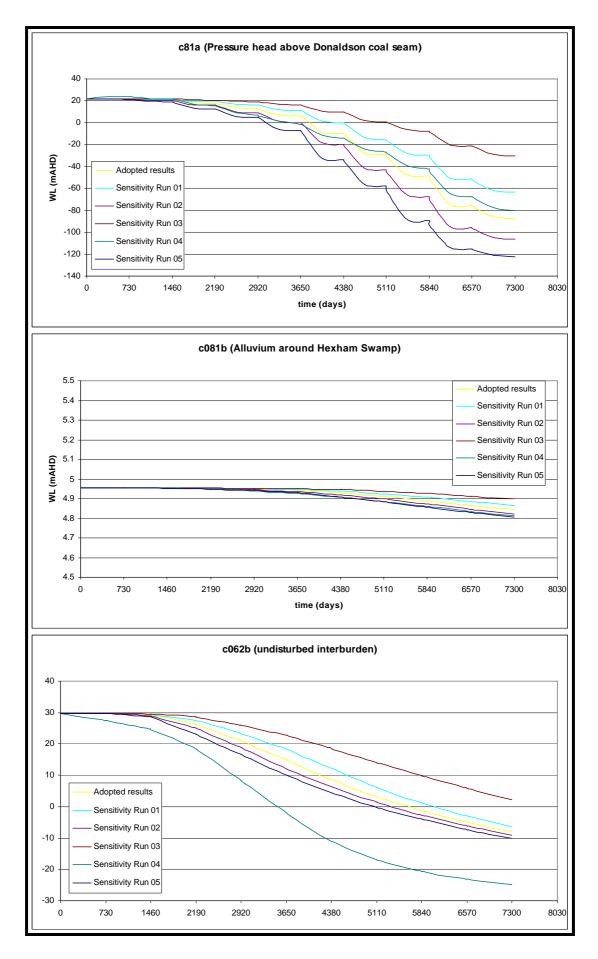



Figure 26 Selected hydrographs showing the decline in water levels over time during mining operations

Figure 26 continued

Due to uncertainties in model input parameters, certain limitations of the numerical model apply, which need to be taken into consideration. These are summarised below:

- The model layer set-up is based on available bore log data, supplied by Ellemby Resources. The layer information extends to about 372000 Easting. The model however extends another 2 km to the east and some inaccuracies in layer elevations might occur in this area as elevation data has been extrapolated out.
- Little data was available on surface water flows in the area and all creeks except for Wallis Creek have been implemented as drain features, i.e. the creeks are assumed to be influent. Wallis Creek and the Pambalong/Hexham Swamp area have been implemented through a river feature with stage levels being kept constant. Once more data becomes available, representation of surface features in the model could become more detailed.
- Recharge and ET are being kept constant at median yearly rates and seasonal or climatic variability is not included in the model. If required, this feature could be added to the model in future. There is uncertainty about actual recharge rates to the interburden material and coal, where they occur at outcrop and to the alluvial deposits in the study area. Recharge values have been changed within a plausible range to obtain a calibrated model, but values cannot be verified. The maximum possible rate of evaporation in the model is 250mm/yr, acting in areas of shallow (<5m) water levels. This is a best estimate, but could be improved with some site-specific data on vegetation type and/or water use characteristics.</p>
- There is a high level of uncertainty with respect to the distribution of hydraulic conductivity in the subsurface in the vertical as well as horizontal direction. Conductivities do not change with depth to reflect progressive burial of coal and interburden. If more data becomes available in future through pump test analysis and/or water level measurements, the model should be adjusted if necessary.
- The steady state model was calibrated on the basis of 17 water level observation points, located mainly in the Donaldson and Abel mining lease area. There is little data available on water levels in the east of the model area, including along model boundaries and the calibration should be revisited once more data becomes available.
- 6 model layers allow the simulation of vertical head gradients in the model area. Heads are averaged over one model layer and the resolution of heads with depth cannot be as detailed as observed in the field using the current model configuration. Further model refinement is possible in future, including layer refinement, which should be based on improvements in hydrogeological understanding and ongoing monitoring and assessment.
- At present there is insufficient data for a transient model calibration in the Abel area. Transient model calibration is desirable for model verification, especially as the model is currently run in predictive mode without verification. At this stage, model predictions are best estimates and have a degree of uncertainty as the sensitivity model runs demonstrate. If transient data on water levels becomes available in future, model results should be compared to actual dewatering rates and head declines and the model adjusted if necessary.

- During the dewatering simulation the simulated cone of depression caused by the mining activity
 encroaches on the model boundaries. This is not ideal, as models should preferably extend beyond the
 zone of influence of any aquifer stresses to avoid boundary interference effects. However, the model
 was properly restricted to the area of detailed geological information. To reduce boundary effects in the
 chosen model area, general-head boundaries were specified to allow inflow and outflow over the model
 boundaries in response to changes in piezometric heads. Possible future model upgrades should ideally
 include an enlarged model area and revisions to model boundaries.
- Due to very limited data on historical pumping volumes and locations at the Bloomfield and Donaldson mining operations, these have been included in the model in a simplistic way, using drain features to simulate the approximate depression in heads in these areas.
- Uncertainties exist on the "resistance to flow" between the interburden and the underground mine void, simulated in the model using a drain conductance. The uncertainty has been addressed by running sensitivity model runs, varying the conductance to establish the effect on model results. It is expected that the conductance increases with mining as the rock mass gets disturbed, however the increase in permeability is a best-guess at this stage.

In conclusion, the model results can be regarded as a current best estimate based on the available data. Due to the uncertainties listed above, the predicted seepage rates and drawdowns should be regarded as indicative, order-of-magnitude estimates. The Abel Coal groundwater model was used to predict the potential impacts of the underground mining on groundwater levels in the Abel mining lease area and surrounds and on surface water resources including Pambalong Nature Reserve and Hexham Swamp; and to assess the potential inflow into the mine workings during operation. The following conclusions can be drawn:

- In the study area, groundwater occurs mainly within the coal seams, and within the alluvium and the upper weathered Permian. Groundwater levels show strong variation with depth. Within the Upper and Lower Donaldson Seam, a consistent pattern of pressure heads are observed that is independent of local topography. Heads vary between about 20 mAHD in the south-east, rising to about 30 mAHD in the north-west. The interburden above the Donaldson seams exhibits a similar broadly consistent water level pattern but with generally higher water levels, reflecting the low permeable properties of the unit.
- Water levels reported in alluvium and the colluvium/weathered Permian are more variable, and are closely related to the local topographic elevations. Thus the surficial groundwater levels are higher than the coal measures in elevated areas, and lower than the coal measures in low-lying locations. The head differences also indicate that the hydraulic connectivity between the alluvium/weathered overburden and the coal measures is likely to be limited and the shallow aquifer is possibly immune from direct impacts due to mining.
- The hydrogeological and geological system was implemented into a 6 layer MODFLOW model and calibrated in steady-state mode. The calibrated model has a scaled RMS error of 6.07% and simulated water levels fit the observed pattern well. The model simulates a vertical hydraulic gradient from higher to lower model layers within the coal and interburden layers, with lowest water levels being measured in the Donaldson coal seam, consistent with field observations.
- The modelled groundwater discharge into Donaldson mine was used as another calibration measure for the steady-state model and amounts to about 70 m³/d, which is slightly lower, but comparable to the (roughly) estimated discharge volumes from Donaldson mine at 2002 of 160 m³/d.
- Simulated water levels in the Pambalong Nature Reserve area compare well with observed values and suggest a perched water table with very limited hydraulic connectivity to the layers below. The simulated water table in the swamp is sensitive to the underlying vertical hydraulic conductivity.
- Having achieved acceptable steady-state model calibration, a transient dewatering model was set-up to simulate dewatering due to mining from 2008 to 2027. At 2027, a post mining recovery model run was set up to simulate the recovery of the water levels after mining operations have ceased.
- The dewatering model simulates the seepage flux into the mine workings over time. By 2027, at the largest extent of the mine, a seepage rate of 3100 m³/d is predicted to enter the mine workings. Accordingly, the cumulative seepage volume increases with time from zero to about 12000 ML at 2027. This is accompanied by a drawdown in hydraulic heads in the coal layer of about 60 metres at

the fringes of the mining lease, increasing to a maximum of about 120 metres in the centre of the area.

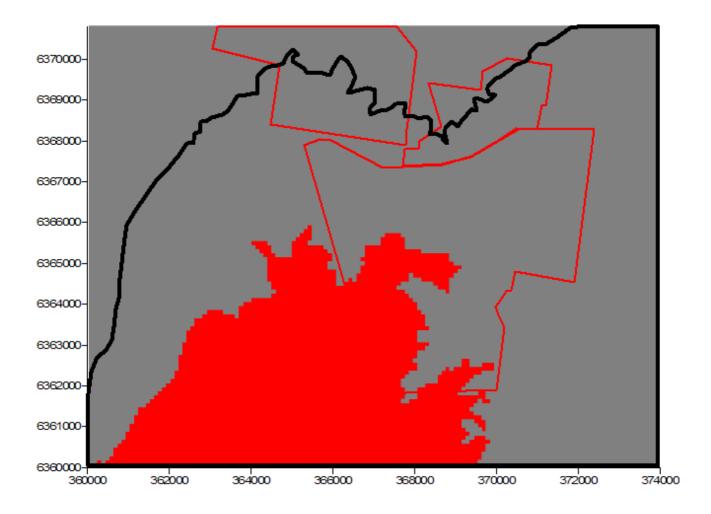
- The predicted drawdown is much less significant in the interburden above the coal seams and a maximum decline in heads in this undisturbed formation of about 30 metres is simulated.
- Pambalong Nature Reserve exhibits an insignificant decline in predicted water levels, which reaches a maximum of about 10 cm at 2027.
- Sensitivity analysis was carried out on the dewatering model to establish the impact of model parameter uncertainties on predicted seepage rates. Six sensitivity runs established a likely range of seepage rates to be expected in the Abel mining lease area, which is between 1500 m³/d and 4500 m³/d.
- The model is based on the most up to date data. However, various uncertainties in input parameters result in certain model limitations, which are outlined in detail in the report. The most important limitation to date is the lack of time-series data, i.e. the model is not able to be calibrated in transient mode and the reaction of the aquifer to large stresses is unknown at this time.
- The model results can be regarded as a best estimate based on the currently available data.
 Predicted seepage rates and drawdowns should be regarded as indicative, order-of-magnitude estimates.

SECTION 9 REFERENCES

Bureau of Meteorology (2001). Climatic Atlas of Australia.

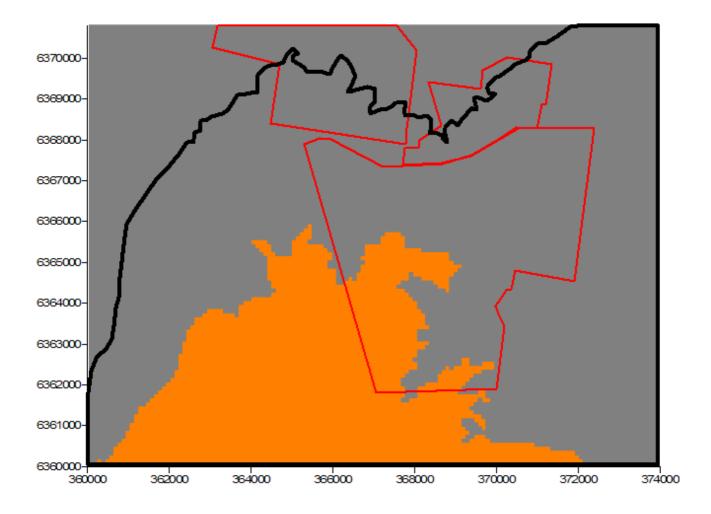
DNR (April 2005). Guidelines for Management of Stream/Aquifer Systems in Coal Mining Developments – Hunter Region.

ESI (2000-2004). Groundwater Vistas. Version 4 User's Manual. URL: www.groundwatermodels.com

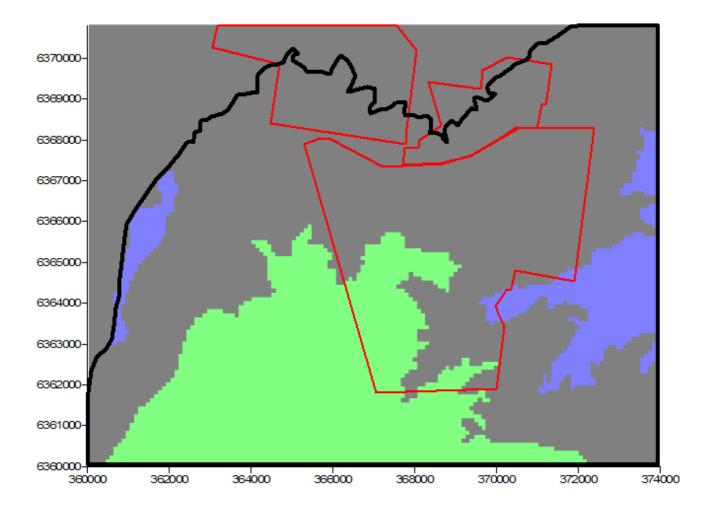

IES (2006). *Processing MODFLOW Pro* Version 7.0.15 User's Manual. URL: <u>http://www.iesinet.com/products/desktop_pmwin.php</u>

MDBC (2001). Groundwater flow modelling guideline. Murray-Darling Basin Commission. URL: www.mdbc.gov.au/nrm/water_management/groundwater/groundwater_guides

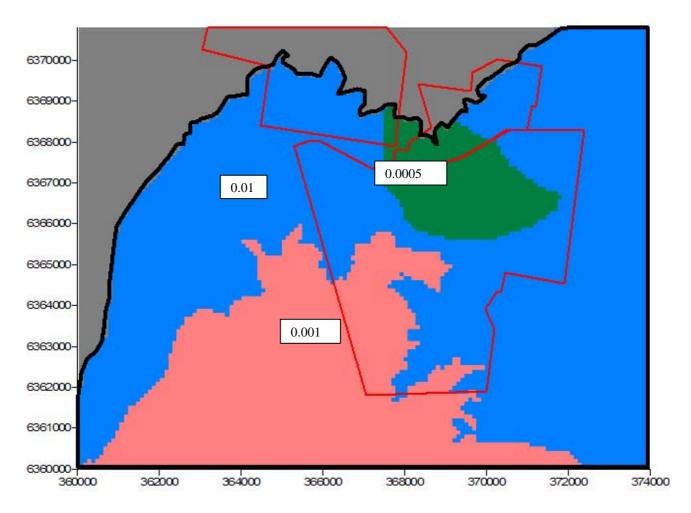
Goodman et al (1965) Groundwater inflows during tunnel driving. Eng. Geol 2. pp. 39-56.


APPENDIX A

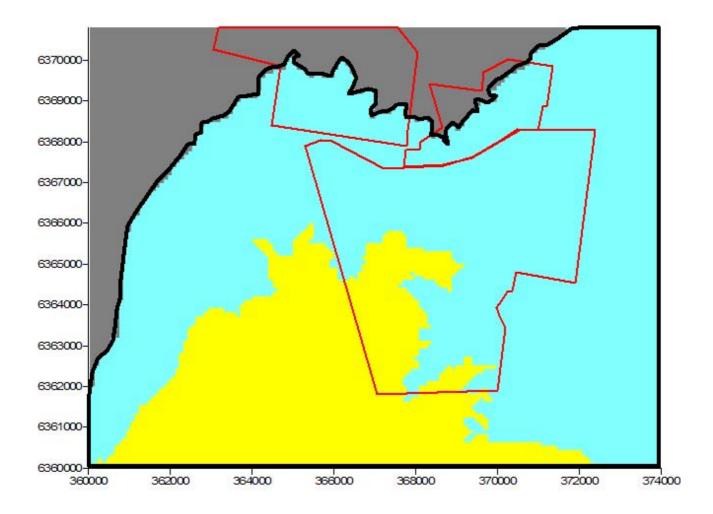
MODEL INPUT DATA


	Geological unit	Kh [m/d]	Kv [m/d]	S	Sy
Layer 1	Interburden above WB seam (undisturbed)	0.001	0.0001	0.00001	0.005

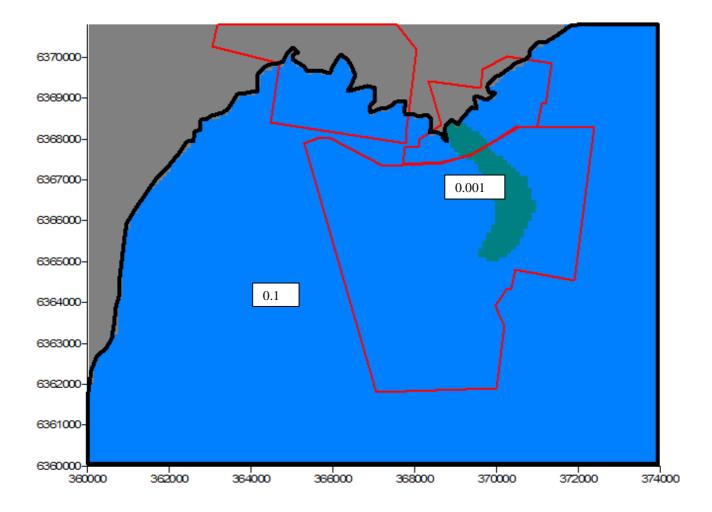
GREY COLOUR = INACTIVE


	Geological unit	Kh [m/d]	Kv [m/d]	S	Ss
Layer 2	Interburden above WB seam (undisturbed)	0.001	0.0001	0.00001	0.005

GREY COLOUR = INACTIVE

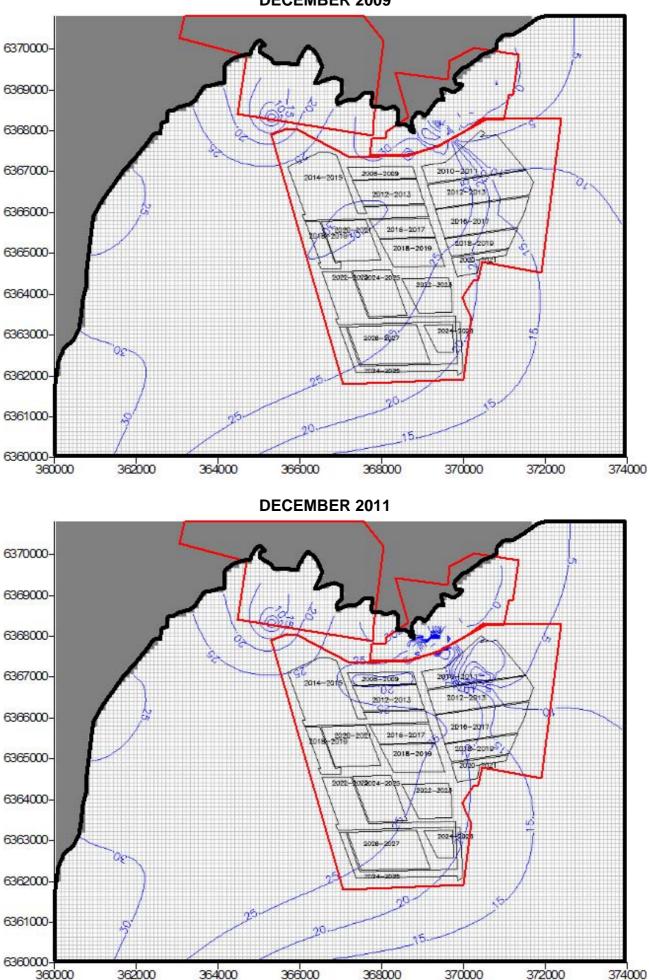

	ogical unit	Kh [m/d]	Kv [m/d]	3	Ss
Layer 3 WB se	eam/Alluvium	0.15 Alluvium = 6.0	0.001 Alluvium= 0.0005	0.0001	0.01 Alluvium = 0.1

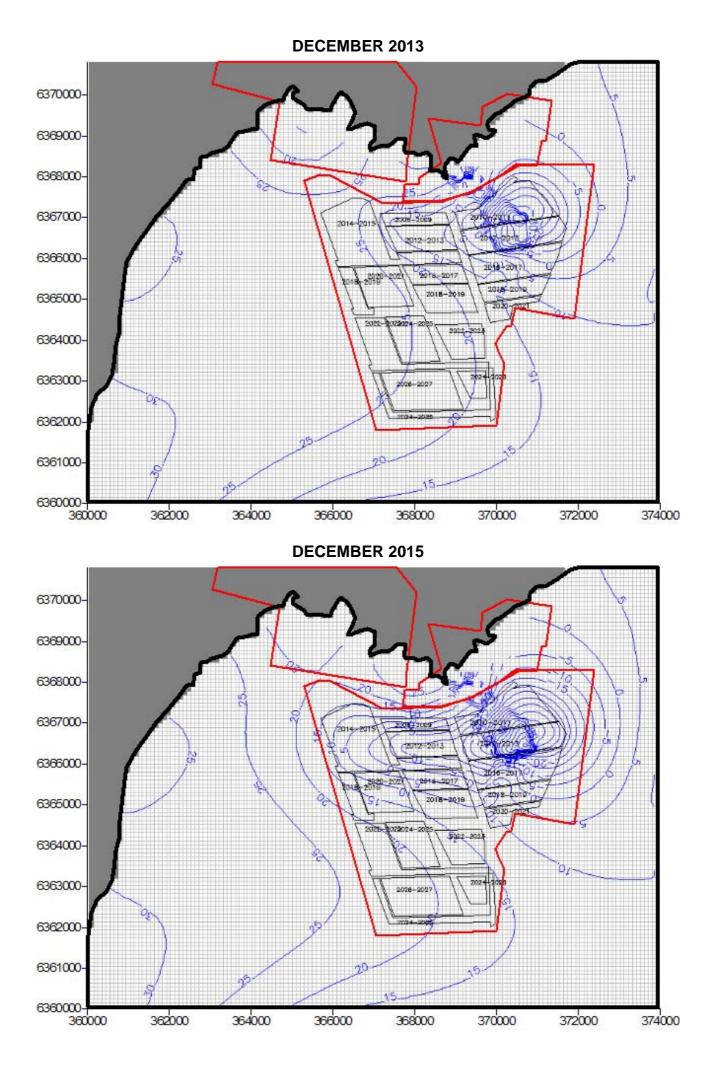
GREY COLOUR = INACTIVE

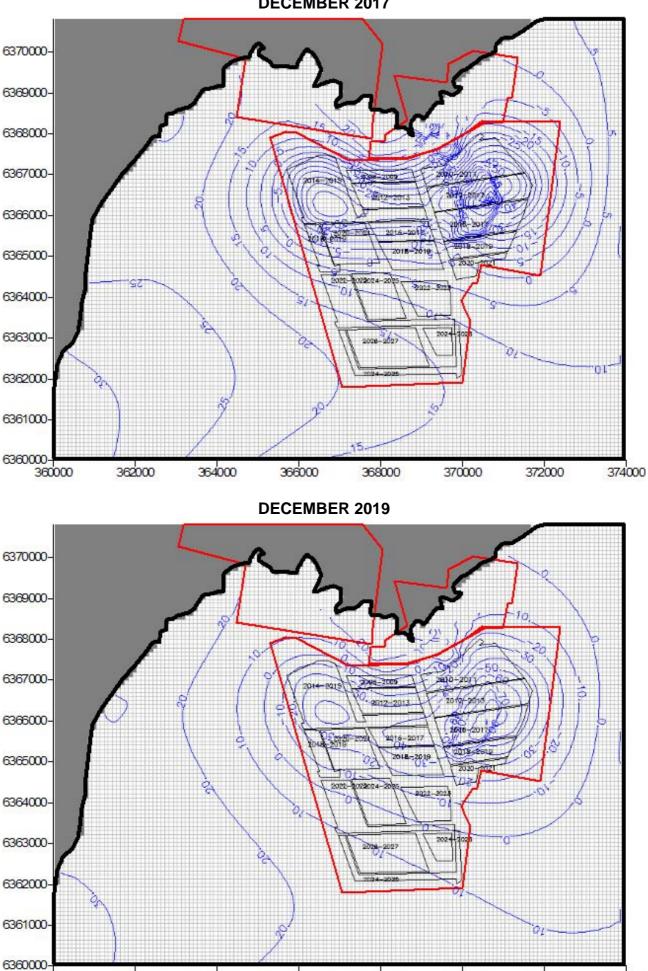

	Geological unit	Kh [m/d]	Kv [m/d]	S	Ss
Layer 4	Interburden above LD/UD seam (undisturbed)	Under confinement: 0.001 At outcrop/Under Alluvium: 0.0005 - 0.01	0.0001 under swamp: 0.00001	0.00001	0.005

GREY COLOUR = INACTIVE

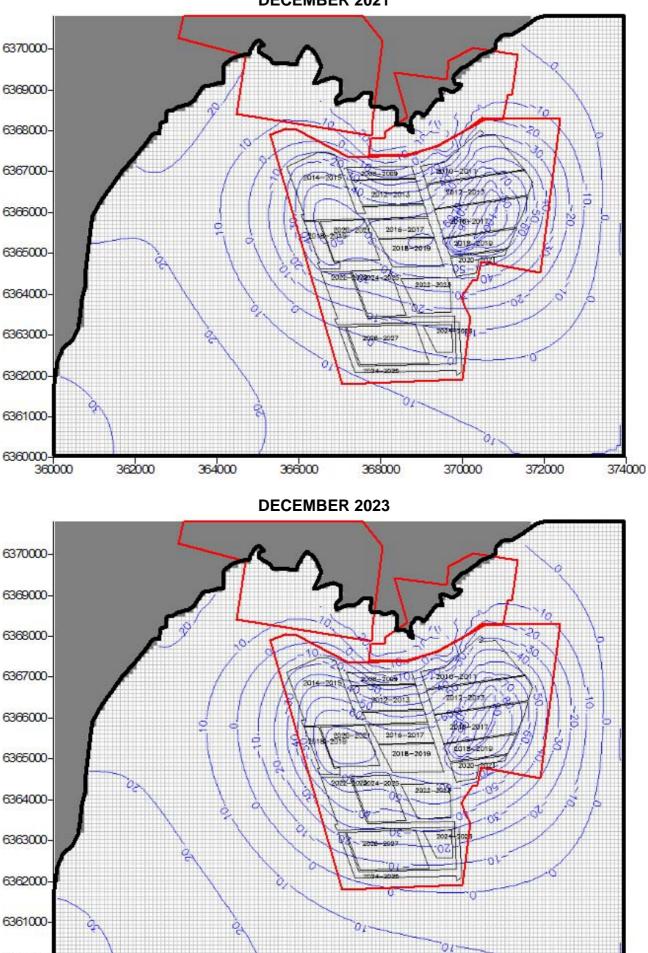
	Geological unit	Kh [m/d]	Kv [m/d]	S	Ss
Layer 5	Interburden above LD/UD seam (undisturbed)	0.001 At outcrop : 0.005	0.00005	0.00001	0.005


GREY COLOUR = INACTIVE

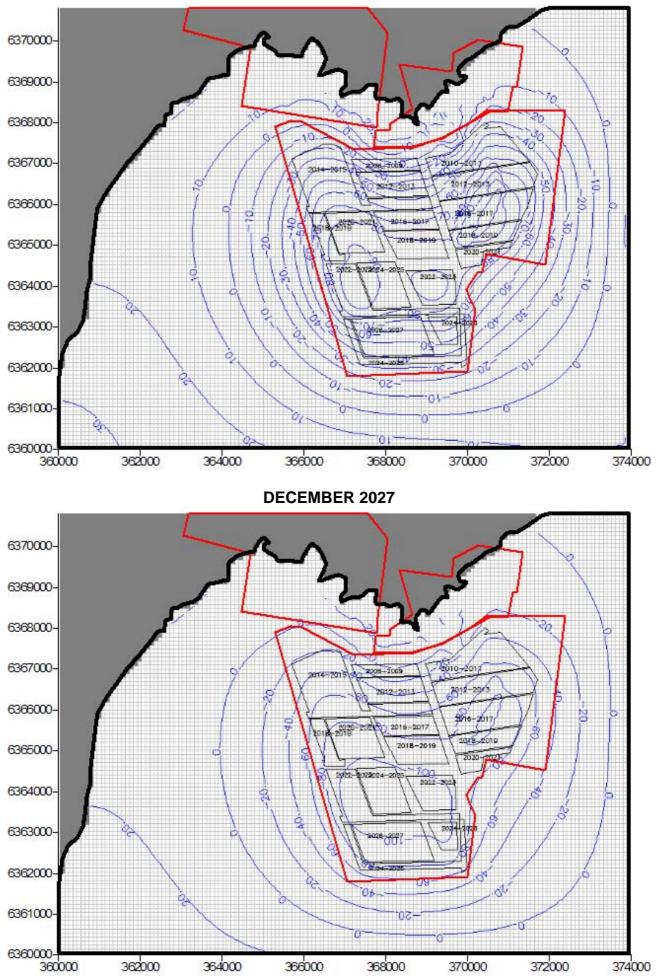

	Geological unit	Kh [m/d]	Kv [m/d]	S	Ss
Layer 6	LD/UD seam	0.1 - 0.001	0.001	0.0001	0.01
GREY COLOUR = INACTIVE					


APPENDIX B

PIEZOMETRIC PRESSURE ABOVE DONALDSON COAL DURING MINING



DECEMBER 2009


DECEMBER 2017

6360000-

DECEMBER 2021

DECEMBER 2025

