

有限公司

Annual Review

Abel Underground Coal Mine

1 January 2019 – 31 December 2019

This page has intentionally been left blank

DONALDSON COAL

PTY LTD ABN: 87 073 088 945

Annual Review

for the

Abel Underground Coal Mine

1 January 2019 – 31 December 2019

Name of Operation	Abel Underground Coal Mine		
Name of Operator	Donaldson Coal Pty Ltd		
Development consent / project approval #	05_0136		
Name of holder of development consent / project approval	Donaldson Coal Pty Ltd		
Mining Lease #	ML1618 and ML 1653		
Name of holder of mining lease	Donaldson Coal Pty Ltd		
Water licence #	20WA218986 and WAL41525		
Name of holder of water licence	Donaldson Coal Pty Ltd		
MOP/RMP start date	02/05/2016		
MOP/RMP end date	01/05/2021		
Annual Review start date 01/01/2019			
Annual Review end date 31/12/2019			
	el Underground Coal Mine for the period 1 January n authorised to make this statement of behalf of		
a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual, \$250,000.			
b) The Crimes Act 1900 contains other offences relating to false and misleading information: Section 192G (Intention to defraud by false or misleading statement – maximum penalty 5 years imprisonment); Section 307A, 307B and 307C (false or misleading application/information/documents – maximum penalty 2 years imprisonment or \$22,000, or both).			
Name of authorised reporting officer	Phillip Brown		
Title of authorised reporting officerEnvironment and Community Relations Superintendent			
Signature of authorised reporting officer Mil Boun			
	Mul Gour		

TITLE BLOCK

CONTENTS

Page

TITLI	E BLO	СК	II		
1.	STA	FEMENT OF COMPLIANCE	1		
2.	INTR	ODUCTION	2		
	2.1	OVERVIEW OF OPERATIONS	2		
	2.2	SCOPE AND FORMAT	2		
	2.3	KEY PERSONNEL CONTACT DETAILS	4		
3.	APP	ROVALS	5		
4.	OPE	RATIONS SUMMARY	6		
	4.1	MINING OPERATIONS	6		
	4.2	OTHER OPERATIONS DURING THE REPORTING PERIOD	6		
	4.3	NEXT REPORTING PERIOD	7		
5.	ACT	ONS REQUIRED FROM PREVIOUS ANNUAL REVIEW	9		
6.	ENV	RONMENTAL PERFORMANCE	10		
	6.1	SUMMARY OF ENVIRONMENTAL PERFORMANCE	10		
	6.2	METEOROLOGICAL MONITORING	10		
	6.3	NOISE	12		
	6.4	BLASTING	13		
	6.5	AIR QUALITY	14		
	6.6	BIODIVERSITY	18		
	6.7	HERITAGE			
	6.8	SUBSIDENCE			
	6.9	WASTE MANAGEMENT	22		
7.	WAT	ER MANAGEMENT	25		
	7.1	WATER TAKE	25		
	7.2	SURFACE WATER	25		
	7.3	GROUNDWATER	29		
8.	REH	ABILITATION	35		
	8.1	REHABILITATION PERFORMANCE DURING THE REPORTING PERIOD	35		
	8.2	ACTIONS FOR THE NEXT REPORTING PERIOD	37		
9.	СОМ	MUNITY	38		
	9.1	COMMUNITY COMPLAINTS	38		
	9.2	COMMUNITY LIAISON	38		
10.	INDE	PENDENT AUDIT	40		
11.	INCIDENTS AND NON-COMPLIANCES DURING THE REPORTING PERIOD				
12.	ACTIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD				

CONTENTS

Page

APPENDICES

Appendix 1	Noise Monitoring Reports
Appendix 2	Air and Water Monitoring Results
Appendix 3	2018/19 Annual Monitoring Report Pambalong Nature Reserve
Appendix 4	Aquatic Monitoring Report: Autumn 2019 and Spring 2019
Appendix 5	Abel Mine Subsidence Management Plan End of Year Report 2019

FIGURES

Locality Plan	3
Environmental Monitoring Locations	11
Deposited Monitoring Results	15
PM ₁₀ Monitoring Results	16
TSP Monitoring Results	17
Selected Ecological Monitoring Results	19
Surface Water Quality Monitoring Results – 2019	26
Surface Water Quality Monitoring Results – 2008 to 2019	27
Groundwater Level Results – All Data	31
Groundwater Quality Monitoring Results – 2019	33
Groundwater Quality Monitoring Results – 2008 - 2019	34
Rehabilitation Activities (1 January 2019 – 31 December 2019)	36
	Locality Plan Environmental Monitoring Locations Deposited Monitoring Results PM ₁₀ Monitoring Results TSP Monitoring Results Selected Ecological Monitoring Results Surface Water Quality Monitoring Results – 2019 Surface Water Quality Monitoring Results – 2008 to 2019 Groundwater Level Results – All Data Groundwater Quality Monitoring Results – 2008 - 2019 Groundwater Quality Monitoring Results – 2019 Rehabilitation Activities (1 January 2019 – 31 December 2019)

TABLES

Table 1.1	Statement of Compliance	1
Table 1.2	Non-compliances	1
Table 3.1	Abel Underground Coal Mine – Consents, Leases and Licences	5
Table 4.1	Production Summary	6
Table 5.1	Actions from the previous Annual Review / Section 240(1)(c) Notice	9
Table 6.1	Environmental performance	10
Table 6.2	Monthly Rainfall Records	12
Table 6.3	Summary of Attended Noise Monitoring Results – 2019	13
Table 6.4	Deposited Dust Monitoring Results – 2019 [^]	14
Table 6.5	Summary of Biological Characteristics (Macroinvertebrates)	20
Table 6.6	Review of Subsidence Impact Performance Measures	23
Table 6.7	Approximate Waste Volumes 2016 to 2019	24
Table 7.1	Summary of Water Quality Monitoring Results – 2019 ¹	28
Table 7.2	Summary of Groundwater Quality Monitoring Results – 2019	32
Table 8.1	Rehabilitation Summary	35
Table 9.1	Community Complaints Summary	38
Table 10.1	Independent Audit Action Response Plan Status	41

1. STATEMENT OF COMPLIANCE

The compliance status of relevant approvals was reviewed for the reporting period and is summarised in **Table 1.1**. It was determined that there was one administrative non-compliance during the reporting period. The non-compliance recorded during the reporting period has been ranked according to the risk matrix included in **Table 1.2**.

Table 1.1Statement of Compliance

Were all conditions of the relevant approval(s) complied with?	Yes / No
Project Approval 05_0136	No
Mining Lease 1618	Yes
Mining Lease 1653	Yes
Water Supply Works Approval 20WA218986 and Water Access Licence 41525	Not Determined ¹
1. Updated licence with conditions not yet received.	•

Table 1.2 Non-compliances

Relevant Approval		Condition Description (summary)	Compliance Status	Comment	Where Addressed in Annual Review
PA 05_0136	2/11a	Ensure that all new buildings and structures, and any alterations or additions are constructed in accordance with the relevant requirements of the BCA.	Non- compliant	Construction Certificates have been received for buildings within the surface infrastructure area but not Occupation Certificates. Certifying body inspected once and requested changes. Changes have been made and the Certifying body requested to reinspect. Certificates yet to be issued.	

Compliance Status Key

Risk level	Colour	Description			
	code				
High	Non-	Non-compliance with potential for significant environmental consequences,			
	compliant	regardless of the likelihood of occurrence.			
Medium	Non-	Non-compliance with:			
	compliant	• potential for serious environmental consequences, but is unlikely to occur; or			
		• potential for moderate environmental consequences, but is likely to occur.			
Low	Non-	Non-compliance with:			
	compliant	• potential for moderate environmental consequences, but is unlikely to occur;			
		or			
		 potential for low environmental consequences, but is likely to occur. 			
Administrative	Non-	Only to be applied where the non-compliance does not result in any risk of			
non-compliance	compliant	environmental harm (e.g. submitting a report to government later than required			
		under approval conditions).			

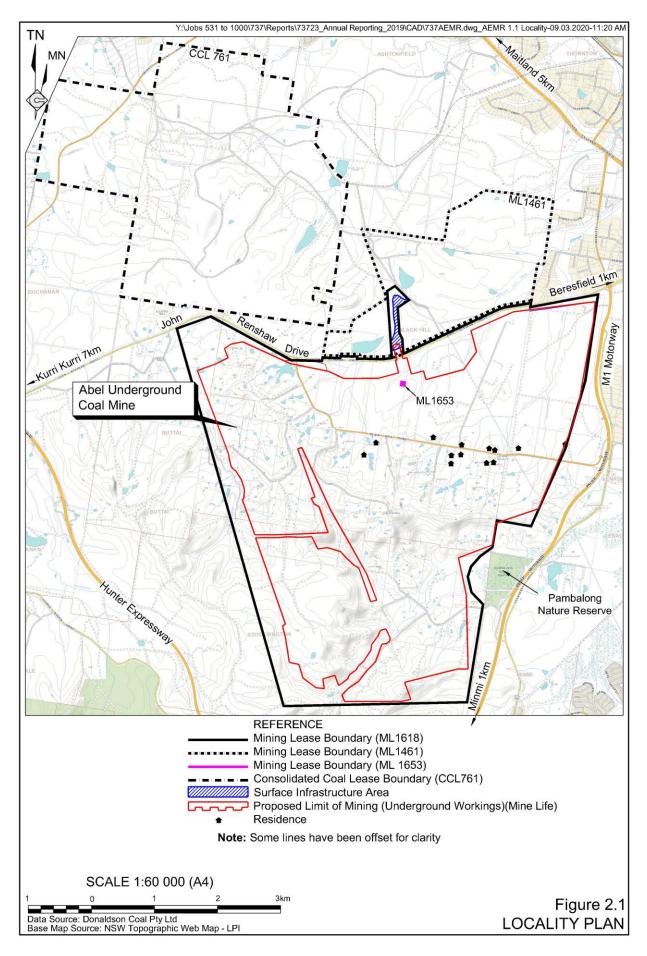
2. INTRODUCTION

2.1 OVERVIEW OF OPERATIONS

The Abel Underground Coal Mine (the "mine") is located approximately 23km northwest of Newcastle, New South Wales (see **Figure 2.1**). Following the grant of Project Approval 05_0136 in June 2007, the Company undertook construction and mining activities until the mine was placed in care and maintenance from 2 May 2016. Activities undertaken to date include the following.

- i) Construction of surface infrastructure and facilities, including the administration offices, amenities, service and storage facilities and car parking area, within the surface infrastructure area.
- ii) Initial mine construction involving the formation of three mining portals and underground roadways and construction of the ventilation, conveying and coal stockpiling systems.
- iii) Coal recovery using bord and pillar methods including first and second workings.
- Processing of recovered coal at the Bloomfield Colliery CHPP and transportation via the Bloomfield Rail Loop and Spur and subsequently via the Main Northern Railway.

Several of the earlier activities relating to the mine, involving the formation of the box cut within which the surface facilities and ROM stockpiles are located, were undertaken as part of the approved Donaldson Open Cut Coal Mine.


2.2 SCOPE AND FORMAT

This Annual Review for the Abel Underground Coal Mine has been compiled by R.W. Corkery & Co. Pty. Limited on behalf of Donaldson Coal Pty Ltd (the "Company"). Donaldson Coal Pty Ltd became part of Yancoal Australia Limited in July 2012.

This is the fourth Annual Review submitted for the mine, following eight Annual Environmental Management Reports, and is applicable for the period 1 January to 31 December 2019 ("the reporting period"). The information presented within this Annual Review has been compiled based on information and advice provided by the Company.

This Annual Review generally follows the format and content requirements identified in the Department of Planning and Environment's (DPE) *Annual Review Guideline* dated October 2015 and meets the requirements of Condition 4, Schedule 6 of PA 05_0136.

2.3 KEY PERSONNEL CONTACT DETAILS

The Manager, Mining Engineering, Mr William Farnworth is the primary mine contact (Tel: 02 4015 1100). Mr Farnworth is currently the Manager Mining Engineering for legislative purposes and as such, is responsible for the environmental management of the mine and ensuring compliance with all relevant legislative obligations. Mr Phillip Brown (Tel: 0439 909 952) is the nominated Environment & Community Relations Superintendent and is also responsible for the environmental management of the mine. The contact details for the mine office are as follows.

Postal Address:	Donaldson Coal Pty Ltd	Tel: 02 4015 1100
	PO Box 2216 GREENHILLS NSW 2323	Fax: 02 4015 1159
Email:	donaldson@doncoal.com.au	
Physical Address:	Abel Underground Coal Mine	
	1132 John Renshaw Drive BLACKHILL NSW 2322	

A 24-hour Environmental Hotline (Tel: 1800 111 271) is maintained by the Company. Details of calls taken on this number are forwarded to the Environment & Community Relations Superintendent for further actioning, if required.

3. APPROVALS

The Company has operated the approved activities at the mine under the approvals listed in **Table 3.1**.

Consent/Lease/Licence	Issue Date	Expiry Date	Details / Comments
Project Approval 05_0136	7 June 2007	31 December 2030	Granted by the (then) Minister for Planning and last modified on 04 December 2013.
Mining Lease ML 1618*	15 May 2008	15 May 2029	Granted by the Minister for Primary Industries. Incorporates 2755ha of surface area.
Mining Lease ML 1653*	21 January 2011	21 January 2032	Granted by the Minister for Primary Industries. Incorporates 0.25ha of surface area. Issued construction of ventilation shaft.
Environment Protection Licence No. 12856	9 July 2008 (licence version date 21 December 2011)	Not applicable	Issued by the (then) Department of Environment and Climate Change (EPA).
Water Supply Works Approval 20WA218986	01/07/2016	30/06/2029	Bore Licence 20BL171935 was issued for the interception and inflow of groundwater due to the underground mining operations. Following commencement of the <i>Water Sharing Plan for the North</i>
Water Access Licence (WAL) 41525	01/07/2016	Continuing	Coast Fractured and Porous Rock Groundwater Sources 2016 in July 2016 20BL171935 was converted to a water supply works approval and water access licence with an allocation of 500ML/year.

 Table 3.1

 Abel Underground Coal Mine – Consents, Leases and Licences

It is noted that this Annual Review has been prepared to fulfil the annual reporting requirements of Project Approval 05_0136, ML 1618, ML 1653, and WAL 41525. A separate Annual Return has continued to be submitted to the NSW EPA in accordance with the requirements of Environment Protection Licence (EPL) 12856. It is noted that an application to consolidate and rationalise EPL 12856, for the Abel Mine, and EPL 11080, for the Donaldson Open Cut Coal Mine, is currently being processed by the EPA and is expected to be finalised during the next reporting period.

The Company also holds Exploration Licence 5497 (see **Figure 2.1**) which was granted on 22 July 1998, with a current expiry date of 21 July 2019. An application for renewal of EL 5497 has been submitted and is awaiting determination.

4. OPERATIONS SUMMARY

4.1 MINING OPERATIONS

Coal mining activities ceased on 2 May 2016 when the site was placed into care and maintenance. No coal mining is planned during the next reporting period. **Table 4.1** presents a summary of the production statistics.

Froduction Summary					
Material	Approved limit (specify source)	Previous reporting period (actual)	This reporting period (actual)	Next reporting period (forecast)	
Waste Rock / Overburden (m ³)	None specified	0	0	0	
ROM Coal / Ore (t)	6 100 000 (PA 05_0136 Cond 2/6)	0	0	0	
Coarse Reject (t)	None specified	0	0	0	
Fine Reject (Tailings) (t)	None specified	0	0	0	
Saleable Product (t)	None specified	0	0	0	

Table 4.1 Production Summary

4.2 OTHER OPERATIONS DURING THE REPORTING PERIOD

No exploration, land preparation, construction or processing activities were undertaken during the reporting period.

Environmental monitoring activities continued throughout the reporting period including surface water, groundwater, flora and fauna and subsidence monitoring. Results of this monitoring is summarised in Sections 6 and 7.

The following management plans were updated during the reporting period to reflect more appropriate environmental monitoring programs during the care and maintenance period and to reflect comments raised as part of the 2018 Independent Environmental Audit. These management plans were approved by DPIE on 4 June 2019.

- Water Management Plan Care and Maintenance (Version 4 3 June 2019).
- Rehabilitation Management Plan Care and Maintenance (Version 2 3 June 2019).
- Noise Management Plan Care and Maintenance (Version 5 3 June 2019).
- Air Quality and Greenhouse gas Management plan Care and Maintenance (Version 3 3 June 2019).
- Abel Underground Mine: Aboriginal Heritage Management Plan (Revision 2.1 June 2019).
- Rehabilitation Management Plan Care and Maintenance (Version 2 3 June 2019).

The Pollution Incident Response Management Plan (Version 4 - 5 July 2019) was also updated during the reporting period to reflect the most appropriate content and contact details.

4.3 NEXT REPORTING PERIOD

The activities proposed for 2020 will principally involve continued monitoring and, if required, maintenance activities. The following provides a summary of the planned activities.

Exploration

The Company is considering further exploration but currently does not intend to undertake any drilling within ML 1618 or ML 1653 during the 2020 reporting period. In the event that drilling is undertaken, the appropriate approvals will be sought and the drilling reported as part of the next Annual Review and within the annual exploration report.

Mining

No mining is currently planned to be undertaken during the 2020 reporting period.

Rehabilitation

No specific rehabilitation activities are currently planned for the 2020 reporting period, however, work will continue to be undertaken to develop a closure strategy. Any rehabilitation works undertaken will relate to rehabilitation of any subsidence impacts or to ongoing maintenance, principally erosion and sediment control.

Monitoring

The following monitoring will be undertaken during the next reporting period.

- Air Quality ongoing deposited dust (until approval of variation of EPL 12856), and PM₁₀ monitoring will continue to be undertaken.
- Surface water ongoing surface water quality at a range of routine monitoring sites located within Blue Gum Creek, Viney Creek, Buttai Creek, Four Mile Creek and a number of local water storages. This monitoring will be undertaken as part of the integrated monitoring with the Bloomfield, Donaldson and Tasman Extended Mines.
- Groundwater ongoing groundwater quality and level monitoring will be undertaken as part of the integrated network of monitoring bores for the Bloomfield, Donaldson and Tasman Mines. Measurement of the quality and volume of inflow water to the underground workings will also continue to be undertaken.
- Noise noise monitoring will continue but at a six monthly frequency whilst the mine remains on care and maintenance.
- Flora & Fauna flora and fauna surveys and reporting will continue to be undertaken in accordance with approved Flora and Fauna Management Plan. It is noted that, whilst the mine is on care and maintenance, the Pambalong Nature Reserve, dam monitoring and sub-tropical rainforest monitoring will be deferred pending the recommencement of mining.

- Meteorological the on-site meteorological station at the Abel Mine will be maintained and data collated.
- Subsidence monitoring will continue to be undertaken in accordance with the approved subsidence monitoring programs.

Community Consultation and Liaison

The community consultative committee will continue to be convened during the next reporting period. It is expected that meetings will be held six-monthly unless otherwise agreed with the committee. The 24hr environmental hotline will be maintained and a register retained of any complaints received.

Mining Operations Plan

A new or amended Mining Operations Plan (MOP) will be prepared and submitted prior to 31 August 2020 to reflect the outcomes of the closure strategy (see Section 5).

5. ACTIONS REQUIRED FROM PREVIOUS ANNUAL REVIEW

The 2018 Annual Review was forwarded to the Resources Regulator within the (then) Department of Planning and Environment (DPE) and the DPE compliance unit on 29 March 2019. Feedback was received from the DPE compliance unit dated 30 April 2019. The Annual Review was considered to generally satisfy the conditions of the approval.

Feedback was also received from the Resources Regulator dated 16 July 2019 confirming the Annual Review was considered to satisfy the requirements of the relevant conditions of the mining leases. However, the feedback noted that, during the review of the Annual Review and following a site inspection on 7 June 2019, closure planning was considered an "emerging risk". A separate Section 240(1)(c) Notice dated 11 July 2019 was issued with two directions required to be implemented by 31 August 2020. A summary of these directions (and subcomponents) is provided in **Table 5.1**

Action required from previous Annual Review / Notice	Requested by	Action taken by the Operator	Where discussed in Annual Review
 Develop a Closure Strategy ("Strategy") for the management of the West and Square Pits. The Strategy is to: Be developed to reflect the following separate closure pathways: a. the resumption of mining within the Abel Underground Mine and development of the voids; b. the closure of the Abel Underground Mine with no resumption of mining. Include Rehabilitation Objectives and Completion Criteria for both closure pathways identified in Point (i) above. Include a risk assessment that identifies and assesses risks to rehabilitation that are associated with each closure pathway identified in Point (i) above. Following the risk assessment, develop control actions that are incorporated in a Trigger Action Response Plan for each closure pathway. Incorporate a timeline for completion of rehabilitation works required for each closure pathway identified in Point (i) above. 	by Resources Regulator	Preliminary planning and consideration of this matter has been undertaken. The Closure Strategy will be finalised during the next reporting period.	in Annual Review Section 8.3.1
 Reflect Project Approval requirements, including completion of a gap analysis that assesses whether Project Approval modifications are required for intended post mining landforms. 			
 Submit an updated Mining Operations Plan (MOP) for ML 1618 and ML 1653 - Abel Underground Mine that includes Closure Strategy that is outlined in Direction 1. The MOP is to be submitted electronically to minres.environment@planning.nsw.gov.au to the satisfaction of the Regulator, referencing "Response to NTCE0003227" in the subject heading. 	Resources Regulator	Either a new or amended MOP will be submitted prior to 31 August 2020 to reflect the outcomes of the Closure Strategy.	Section 4.3 & 5

 Table 5.1

 Actions from the previous Annual Review / Section 240(1)(c) Notice

6. ENVIRONMENTAL PERFORMANCE

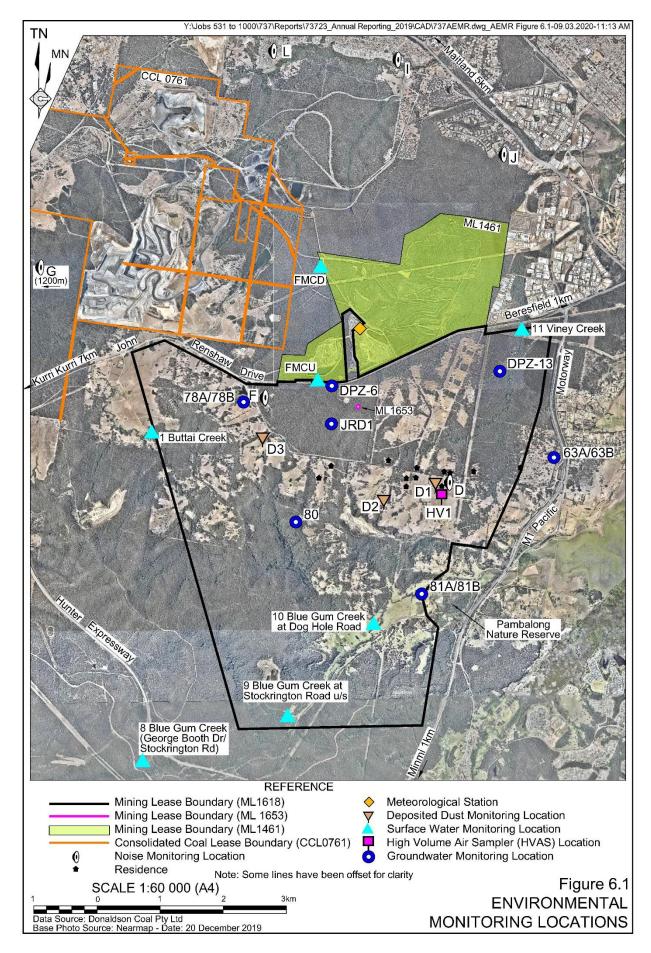
6.1 SUMMARY OF ENVIRONMENTAL PERFORMANCE

A summary of environmental performance for the principal environmental aspects is provided in **Table 6.1**. Further detail regarding specific environmental aspects is also provided in the following subsections. It is noted that a range of monitoring activities are integrated with the Donaldson Open Cut Coal Mine and Bloomfield Colliery, as outlined within the Integrated Environmental Monitoring Program. The following subsections present results specific to the Abel Mine with data relevant to other operations presented in their respective Annual Reviews.

Aspect	Approval criteria / EIS prediction	Performance during the reporting period	Trend/key management implications	Implemented/proposed management actions
Noise	No exceedance of applicable noise criteria.	No exceedances and no complaints.	Implies management measures are currently adequate.	No additional management action required.
Blasting	No exceedance of applicable blast criteria.	No blasts undertaken. No complaints.	Implies management measures are currently adequate.	No additional management action required.
Air Quality	No exceedances of applicable air quality criteria.	No exceedances and no complaints.	Implies management measures are currently adequate.	No additional management action required.
Biodiversity	No significant impacts upon flora, fauna species, populations, communities or habitat.	No impacts upon flora, fauna species, populations, communities or habitat were recorded. No effect upon Pambalong Nature Reserve or Sub-tropical rainforest.	Implies current mining design and safeguards are currently adequate.	No additional management action required.
Heritage	Management in accordance with approved Aboriginal Heritage Management Plan.	No heritage items undermined during the reporting period. No subsidence impacts.	Implies no specific management actions were necessary.	No additional management action required.
Subsidence	Subsidence management in accordance with approved Subsidence management Plan / Extraction Plan.	No notifiable events occurred.	Implies management measures are currently adequate and predictions sufficiently accurate.	No additional management action required.

Table 6.1 Environmental performance

6.2 METEOROLOGICAL MONITORING


An automated weather station, installed for the Donaldson Mine, has been approved by the (then) Department of Planning as also meeting the requirements for the Abel Mine. The weather station records wind speed and direction, temperature, rainfall and solar radiation. This station was subsequently relocated in March 2015 to adjacent the Helipad near the Abel surface facilities (see **Figure 6.1**). A summary of the rainfall data since commencement of the Abel Mine in 2007 is presented in **Table 6.2**.

Total rainfall during the 2019 calendar year was 564.0mm, representing an annual rainfall equivalent to less than 60% of the average annual rainfall of 964.7mm.

2019 ANNUAL REVIEW *Report No.737/23b*

DONALDSON COAL PTY LTD Abel Underground Coal Mine

		Average Monthly Rainfall (mm)											
Period	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total
2007	13.4	87.6	102.4	85.6	60.0	253.0	16.5	79.6	28.3	35.0	163.8	49.5	974.7
2008	153.4	191.8	46.0	237.6	2.2	122.9	30.0	28.5	195.3	62.2	73.3	62.6	1205.8
2009	11.3	340.7	136.5	189	143.8	75.7	32.1	1.8	29.2	59.8	51.4	62.0	1133.3
2010	89.0	52.1	83.9	37.1	89.4	112.8	65.3	38.5	26.0	80.6	171.1	55.9	901.7
2011	25.6	34.5	65.6	138	98.8	152.2	128.7	48.9	103.2	100.0	171.9	75.9	1143.2
2012	96.1	207.0	137.6	114.7	11.8	172.3	53.8	26.6	18.7	5.7	47.9	47.9	944.1
2013	166.7	226.6	97.9	89.4	60.9	96.5	11.2	9.7	21.2	49.5	261.8	2.6	1094.0
2014	15.6	108.3	112.8	99.3	44.3	31.4	24.6	104.0	42.4	55.0	38.4	133.4	809.5
2015	167.0	48.0	73.3	412.0	89.4	44.6	17.9	30.6	56.8	59.0	69.8	103.8	1172.2
2016	430.8	26.0	78.0	31.8	13.4	113.0	44.2	74.2	60.0	43.8	33.2	58.6	1007.0
2017	66.9	71.7	150.4	94.5	12.7	128.5	3.2	6.0	12.6	77.7	66.8	41.6	732.6
2018	6.6	120.0	191.4	52.8	7.0	107.4	4.2	21.4	55.4	109.0	92.6	91.8	859.6
2019	17.2	32.8	158.0	27.0	19.4	97.4	26.0	66.6	69.4	22.0	28.2	0.0	564.0
Average	96.9	119.0	110.3	123.8	50.2	116.0	35.2	41.3	55.3	58.4	97.7	60.4	964.7
Note:	e: Results relevant to this reporting period are in bold.												

Table 6.2 Monthly Rainfall Records

6.3 NOISE

Environmental Management

The principal noise control prior to the site entering care and maintenance was the continued use of low modulated frequency reversing alarms on mobile equipment used on the surface. Whilst mobile equipment usage during care and maintenance has been minimal this remains the principal management measure.

Environmental Performance

Quarterly noise monitoring applicable to the Abel Mine commenced in December 2008 as an extension of the monitoring survey previously undertaken for the Donaldson Open Cut Coal Mine. Quarterly attended and unattended noise monitoring continued to be undertaken throughout the reporting period at six monitoring locations relevant to the Abel Mine (see **Figure 6.1**) for quarters ending March (Q1), June (Q2), September (Q3) and December (Q4) 2019. Monitoring results are presented in **Table 6.3** and copies of the monitoring reports are presented within **Appendix 1**.

The findings of the monitoring surveys were that operations were inaudible at all monitoring locations during Q1, Q2 and Q3. Operations at the Bloomfield CHPP were audible at monitoring locations I and L during night periods during Q4 but remained well below the applicable criteria. Notably, all monitoring events were undertaken whilst the Abel Mine was under care and maintenance and therefore not audibly contributing to received noise. Further discussion regarding the Bloomfield CHPP is provided in their respective annual reporting.

Whilst PA 05_0136 provides for cumulative noise criteria, given that the Abel operations were inaudible at all times, the Donaldson Coal Mine is also on care and maintenance, and noise from the Bloomfield CHPP was either inaudible or well below the relevant criteria, no cumulative effects are considered to have occurred.

		Noise	Atte	Attended Monitoring ¹		oring ¹	Noise generated by Abel Mine
Location	Time	Criteria	Q1	Q2	Q3	Q4	
D	Day (L _{A eq (15 min)})	35	NA	NA	NA	NA	Operations inaudible at all times
Black Hill School,	Evening (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
Black Hill	Night (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
	Night (L _{A1(1min)})	45	NA	NA	NA	NA	Operations inaudible at all times
F	Day (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
Black Hill Rd,	Evening (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
Black Hill	Night (L _{A eq (15 min)})	35	NA	NA	NA	NA	Operations inaudible at all times
	Night (L _{A1(1min)})	45	NA	NA	NA	NA	Operations inaudible at all times
G	Day (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
Buchanan Rd,	Evening (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
Buchanan	Night (L _{A eq (15 min)})	35	NA	NA	NA	NA	Operations inaudible at all times
	Night (LA1(1min))	45	NA	NA	NA	NA	Operations inaudible at all times
I	Day (L _{A eq (15 min)})	36	NA	NA	NA	NA	Operations inaudible at all times
Lord Howe Drive,	Evening (LA eq (15 min))	36	NA	NA	NA	NA	Operations inaudible at all times
Ashtonfield	Night (L _{A eq (15 min)})	36	NA	NA	NA	<25	CHPP operations barely audible during Q4
	Night (LA1(1min))	45	NA	NA	NA	<25	CHPP operations barely audible during Q4
J	Day (L _{A eq (15 min)})	35	NA	NA	NA	NA	Operations inaudible at all times
Parish Drive,	Evening (LA eq (15 min))	35	NA	NA	NA	NA	Operations inaudible at all times
Thornton	Night (L _{A eq (15 min)})	35	NA	NA	NA	NA	Operations inaudible at all times
	Night (L _{A1(1min)})	45	NA	NA	NA	NA	Operations inaudible at all times
L	Day (LA eq (15 min))	40	NA	NA	NA	NA	Operations inaudible at all times
7 Kilshanny Av,	Evening (LA eq (15 min))	40	NA	NA	NA	NA	Operations inaudible at all times
Ashtonfield	Night (L _{A eq (15 min)})	40	NA	NA	NA	33	CHPP operations audible during Q4
	Night (L _{A1(1min)})	47	NA	NA	NA	41	CHPP operations audible during Q4
(dBA)	calculated as operations		at all t	imes			¹ Estimated Abel Contribution

 Table 6.3

 Summary of Attended Noise Monitoring Results – 2019

Reportable Incidents

No reportable incidents were recorded during the reporting period.

Further Improvements

Other than ongoing plant maintenance and noise monitoring (both attended and unattended), no additional management measures are planned during the next reporting period. Given the results of previous noise monitoring, the placement of the Abel Mine into care and maintenance, and the approval of the Noise Management Plan – Care and Maintenance (Version 5 - 3 June 2019), it is intended that noise monitoring will occur at reduced six-monthly frequencies during the next reporting period as required by the Noise Management Plan.

6.4 BLASTING

No blasts were undertaken during the reporting period.

6.5 AIR QUALITY

Environmental Management

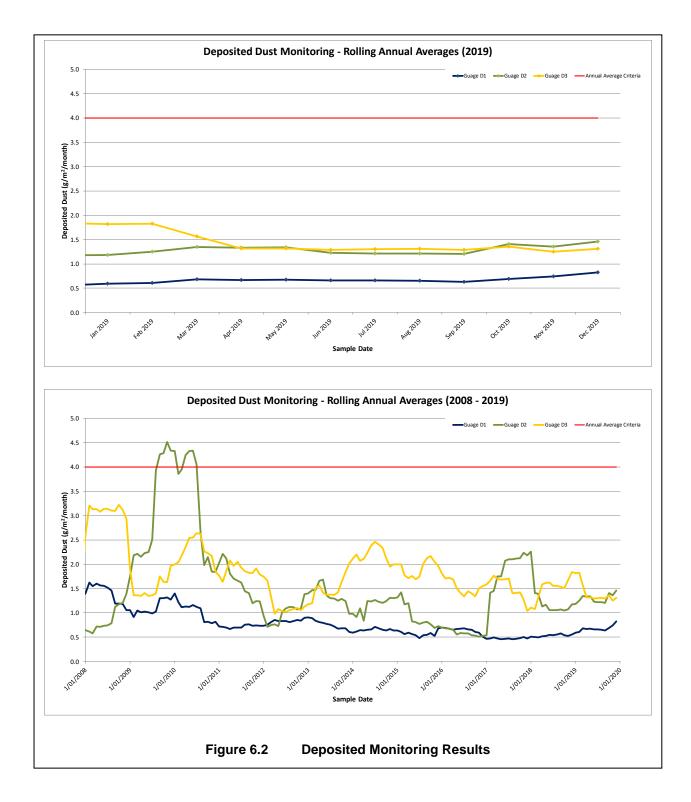
As the Abel Mine is on care and maintenance the principal air quality management measure during the reporting period was maintenance of mobile equipment and on-site vehicles to reduce greenhouse and particulate emissions.

Environmental Performance

Monthly deposited dust monitoring was undertaken by the Company at a total of three locations surrounding and relevant to the Abel Mine. Total Suspended Particulates (TSP) and Particulate Matter $<10\mu$ m (PM₁₀) monitoring was also undertaken at the existing High Volume Air Sampling (HVAS) station located approximately 2,300m southeast of the surface infrastructure area at Blackhill (located at Site D1). Monitoring locations are shown on **Figure 6.1** and results are summarised in **Table 6.4** and **Figures 6.2**, **6.3** and **6.4**.

Deposited Dust

The highest monthly dust deposition measurement was $3.6g/m^2/month$ (insoluble solids) at D3 during December 2019 (see **Table 6.4**). Given that December 2019 dust deposition at D1 and D2 were also relatively high at $2.1g/m^2/month$ and $3.2g/m^2/month$ respectively, the slightly elevated results are likely to reflect regional drought conditions and bushfires during this period.

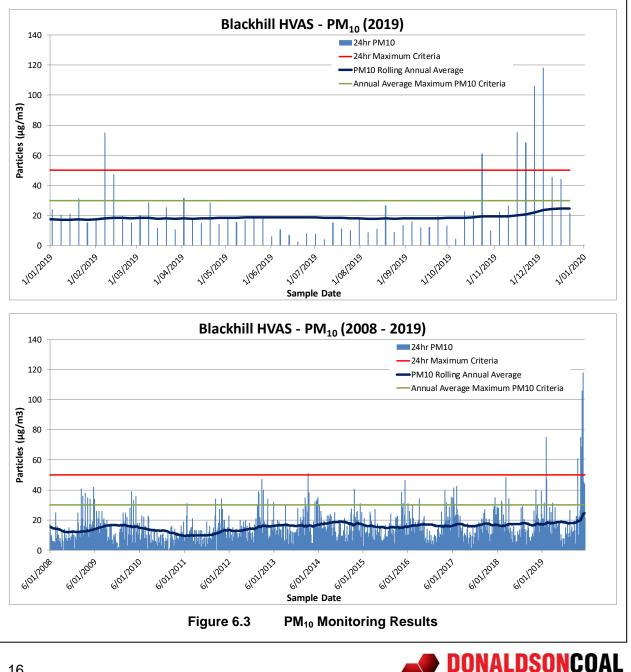

The annual average monthly deposition rates for the reporting period were between $0.9g/m^2/month$ and $1.5g/m^2/month$ which is significantly below the cumulative criteria of $4g/m^2/month$ and compliant with the incremental criteria of an increase of $2g/m^2/month$, indicating good air quality with respect to dust deposition.

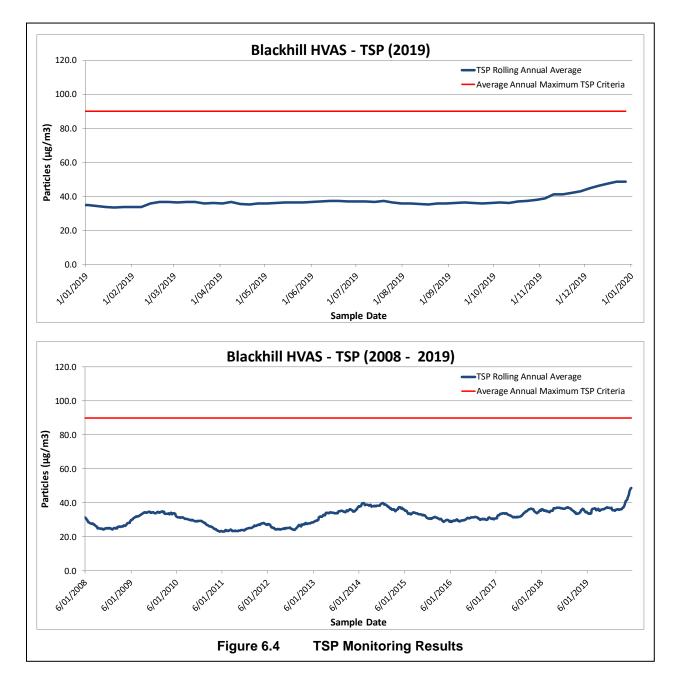
		Monthly Dust Deposition Rate (g/m ² /month)								
	D	1	D	2	D3					
Month	Insoluble	Ash	Insoluble	Ash	Insoluble	Ash				
January	1.2	1.0	1.7	1.1	1.5	1.1				
February	0.7	0.6	1.6	1.1	1.3	1.0				
March	1.3	0.9	1.8	1.5	2.0	1.5				
April	0.3	0.3	0.8	0.7	0.9	0.9				
Мау	0.4	0.2	0.9	0.5	0.8	0.5				
June	0.5	0.3	1.7	0.8	0.7	0.5				
July	0.3	0.2	0.4	0.3	0.4	0.3				
August	0.4	0.2	0.5	0.4	0.7	0.4				
September	0.5	0.3	0.6	0.5	0.6	0.4				
October	1.0	0.6	2.9	1.3	1.5	1.1				
November	1.2	0.8	1.4	0.9	1.7	1.2				
December	2.1	1.8	3.2	2.4	3.6	2.8				
Monthly Minimum	0.3	0.2	0.4	0.3	0.4	0.3				
Monthly Maximum	2.1	1.8	3.2	2.4	3.6	2.8				
Average	0.8	0.6	1.5	1.0	1.3	1.0				
Source: Donaldson Coal Pt	y Ltd.			^ Historic	al data included i	in Appendix 2				

Table 6.4 Deposited Dust Monitoring Results – 2019^

2019 ANNUAL REVIEW *Report No.737/23b*

Since commencement of the Abel operations, the rolling annual average deposited dust levels have remained low although spikes are evident due to local events, particularly at sites D2 and D3. However, when accounting for such events, no specific trends are evident and deposited dust levels remain significantly below the annual average criteria.




Part of the Yancoal Australia Group

Suspended Particulates – PM₁₀ & TSP

The suspended particulate monitoring results indicate that the 50µg/m³ 24-hour National Environment Protection Measures (NEPM) goal was exceeded on six occasions during the reporting period, with five of the six exceedances occurring between 29 October 2019 and 10 December 2019 and the remaining exceedance occurring on 13 February 2019 (see Figure 6.3). The highest 24-hour average PM_{10} concentration during the reporting period, measured on 10 December 2019, was $118.0 \mu g/m^3$.

The October to December 2019 exceedances are consistent with similar or higher PM_{10} levels recorded at the DPIE monitoring stations at Wallsend, Beresfield and Newcastle due to bushfires. The February 2019 exceedance is considered to be the result of both elevated regional and local PM₁₀ levels and follows dry conditions throughout January 2019. As no exploration, land preparation, construction or processing works were undertaken during the reporting period, the Abel Mine would have had minimal contribution to the recorded levels.

The annual average PM_{10} concentration for Blackhill was $24.7\mu g/m^3$ for the 12 months to 31 December 2019 whilst the annual average TSP concentration was $48.7\mu g/m^3$, both below the annual average criteria of $30\mu g/m^3$ and $90\mu g/m^3$ respectively. Notwithstanding, these annual average values are significantly higher than the long term (from 6 January 2008) PM_{10} and TSP averages of $16.0\mu g/m^3$ and $32.7\mu g/m^3$ respectively. This is largely attributed to the ongoing bushfires across NSW which have resulted in regular and substantially higher than average particulate levels. This is evident in the rolling annual average PM_{10} data (see **Figure 6.3**).

Other than an annual trend of lower 24-hour average PM_{10} during the winter months and higher 24-hour averages during the summer months, no other long-term PM_{10} trends and no TSP trends are currently apparent.

Reportable Incidents

No reportable incidents relating to air pollution occurred during the reporting period.

Further Improvements

No other improvements relating to air pollution are planned or considered necessary.

6.6 BIODIVERSITY

Environmental Management

No underground mining occurred during the reporting period and no mining has previously been undertaken within areas that would lead to subsidence under or near the Pambalong Nature Reserve or under sub-tropical rainforest. Hence, no specific flora or fauna management measures have been required to date above these areas.

Environmental Performance

Ongoing survey work was completed by Kleinfelder Australia Pty Ltd during the reporting period as part of the Pambalong Nature Reserve Monitoring Plan (see **Appendix 3**). Macroinvertebrate sampling also continued to be undertaken within Blue Gum Creek upstream of the Pambalong Nature Reserve by Niche Environment and Heritage during Autumn and Spring 2019 (see **Appendix 4**).

In accordance with the updated Flora and Fauna Management Plan (Version 4 - 3 June 2019), presented as Appendix 3 of the Rehabilitation Management plan – Care and Maintenance (Version 2 - 3 June 2019), the dam monitoring and management survey and monitoring of the sub-tropical rainforest was not required during the reporting period. Monitoring of flora and fauna present in dams and sub-tropical rainforest areas will recommence following the recommencement of mining operations.

A summary of the results from surveys during the reporting period is provided as follows.

Pambalong Nature Reserve Monitoring

Whilst no mining occurred which could potentially impact upon the Pambalong Nature Reserve, monitoring was undertaken as part of the Pambalong Nature Reserve Monitoring Plan. The 2018/2019 survey represents the 11th year of baseline monitoring. The monitoring plan is aimed at building a picture of what constitutes normal variation so that any impacts from mining in the future can be identified, should they occur.

A total of 109 flora species were recorded during the December 2018 survey, including 22 that were not recorded in the 2017/2018 survey. A total of 200 flora species have been identified since monitoring commenced in 2008. No significant changes to the spatial extent of vegetation communities were observed, however, the following changes in weed abundance and distribution were recorded.

- Increased coverage of *Lantana camara* recorded in the Coastal Foothills Spotted Gum Ironbark Forest community.
- Increase in weed diversity (12 weed species compared to seven during the 2017 survey) recorded in the Freshwater Wetland Complex.
- Significant decrease in coverage (from 50-<75% during the 2017 survey to <5%) of *Atriplex prostrata* in the Paperbark Swamp Forest.

Key weed species recorded within the Pambalong Nature Reserve during the survey included:

- Eichhornia crassipes (Water Hyacinth);
- Alternanthera philoxeroides (Alligator Weed);
- Cenchrus clandestinus (Kikuyu);
- Rubus fruticosus sp. aggregate (Blackberry); and
- Lantana camara (Lantana).

A total of 104 fauna species were recorded during the November/December 2018 and May 2019 surveys which is marginally below the yearly average of 105 species. Species recorded included 79 bird, 17 mammal (two arboreal, three terrestrial and 12 bat), six frog and two reptile species (**Figure 6.5**). Bird numbers were slightly less than the 2017/2018 monitoring but consistent with the 2 yearly cyclical rise and fall that recorded to date. Threatened species recorded during the survey included three bat species (*Miniopterus australis, Pteropus poliocephalus* and *Falsistrellus tasmaniensis*) and three bird species (*Haliaeetus leucogaster, Botaurus poiciloptilus* and *Glossopsitta pusilla*).

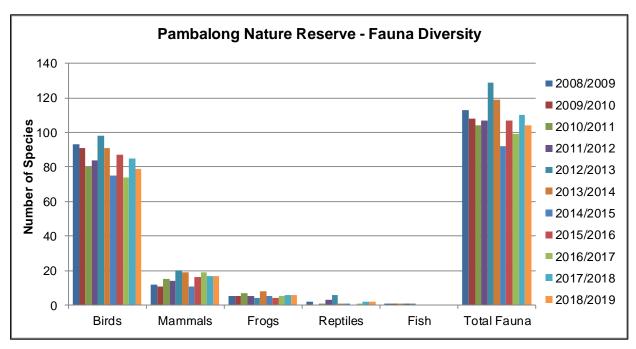


Figure 6.5 Selected Ecological Monitoring Results

Macroinvertebrate – Blue Gum Creek

Macroinvertebrate surveys have been undertaken within Blue Gum Creek at Stockrington Road and Dog Hole Road since 2009 and 2008 respectively. Monitoring during the reporting period included an assessment of the Riparian Channel Environmental (RCE) ranking and aquatic ecology diversity (utilising the SIGNAL index).

During the 2019 Autumn and Spring surveys, the RCE rankings were 38 and 40 respectively for the upstream sites. For the downstream sites, RCE rankings were 35 and 36 during the 2019 Autumn and Spring periods respectively. RCE scores above 40 reflect a stream in good condition, between 20 and 40 reflect a stream in moderate condition and below 20 indicates a

stream in poor condition. The 2019 RCE rankings are consistent with previous monitoring events which range from 33 to 40, indicating that Blue Gum Creek remains in moderate condition.

Table 6.5 provides a summary of the biological characteristics recorded during monitoring undertaken to date. It is noted that the use of the SIGNAL2 index was adopted in 2015 and results in a lower score that the original SIGNAL index utilised in previous monitoring.

Demonstern	Data	Blue Gum Creek at Stockrington	Blue Gum Creek at Dog Hole
Parameter	Date	Road (upstream)	Road (downstream)
Number of Taxa	01/08/08	-	22
	20/05/09	29	25
	16/11/09	20	22
	27/04/10	-	11
	14/12/10	33	35
	01/04/11	24	20
	18/10/11	24	16
	12/04/12	-	23
	01/11/12	28	20
	21/03/13	10	12
	29/09/13	22	16
	24/03/14	9	8
	15/09/14	20	13
	12/06/15	17	16
	07/10/15	15	2
	03/03/16	15	20
	08/09/16	22	5
	May 17	13	8
	Sep 17	-	9
	08/05/18	11	16
	14/11/18	19	11
	28/05/19	19	13
	16/09/19	12	21
SIGNAL Index	01/08/08	-	5.1
	20/05/09	5.7	5.8
	16/11/09	4.6	4.6
	27/04/10	-	3.4
	14/12/10	4.7	4.7
	01/04/11	4.7	4.4
	18/10/11	5.0	5.3
	12/04/12	-	5.6
	01/11/12	4.4	5.0
	21/03/13	4.9	5.6
	29/09/13	4.8	5.3
	24/03/14	4.8	3.2
	15/09/14	5.2	4.8
SIGNAL2 (weighted)	12/06/15	4.45	4.1
Index	07/10/15	3.29	3.17
	03/03/16	3.75	3.76
	08/09/16	3.98	2.73
	May 17	3.41	2.94
	Sep 17	-	3.43
	08/05/18	3.96	3.81
	14/11/18	3.90	3.54
	28/05/19	4.28	4.44
	26/03/19 16/09/19	4.20	4.44
	10/09/19	4.00	4.11

 Table 6.5

 Summary of Biological Characteristics (Macroinvertebrates)

The upstream and downstream weighted SIGNAL2 scores during Autumn were 4.28 and 4.44 respectively, with upstream and downstream weighted SIGNAL2 scores in Spring decreasing to 4.05 and 4.11 respectively. The higher a SIGNAL2 score the more pollution sensitive taxa are present, indicating lower pollution, whilst a lower score indicates more pollution tolerant taxa are present, indicating greater pollution. SIGNAL2 scores of 5 and above indicate dominance of pollution sensitive taxa whilst scores of 4 and below indicate dominance of pollution tolerant taxa.

Therefore, the weighted SIGNAL2 scores recorded during the reporting period indicate the sites are subject to moderate pollution, potentially the result of pollution from erosion, siltation, weeds and elevated salinity. Additionally, taxa present indicate a dominance of pollution tolerant macroinvertebrate families. Despite the weighted SIGNAL2 scores, sensitive mayfly taxa (Leptophlebiida) and caddis fly taxa (Leptoceridae) were recorded at both upstream and downstream sites.

Overall, RCE and SIGNAL scores recorded for Blue Gum Creek during the 2019 Autumn and Spring surveys are consistent with previous monitoring results which indicate that the creek is in moderate condition and is potentially subject to ongoing disturbance or pollution. This poor stream health appears unrelated to the Abel or previous Tasman mining operations and is more likely related to disturbance from roadways, agriculture, and past high flow events as well as ongoing land use management issues and low flows associated with dry conditions during the reporting period.

Given the likely significance of other disturbance sources, the ongoing Blue Gum Creek monitoring program will be reviewed to determine whether the current monitoring sites remain appropriate locations for identifying mining-related impacts.

Reportable Incidents

No reportable incidents were recorded during the reporting period.

Further Improvements

In accordance with the updated Flora and Fauna Management Plan, monitoring of dams, subtropical rainforest and the Pambalong Nature Reserve will now not be undertaken until the recommencement of mining activities. As recommended by Niche Environment and Heritage, consideration will also be given to the need for ongoing aquatic monitoring within Blue Gum Creek and/or whether the monitoring program is continued in its current form.

Prior to the recommencement of mining operations, relevant dams will be reassessed for frog habitat to account for changes such as eutrophication from stock, fertiliser applications or other farming practices as opposed to changes resulting from mining.

6.7 HERITAGE

In accordance with the June 2019 *Abel Underground Mine: Aboriginal Heritage Management Plan* (Donaldson Coal, 2019), annual reporting will be undertaken through the Annual Reviews with a 5 yearly report documenting the results of monitoring undertaken in accordance with the plan to be prepared and provided to either the Mindaribba or Awabakal Local Aboriginal Land Councils (LALCs) (as applicable to the area monitored), DPIE and OEH. Given that no mining was undertaken during the 2019 reporting period, no specific monitoring was completed. The first of the 5 yearly reports is planned following the recommencement of mining operations.

6.8 SUBSIDENCE

Environmental Management

To date four Subsidence Management Plan (SMP)/Extraction Plan areas have been prepared for the mine. As part of each SMP/Extraction Plan, subsidence monitoring programs have been prepared together with required environmental and public safety management plans. Copies of all relevant SMP/Extraction Plan assessment reports and management plans are available on the Company's website.

Environmental Performance and Further Improvements

No mining occurred during the reporting period and no further quantitative monitoring of previous undermined panels occurred. However, photographic monitoring and visual inspections continued during the reporting period. A summary of the outcomes of this monitoring and any actions taken is outlined as follows.

- No further impacts to Blackhill Road were observed and the infrastructure remained within a safe and serviceable condition.
- All subsidence impacts on the Hunter Water Corporation Waterline, Ausgrid Powerlines and TransGrid Transmission Towers were within predicted levels with no subsidence impacts or management actions required during the reporting period.
- There have been no other observed and/or reported subsidence impacts, incidents, service difficulties, community complaints during the reporting period that would require notification under the SMP/Extraction Plan approvals or plans.

A comparison of previously surveyed subsidence levels against predicted levels for all panels within which extraction has been completed to date is provided within the annual Subsidence Management Report (see **Appendix 6**). A summary of subsidence impacts against the performance measures outlined in PA 05_0136 Schedule 3 Condition 1 is also provided in **Table 6.6**.

During the next reporting period monitoring will be continued in accordance with the approved or any new SMP/Extraction Plans.

6.9 WASTE MANAGEMENT

In accordance with *Schedule 3 Condition 25* of PA 05_0136, a summary of waste management during the reporting period is provided as follows.

Wastes generated on site during the reporting period included the following.

- Hazardous (Recycled) lead acid batteries and oil.
- Non-Hazardous (Recycled) paper and cardboard, confidential documents, scrap steel.
- Hazardous (Disposal) medical and sanitary waste, oily rags.
- Non-Hazardous (Disposal) mixed solid waste.

Table 6.6
Review of Subsidence Impact Performance Measures

Performance Measure	Status	
able 2: Subsidence Impact Performance Measures ter Resources Hexham Swamp; Blue Gum Creek and Alluvium; and Long Gully. • Negligible reduction in the quantity of water entering the swamp or the creeks (ie baseflow or environmental flows); • negligible reduction in the quality of water entering the swamp or the creeks; and • negligible reduction in creek bed or bank stability. • No connective cracking between the surface and the mine. All other watercourses in the mining area. • No • Regligible environmental consequences • No • No • No • No • No • No • No		Mining to date has occurred substantially north of these features. Groundwater level monitoring has also not recorded any drawdown of surficial aquifers (see Section 7.3). Subsidence monitoring has not recorded any impacts upon other watercourses.
Land Cliffs. Minor cliffs Rock face features; and Steep slopes. Pambalong Nature Reserve.	 Minor environmental consequences (that is, occasional rockfalls, displacement of or dislodgement of boulders or slabs, or fracturing, that in total do not impact more than 3% of the total face area of cliffs within the mining area). Minor environmental consequences (that is, occasional rockfalls, displacement or dislodgement of boulders or slabs, or fracturing, that in total do not impact more than 5% of the total face area of each such type of feature within the mining area). Negligible environmental consequences. 	Mining has not yet occurred under any major cliff areas. Subsidence monitoring has not recorded any rock falls or other impacts. No impacts upon Pambalong Nature Reserve have been recorded.
Biodiversity Threatened species; and Endangered ecological communities (including unspecified Lowland Rainforest EEC).	Negligible environmental consequences.	No mining related impacts have been recorded to date (see Section 6.6).
Heritage Sites Aboriginal heritage sites. Historic heritage.	 No greater subsidence impacts or environmental consequences than predicted in the EA and EA (MOD 3). No greater subsidence impacts or environmental consequences than predicted in the EA and EA (MOD 3). 	No impacts upon Aboriginal or historical heritage have been recorded to date.
Mine workings • First workings under an approved Extraction Plan beneath any feature where performance measures in this table require negligible subsidence impacts, negligible environmental consequences. • Second workings.	 To remain long-term stable and non-subsiding. To be carried out only in accordance with an approved Extraction Plan. 	Subsidence control zones and second workings have been implemented in accordance with the approved Subsidence Management Plans.

Waste oil was stored within 205L drums, 1,000L IBCs or the waste oil tank within the oil store before being removed from site, along with used oil filters and oily rags, by J R Richards & Sons. A purpose built bunded storage container is also utilised to ensure adequate bunded storage is available. Used tyres are removed from site during servicing by Marathon Tyres Pty Ltd for repair or disposal.

Paper, cardboard, steel, aluminium and any other recyclable material was stored separately in 1.5m³ and 3.0m³ skip bins for recycling. Paper, cardboard and general waste material continued to be collected by J R Richards & Sons on a weekly basis whilst scrap metal was also collected by J R Richards & Sons on an as-needs basis. The scrap steel/drum crusher continued to be used.

All general wastes were stored in skip bins and removed by J R Richards & Sons.

The approximate volume of each waste stream generated during the reporting period is presented in **Table 6.7** together with the proportion of waste recycled. The proportion of waste recycled decreased from 74.30% in 2018 to 12.88% in 2019, largely due to a decrease in the volume of scrap steel generated, and subsequently recycled. As is expected, the total volume of wastes has also decreased since the mine entered care and maintenance.

As part of the Company's Environmental Management Strategy, it is a requirement for contractors and employees to minimise waste generation wherever possible and to dispose of all waste in a satisfactory matter. Whilst waste volumes during care and maintenance will remain relatively low, waste volumes will continue to be monitored into the future and opportunities to minimise waste or increase recycling implemented, where appropriate.

Waste	Waste Stream		Total Volume (kg)				
Class	Waste Stream	2016	2017	2018	2019		
Hazardous	Effluent	43,500	0	0	0		
(Recycled)	Lead Acid Batteries	0	0	220	0		
	Empty Drums	0	88	0	16		
	Waste Oil & Oil Filters	6 046	2 900	800	1 100		
	Recycled	20.55%	6.31%	1.11%	5.17%		
Non-	Paper and Cardboard	1 960	1 170	545	1 200		
Hazardous (Recycled)	Confidential Documents	0	0	420	466		
(Necycled)	Scrap Steel	116 560	14 100	66 271	0		
	Timber	4 560	0	0	0		
	Recycled	51.05%	32.24%	73.19%	7.72%		
Hazardous	Hazardous (Disposal) Medical and Sanitary Waste Oily Rags		138	161	238		
(Disposal)			258	54	72		
	Recycled	0.35%	0.84%	0.23%	1.44%		
Non-	Mixed Solid Waste	67 595	28 715	23 390	18 499		
Hazardous (Disposal)	Recycled	28.04%	60.62%	25.46%	85.68%		
Total Waste		241 077	47 369	91 861	21 591		
Recycled Wa	Recycled Waste		18 258	68 256	2 782		
Recycled Wa	aste (%)	71.61%	38.54%	74.30%	12.88%		

Table 6.7Approximate Waste Volumes 2016 to 2019

7. WATER MANAGEMENT

7.1 WATER TAKE

Applicable water licencing held for the Abel Mine operations include Water Supply Works and Applicable water licencing held for the Abel Mine operations include Water Supply Works and Use Approval 20WA218986 and Water Access Licence (WAL) 41525, which provide for up to 500ML of water take annually. The Abel Mine is not actively dewatered in advance of mining, rather passive inflows into the mine workings are transferred to completed mine workings or to the surface.

The net groundwater inflow volume has been estimated to be 178.8ML for the current water year 01 July 2018 to 30 June 2019, well within the 500ML allocation. No take of water from the overlying alluvial aquifers has occurred to date.

No compensatory water has been required to be supplied throughout the life of the mine.

7.2 SURFACE WATER

Environmental Management

As part of the Water Management Plan, Abel Mine transfers water off site to the Big Kahuna Dam and then to Bloomfield CHPP, as required. During the reporting period, a total of 207ML was transferred from the Abel Mine to the Big Kahuna Dam (consisting of groundwater inflows to the underground working and surface flows from the Square Pit, West Pit and Surface Infrastructure Area) and a total of 311ML was transferred from the Big Kahuna Dam to the Bloomfield CHPP. Surface water monitoring sites specified for the Abel Mine are aimed at detecting indirect impacts such as from underground mining activities and activities in the surface infrastructure area. Monitoring at Sites Four Mile Creek Upstream (FMCU) and Four Mile Creek Downstream (FMCD) commenced prior to the commencement of the Abel Mine and serve to provide baseline data. Monitoring at Sites 1, 8, 10 and 11 commenced in 2006 and provide baseline data and can also be used to assess impacts attributable to the Abel Mine.

Environmental Performance

Surface water monitoring data for the reporting period is summarised in **Table 7.1** and presented graphically in **Figure 7.1** with the full graphical presentation since 2008 presented in **Figure 7.2** and data set provided in **Appendix 2**.

Figure 7.1 Surface Water Quality Monitoring Results – 2019

2019 ANNUAL REVIEW Report No.737/23b

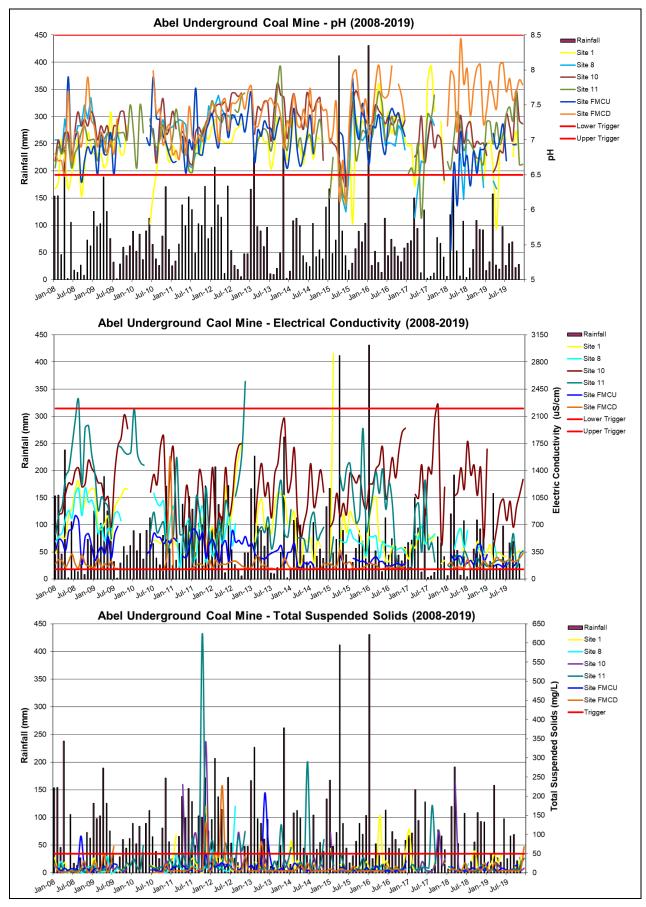


Figure 7.2Surface Water Quality Monitoring Results – 2008 to 2019

Sampling Site [^]	pH [#]	EC (µS/cm) [#]	Turbidity (NTU)	TSS (mg/L)				
	•	,		100 (ilig/L)				
	Upstream of U	Inderground Work	angs					
1	<mark>5.73</mark> – 7.13	193.9 – 443.0	20.9 – 120.0	5 – 50				
	(6.77)	(326.2)	(48.0)	(28)				
8	6.30 – 7.20	275.2 – 498.0	10.9 – 31.2	10 – 26				
	(6.64)	(409.2)	(20.7)	(16)				
10	6.54 – 7.70	410.0 – 1 676.0	5.9 – 45.0	5 – 28				
	(7.04)	(953.2)	(22.85)	(12)				
	Downstream of	Underground Wo	rkings					
11	6.65 – 7.68	160.3 – 588.0	0.7 – 32.0	5 – 38				
	(7.15)	(264.3)	(7.12)	(11)				
FMCU	6.70 – 7.22	151.8 – 314.0	20.0 - 48.1	5 – 28				
	(6.96)	(198.7)	(39.5)	(14)				
FMCD	7.44 – 8.10	147.9 – 332.0	<mark>5.3</mark> – 16.9	5 – <mark>68</mark>				
	(7.75)	(238.5)	(11.3)	(13)				
Trigger Level	6.5 - 8.5*	125 to 2 200*	6 – 50 (NTU)*	50 [@]				
1. Results cover period 01/1/2019 to	31/12/2019			() = Average				
^ See Figure 6.1 [@] Standard I								
Bold Red Text – Exceedance of Tri	gger Level # Field Me	asurement		NS – Not Sampled				

 Table 7.1

 Summary of Water Quality Monitoring Results – 2019¹

Analysis of the results obtained during the reporting period indicates the following.

1. Recorded pH values for two of the six monitoring sites fell below the lower pH water quality trigger value (6.5) for Lowland Rivers in NSW outlined in the *Guidelines for Fresh and Marine Water Quality* (ANZECC 2000) on one to two occasions during the reporting period (see **Figure 7.1**). Both sites, Site 1 and 8, are located upstream of the underground workings. Long-term monitoring records a history of short-term declines in pH. Previously, short term declines in pH have followed significant rainfall events (see April 2015 and January 2016 in **Figure 7.2**). Results which fall below the lower trigger value during this reporting period also appear to follow significant rainfall during March 2019.

It is also noted that there is a divergence of the pH between the Four Mile Creek Upstream (FMCU) and Downstream (FMCD) locations. This is thought to be the result of ongoing leakage from the Stoney Pinch Reservoir above the Four Mile Creek Downstream sample point. As can be seen from the results, the lower pH originates at the upstream location and improves to neutral / slightly alkaline downstream. This is not mine related given that no operational activities or discharges occurred from either the Donaldson Open Cut Coal Mine or Abel Underground Coal Mine.

No other long-term trends in pH are apparent (Figure 7.2).

2. The electrical conductivity (EC) results range between 147.9μ S/cm and $1.676.0\mu$ S/cm for all sites which are within the water quality trigger values for Lowland Rivers in NSW (125 to 2.200μ S/cm) (ANZECC 2000) at all sample sites.

EC does not appear to be strongly correlated with the monthly rainfall. The average EC values upstream are significantly higher than the corresponding downstream values. No long-term trends in EC are apparent..

3. Turbidity (NTU) at upstream Site 1 and total suspended solids (TSS) levels at downstream Sites FMCD, exceeded the respective upper water quality trigger values for Lowland Rivers in NSW (6 to 50 NTU) (ANZECC, 2000) and industry standard TSS criteria (50mg/L). The lower NTU limit was also exceeded at upstream Site 10 and downstream Sites 11 and FMCD.

Consistent with historical trends, TSS and NTU results do not appear to coincide with rainfall (**Figure 7.2**). In fact, the TSS exceedance at Site FMCD in December 2019 occurred during a month of no rainfall (**Figure 7.1**).

Given that that each recorded exceedance did not persist across multiple survey periods, it is considered that short-term, localised conditions rather than mine activities contributed to these levels.

No long-term trends are apparent within the monitoring data. Widely varying results with spikes in turbidity and TSS are not necessarily correlated with monthly rainfall. Baseline monitoring results for both upstream and downstream sites have previously recorded significantly elevated TSS which are considered to form part of the natural variation.

The Environmental Assessment (Donaldson Coal, 2006) predicted no significant impacts upon surface water as a result of the mine activities. The monitoring results to date support that assessment.

Reportable Incidents

No reportable incidents occurred during the reporting period.

Further Improvements

No other surface water control measures are planned or considered necessary.

7.3 **GROUNDWATER**

Environmental Management

Monthly monitoring of regional groundwater levels and groundwater quality was undertaken, where possible, throughout the reporting period in accordance with the Water Management Plan and Integrated Environmental Monitoring Program.

Environmental Performance

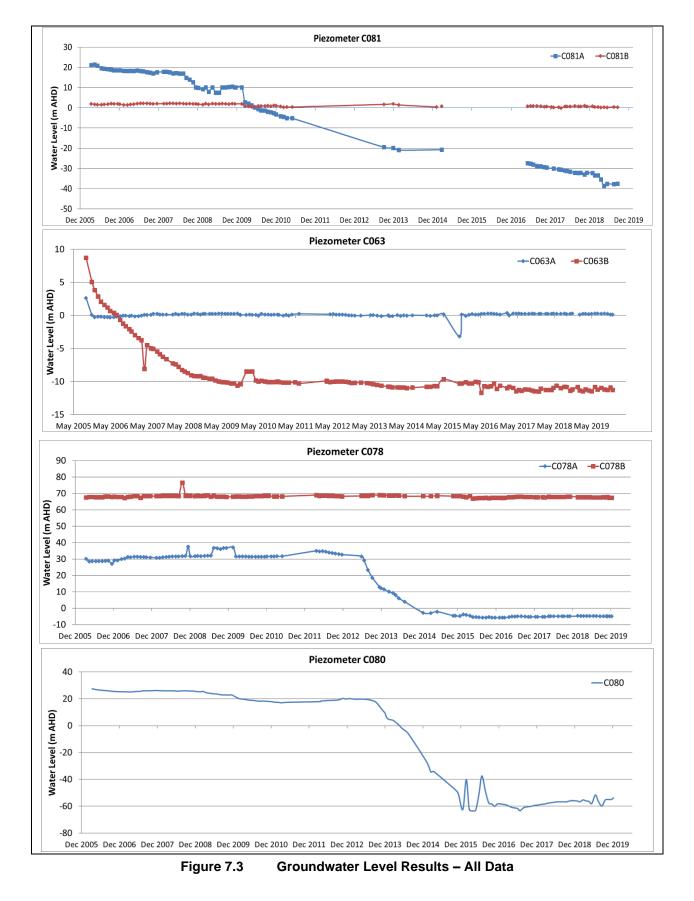
Groundwater Levels

A graphical summary of groundwater level monitoring results relevant to the Abel Underground Coal Mine is provided in **Figure 7.3** and an interpretation of these results is provided as follows.

Monitoring indicates that there is little evidence of any drawdown response in the alluvium or regolith groundwater. In particular Piezometers 81A and 81B are located adjacent the Pambalong Nature Reserve (see **Figure 6.1**). Monitoring results from 81A (single vibrating wire transducer placed within the Lower Donaldson Seam) showed a drawdown response to mining the Donaldson Seam within the Abel Mine. However, Piezometer 81B is screened within overlying shallow Permian strata with water levels remaining stable. The lack of response in the shallow piezometer may indicate minimal mining impact on the Pambalong Nature Reserve.

Piezometers 63A and 63B are located to the east of the Abel Mine adjacent to the F3 Freeway and near the Hexham Swamp (see **Figure 6.1**). It appears that the shallow Piezometer 63B has failed or the bore has collapsed and therefore this piezometer no longer provides useful data. However, Piezometer 63A is screened in the Lower Donaldson Seam and remains operational. Monitoring results from Piezometer 63A remained consistent throughout the reporting period indicating minimal impact from previous mining activities.

Similarly, monitoring results from 78A (standpipe piezometer within the Donaldson Seam) indicated minimal impact until the start of secondary extraction in Panel 23 in June 2013. Drawdown rates stabilised during 2016 and have since remained steady. As for the other nested piezometers, 78B located within the overlaying regolith indicates minimal drawdown response


Piezometer 80 is screened in the Donaldson Seam and located to the south of the mining activities completed to date. An expected drawdown commenced during secondary extraction in Panel 23 June 2013. The decline has steadied since the cessation of mining activities with a steady but modest recovery since mid-2017.

The results indicate that groundwater pressure reduction within the Lower Donaldson Seam resulting from mining has occurred as anticipated and is insulated from shallow and surficial groundwater systems in this area. This is consistent with the predictions within the Environmental Assessment.

Groundwater Inflows

As reported for 2015, between August 2013 and October 2015 inflow volumes could not be accurately estimated as a significant portion of mine water was accumulating in isolated inmine storages. From 01 October 2015 water began reporting from the overflow of the storage areas. Based on a total in-mine storage volume of 459ML, it is calculated that average groundwater inflow ranged from 120ML/year to 240ML/year during that time.

During the 2019 reporting period, groundwater inflows are estimated at 178.8ML. Since the mine was placed on care and maintenance, water has continued to be pumped from the underground workings, however, there have been smaller volumes of inflow and declining outflows. Groundwater model predictions for this stage of mining were for between 800ML and 1,000ML/year. Therefore, the actual inflow rates remain well below the predicted maximum rate.

Groundwater Quality

Groundwater quality monitoring results are presented in **Appendix 2**. A summary of three representative bores located within the Abel underground mine area is presented in **Table 7.2** and **Figures 7.3** with the full graphical presentation since 2008 presented in **Figure 7.4**.

Cullinary of Croanamater Quarty monitoring results 2015				
Sampling Site [#]	рН	EC (μS/cm)		
DPZ – 6	6.59 - 6.96	1 960 – 2 420		
	(6.78)	(2 264)		
DPZ – 13*	No Access	No Access		
JRD2	6.27 – 7.28	146 – 2 550		
	(6.96)	(2 134)		
Source: Donaldson Coal Pty Ltd	() = Average	# see Figure 6.1		
*DPZ – 13 inaccessible during 2019)			

 Table 7.2

 Summary of Groundwater Quality Monitoring Results – 2019

These bores record pH values ranging from slightly acidic to slightly alkaline (6.27-7.28) and EC values between 146μ S/cm and 2550μ S/cm.

Whilst some variations have occurred in pH, monitoring has generally recorded consistent pH values over time with all pH results within previously recorded baseline ranges

A downward trend in EC has previously been observed at bore DPZ13 (**Figure 7.5**) starting in 2010/2011, which may be due to enhanced recharge following drawdowns in the coal measures as a result of mining. Landholder access was unable to be obtained to enable sampling from DPZ-13 during the reporting period to confirm whether this trend had continued or plateaued. Conversely, EC has been relatively consistent within DPZ-6 and JRD2, with monitoring indicating occasional 'outliers' of significantly lower EC. This is likely due to ingress of rainwater temporarily lowering the salinity

For comparison, the Environmental Assessment baseline monitoring reported that the quality of groundwater sampled within the underground mining area of the Abel Mine was variable with total dissolved solids (TDS) ranging from less than 518mg/L to 13 000mg/L, which is approximately equivalent to EC readings of between 865μ S/cm and 21 700 μ S/cm.

Reportable Incidents

No reportable incidents occurred during the reporting period.

Further Improvements

Monitoring will continue in accordance with the current Water Management Plan (WMP).

Abel Underground Coal Mine - pH 2019 200 7.4 Rainfall 7.2 Site DPZ-6 150 7 Site DPZ-13 6.8 Site JRD2 Rainfall (mm) Чd 100 6.6 6.4 50 6.2 6 0 5.8 Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19

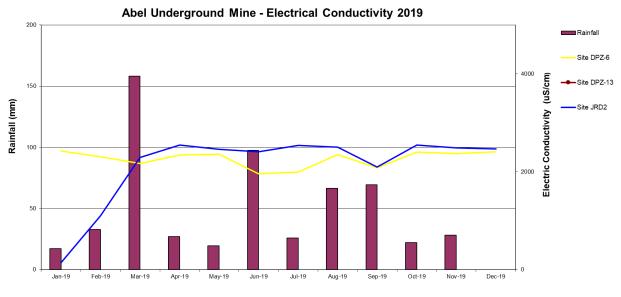


Figure 7.4 Groundwater Quality Monitoring Results – 2019

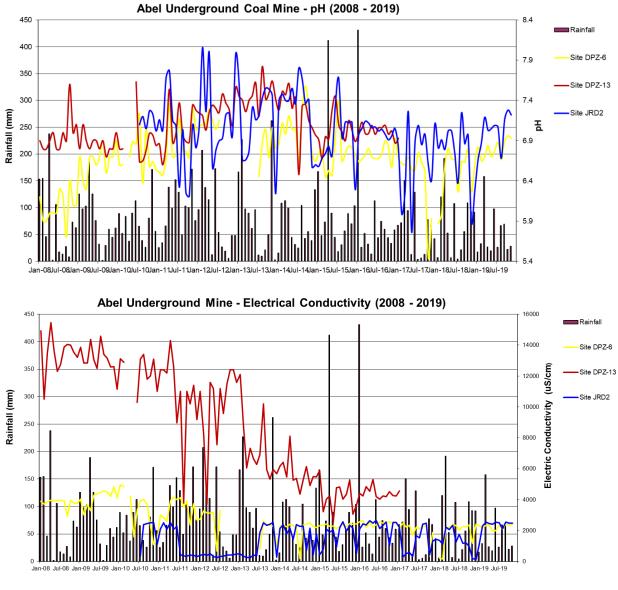


Figure 7.5 Groundwater Quality Monitoring Results – 2008 - 2019

8. **REHABILITATION**

8.1 REHABILITATION PERFORMANCE DURING THE REPORTING PERIOD

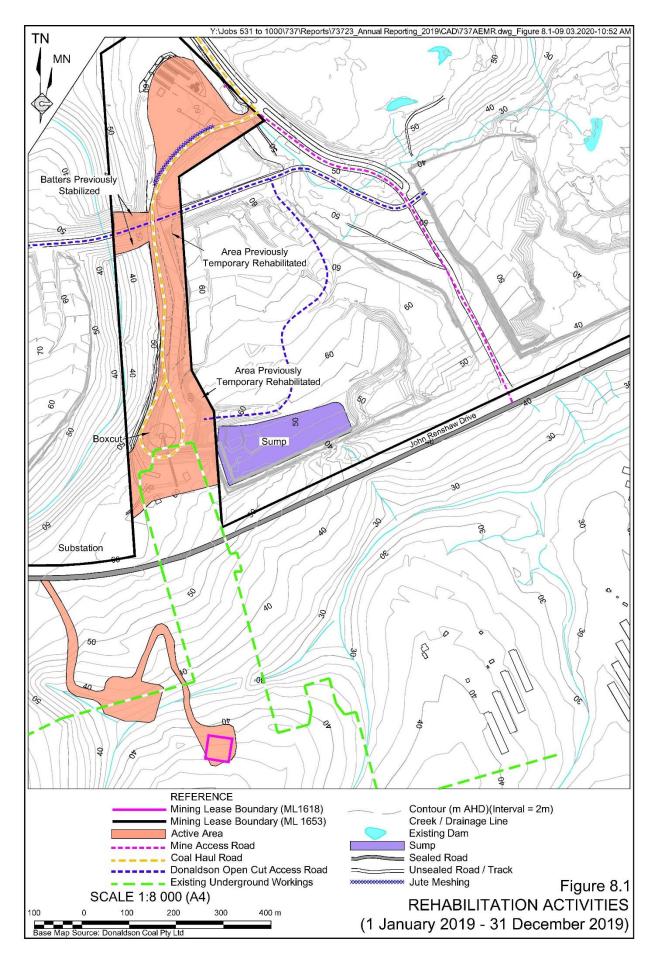
Figure 8.1 shows the status of rehabilitation and a summary of the areas of rehabilitation is provided in Table 8.1.

Rehabilitation Summary			
Mine Area Type	Previous Reporting Period (Actual)	This Reporting Period (Actual)	Next Reporting Period (Forecast)
	Year 10 (ha)	Year 11 (ha)	Year 12 (ha)
Total mine footprint	13.15 ¹	13.15 ¹	13.15 ¹
Total active disturbance	13.15 ²	13.15 ²	13.15 ²
Land being prepared for rehabilitation	0	0	0
Land under active rehabilitation	0	0	
Completed rehabilitation	0	0	0
Notes:			
 Includes 0.41ha associated with the relating to the upcast ventilation sha rehabilitated also included. 			

Table 8.1 ehabilitation Summary

2: Whilst some areas have been temporarily rehabilitated, all areas within ML 1618 surface infrastructure area are considered to be 'active'.

A wild dog and fox baiting program was undertaken by Enright Land Management in October 2019 in consultation with surrounding landholders.


Within the surface infrastructure area, no permanent buildings were structurally altered, renovated or removed during the reporting period and, other than regular inspection and maintenance of previously temporarily rehabilitated areas (i.e. batter slopes) and retained vegetation, no specific rehabilitation activities were undertaken. Maintenance activities completed included scheduled equipment maintenance, regular security patrols of boundary fencing to prevent unauthorised access, and ongoing control of weeds (e.g. Pampas Grass) across the entire surface infrastructure area.

No rehabilitation trials or research was undertaken during the reporting period and there were no variations to the rehabilitation activities as outlined within the approved Mining Operations Plan.

There are currently no specific issues affecting the ability to successfully rehabilitate the site and therefore no specific management measures.

DONALDSON COAL PTY LTD Abel Underground Coal Mine

DONALDSONCOAL Part of the Yancoal Australia Group No rehabilitation areas became available for sign off by the Resources Regulator and no final land use objectives were met during the reporting period. As the Abel Mine is an underground operation, the only significant rehabilitation will be during mine decommissioning. As outlined within the approved 2019 Mining Operations Plan, during decommissioning the creation of the final landform will involve blasting of the western side of the Abel Box Cut (as part of final landform creation within the West Pit) followed by grading using a dozer to create a maximum slope of 18 degrees. The northern side of the Abel Box Cut will also be blasted and graded to a maximum of 10 degrees, with a permanent vehicle access and egress ramp constructed to allow access to the final void for ongoing monitoring and management.

Surface infrastructure areas located within existing forested areas, such as the substation and ventilation shafts, will be returned to native vegetation. The current post-mining land use goal for the Abel Box Cut is for use as water storage suitable for use in surrounding mining operations.

8.2 ACTIONS FOR THE NEXT REPORTING PERIOD

No specific rehabilitation works are planned during the next reporting period and no major rehabilitation work will be able to be undertaken until the decommissioning of the site. Any surface cracks that appear will be backfilled, compacted, topsoiled and seeded and ongoing repairs to any subsidence damage to public roads will be completed in accordance with the approved subsidence monitoring and management plans. Notably, any further rehabilitation works to Blackhill Road will be completed by the Subsidence Advisory NSW.

Maintenance works, such as erosion and sediment control, and ongoing control of weeds and feral pests will also be undertaken as required.

In addition to these works, a closure strategy will be developed for the West and Square Pits addressing the closure pathways should mining recommence at the Abel Underground Coal Mine or if mining does not recommence.

9. COMMUNITY

9.1 COMMUNITY COMPLAINTS

No complaints were received during the 2019 reporting period. The last complaint was received on 9 October 2017. Since commencement of the Abel Mine, a total of seven complaints have been received which are summarised in **Table 9.1** and presented on the Donaldson website. Given that no further complaints have been received and the Abel Mine is currently under care and maintenance, no specific actions are currently deemed necessary.

Location	Date of Complaint	Comments
Blackhill	24/04/2009	Light from Donaldson Open Cut/Abel shining towards house and is very bright. Light was turned down.
EPA	22/06/2015	Complaint about noise from trucks on 5th and 18th June 2015. Advised the EPA officer that there had been no change to truck movements on site and that the recent noise monitoring in May 2015 showed compliance with Licence limits.
Browns Road, Black Hill	17/07/2015	A resident in Brown's Road Black Hill lodged a complaint with the EPA regarding truck noise on 16/07/15 at 20:30hrs. Quebe provided data that trucks were parked up at that time. Advised the EPA officer. No further action.
John Renshaw Drive	3/09/2015	Complaint received regarding sulphur smell for the last month. Complainant told the EPA that it was the mine on John Renshaw Drive that was owned by Ashton company. Advised EPA that there was no odour emanating from site.
Meredith Road Black Hill	1/10/2015	Concerned about subsidence to his property and Meredith Road. Repairs undertaken in accordance with the Property Subsidence Management Plan.
210 Meredith Road Black Hill	2/10/2015	Concerned about subsidence damage to Meredith Road/Blackhill Road. Repairs undertaken in accordance with Property Subsidence Management Plan.
Avalon Drive, Thornton	9/10/2017	Complainant has experienced a "dramatic increase" in coal dust around her property since moving there 4 years ago. Provided response to complainant indicating that this corresponded with the closure and rehabilitation of Donaldson Open Cut. Abel Underground has been placed in Care and Maintenance with no coal mined, processed or transported since mid-2016.
Source: Donalds	on Coal	

Table 9.1 Community Complaints Summary

9.2 COMMUNITY LIAISON

The principal formal community consultation undertaken is the Community Consultative Committee. In accordance with *Schedule 6 Condition 6* of PA 05_0136, the Company has established a Community Consultative Committee for the Abel Mine. During the reporting period, the committee consisted of:

- four representatives of the local community (Mr Alan Brown, Mr Allan Jennings, Mr Terry Lewin, Mr Brad Ure);
- a representative from Bloomfield Colliery (Mr Greg Lamb);
- four representatives from the Company (Mr Tony Sutherland, Mr William (Bill) Farnworth, Mr James Benson and Mr Phillip Brown); and
- a representative from Cessnock Council (Clr Melanie Dagg).

The committee was chaired by Mrs Margaret MacDonald-Hill, an independent chairperson appointed as the independent Chair by the Secretary, Department of Planning and Environment.

The committee held a total of two meetings during the reporting period (4 March and 9 September 2019). The meetings have continued to provide an opportunity for the Company to keep the community up to date with activities undertaken and programmed at the Abel Mine and for community members to table issues relating to the Abel Mine for the Company's consideration. It is noted that the Company provided presentations during each meeting to provide updates on the mine development / care and maintenance, environmental monitoring, subsidence management, planning, and other relevant matters.

Copies of minutes and presentations are available on the Donaldson Coal Website at www.doncoal.com.au.

10. INDEPENDENT AUDIT

The last independent environmental audit of the mine was undertaken in December 2018, in accordance with *Schedule 5 Condition 5* of PA 05_0136 for the period 20 March 2015 to 20 December 2018. The independent audit report was finalised in February 2019 and confirmed that the areas inspected were generally satisfactory and that mining has occurred generally in accordance with the approved mine plan. The audit identified a total of six (6) non-compliances against PA 05_0136 for the audit period, of which four (4) can be considered relevant to the 2018 reporting period (see Section 11). No non-compliances were recorded against ML1683.

A range of recommendations were provided within the audit and a response plan prepared. A status review of these responses is provided in **Table 10.1** and will continue to be updated as part of the Annual Review for the next reporting period.

The next independent environmental audit is due 2021.

Table 10.1Independent Audit Action Response Plan Status

Page 1 of 6

Ref	Description	Donaldson Response	Timeline	Status Update
Section 4	Annual groundwater reporting in the Abel Mine Annual Review should include graphical presentations of water level data to indicate trends. These should continue to be included in Annual Review's during care and maintenance phase for bores approved in the revised WMP	The Abel Annual Review will continue to provide graphical representation of relevant groundwater bores within the relevant section of the document.	31 March 2019	Graphical summaries were presented in the 2018 Annual Review and are presented in Section 7.3 of this Annual Review.
PA 05_013	36 Compliance Recommendations			
Various	Work with relevant regulators to resolve where possible all of the non-compliances.	Accept recommendation and continue to work with regulators to resolve non-compliances.	As and when required	Compliance status update provided in Sections 1 and 11 of this Annual Review.
Sch 3 Cond 1	 Blue Gum Creek and Long Gully – Water Quality Recommend for future Trigger Level EC exceedances, assessment of metals (Fe, AI and Mn) are used to assess whether change in EC is mining induced. Trigger values for metals should also be included for Site 10 in Table 3.7 of the WMP. Further consideration of this trigger level in the revised WMP should be undertaken in consultation with a relevant water specialist and relevant regulators in consideration of distance to active mining. Pambalong Nature Reserve – Groundwater Levels Recommend monthly monitoring at Piezometer C081B or in accordance with approved WMP. Further consideration of this trigger level in the revised WMP should be undertaken in consultation with a relevant groundwater specialist and relevant regulators in consideration of distance to active mining. Recommend monthly monitoring at Piezometer C081B or in accordance with approved WMP. Further consideration of this trigger level in the revised WMP should be undertaken in consultation with a relevant groundwater specialist and relevant regulators in consideration of distance to active mining. Recommend the following updates to the WMP: Revision of Piezometer Monitoring Sites for Pambalong Nature Reserve to ensure the piezometer relevant to the feature; and Clarify Trigger Level 1 and 2 for Groundwater levels 	The Water Management Plan will be reviewed and updated in 2019. This update will include a review of trigger actions that determine if a change in water quality is mining induced. Abel Coal Mine will update the Water Management Plan in 2019 and review comments provided by the audit team. A water specialist will, where relevant, incorporate comments into the updated management plan.	30 April 2019	The Water Management Plan was reviewed and updated during the reporting period with DPIE approval received 04 June 2019.

	Page 2 of			
Ref	Description	Donaldson Response	Timeline	Status Update
PA 05_01	36 Compliance Recommendations (Cont'd)	•		·
Sch 4 Cond 10b)	Recommend dust gauges re-sited (if not being removed from program).	A dust gauge audit will be conducted to identify any non-complying dust gauges with corrective actions put in place to ensure compliance. An update to the Air Quality Management Plan will propose the removal of Dust Gauges.	31 March 2019 30 April 2019	The Air Quality Management Plan was reviewed and updated with DPIE approval received 04 June 2019. The updated Plan provides for the cessation of deposited dust monitoring during care and maintenance, thereby removing the need to undertake an audit of the gauges. A variation to EPL 12856 was also submitted with comments on the draft variation returned to EPA on 24 January 2020. Deposited dust monitoring will continue until the EPL variation is finalised.
Sch 4 Cond 23	Coal Transport records are consistently made publicly available on website when production recommences	All coal transport records are up to date to the end of 2018 on the Donaldson Coal Website. This will occur on an annual basis at the start of the new year.	31 January 2019	The 2018 coal transport report is available on the Donaldson Coal website. Further coal transport reports will be uploaded following recommencement of mining.
Sch 4 Cond 24c)	Audit be undertaken to confirm compliance at lighting components which will operate in next period (e.g. CHPP and rail loadout)	On recommencement of mining, including use of the Bloomfield CHPP and Rail Loadout, Abel will recommission currently disused lights for use at night time. At this point, Abel will conduct an audit against AS4282.	When mining recommences	Not yet applicable – mining has not yet recommenced.
PA 05_01	36 MOD3 Continual Improvement Recommendations			
Sch 2 Cond 4	Follow up with WaterNSW to resolve Certificate of Title for WAL 41525 being incorrectly labelled to a water source.	WaterNSW will be contacted again in February 2019 to follow up on the Abel Certificate of Title for WAL 41525.	28 February 2019	Water NSW have been regularly followed up regarding resolution of this. Still awaiting correctly labelled certificate with conditions.
Sch 2 Cond 9	Include a statement in the relevant Annual Review that discusses transportation of product coal produced on the Bloomfield site via the Bloomfield Rail Loop, and Rail Spur and the Main Northern Railway.	Accept recommendation and incorporate statement into the 2018/19 Annual Review.	31 March 2019	Commentary included in Section 2.1 of this Annual Review.
Sch 2 Cond 11	Include a statement in the Annual Review that discusses alterations and additions to building and structures.	Accept recommendation and incorporate statement into the 2018/19 Annual Review.	31 March 2019	Statement included in Section 8.1 of this Annual Review.

Ref	Description	Donaldson Response	Timeline	Status Update
PA 05_01	36 MOD3 Continual Improvement Recommendations (C	ont'd)		
Sch 3 Cond 1	"Minor Cliff" definition be clarified on review of EP/management plans.	 Minor Cliff's will be defined in the next update to the Subsidence Monitoring Program required under the Extraction Plan. 	When mining recommences	Not yet applicable – mining has not yet recommenced.
	• Whilst mining, AEMR include PA 05_0136 Table 2 and a tabulated summary of impacts and conclusions.	 The 2018/19 Abel Annual Review and future Annual reviews will include a tabulated summary of impacts and conclusions as outlined in Table 2. 	31 March 2019	Tabulated summary included in Section 6.8 of this Annual Review.
	• Labelling of Water Quality Monitoring Sites 9 and 10 in AEMR are consistent with that shown in the WMP.	 Water quality labels of sites 9 and 10 will be reviewed and addressed in the 2018/19 Annual Review. 	31 March 2019	The labelling on Figure 6.1 of the 2018 Annual Review (and this Annual Review) has been updated.
	 If mining recommences, a clear definition of GDEs in the Hexham Swamp be documented (impacts and monitoring). 	• When mining recommences the Water Management Plan (WMP) will require an update. If mining recommences, a definition will be included in the WMP of Groundwater Dependent Ecosystems.	When mining recommences	Not yet applicable – mining has not yet recommenced.
Sch 3 Cond 4p)	Future TARPs include Trigger Levels for Groundwater Drawdown, especially at bores relevant to Pambalong Nature Reserve (excluded from Area 4 EP).	The next update to the Extraction Plan will review the trigger levels for TARPs relating to the Pambalong Nature Reserve.	When mining recommences	Not yet applicable – mining has not yet recommenced.
Sch 3 Cond 6	No written evidence was provided that first working in South Mains were designed to DRG's satisfaction. Recommend a response is sought for any future first workings in accordance with this condition prior to works being undertaken.	On the recommencement of mining, Abel Mine will seek a written response from the relevant authority confirming that first workings are designed to the satisfaction of the DRE	When mining recommences	Not yet applicable – mining has not yet recommenced.
Sch 3 Cond 11	When revising Service Boreholes Management Plan, include mitigation and management measures for visual impacts and compensation for noise, air and visual impacts.	Accept recommendation and incorporate mitigation and management measures into the next update of the Service Boreholes Management Plan.	When mining recommences	Not yet applicable – mining has not yet recommenced.
Sch 4 Cond 1	Remove Location K from PA 05_0136 Table 4 and any other strategy, plan or program.	There is no proposed modification to PA 05_0136 where Location K will be removed. This recommendation will be considered with any future modification.	Noted	No modification currently planned.
Sch 4 Cond 3	Include statement in AEMR that reports on Cumulative Noise Criteria.	Accept recommendation and incorporate into the 2018/19 Annual review.	31 March 2019	Statement included in Section 6.3 of this Annual Review.

Page 3 of 6

Page 4 of 6			
Description	Donaldson Response	Timeline	Status Update
36 MOD3 Continual Improvement Recommendations (C	ont'd)		
Clarify noise mitigation process in NMP under meteorological conditions to which noise limits do not apply.	Accept recommendation and incorporate into the 2019 update of the Noise Management Plan.	30 April 2019	The Noise Management Plan was reviewed and updated during the reporting period with DPIE approval received 04 June 2019.
Energy efficiency opportunities for the Abel Underground Mine to be identified, assessed and reported through a series of five year assessment cycles in accordance with the Energy Efficiency Opportunities Act 2006 (EEO Act, 2006).	Energy Efficiencies will be identified in the updated 2019 Air Quality Management Plan. Compliance with the Energy Efficiency Opportunities Act 2006 will be managed by Yancoal Corporate who are the 'controlling corporation' as defined by the EEO Act, 2006.	30 April 2019	The Air Quality Management Plan was reviewed and updated during the reporting period with DPIE approval received 04 June 2019. It is noted that the EEO Act 2006 was repealed in 2014.
Recommend clearly labelling column on water transfer amounts on site spreadsheet e.g. "Transfer from Big Kahuna to Lake Kennerson (ML)" and including pumped volumes in Annual Review	Accept recommendations and update site water spreadsheet and incorporate into 2018/19 Abel Annual Review.	28 February 2019	The spread sheet has been updated as recommended.
volumes in Annual Review.		31 March 2019	The volume transferred during this reporting period is reported in Section 7.2 of this Annual Review.
Recommend that refresher training provided to any personnel on site to ensure that waste management and waste bins handled correctly (see Plates 7, 8, 10, 14, 15 and 18).	A tool box talk will be provided to all operational personnel onsite in March 2019 to outline the correct handling of waste onsite.	31 March 2019	A waste management presentation was presented to all operational personnel in March 2019.
Investigate redundant tank (see Plate 19) and respond accordingly. Confirm source of which pipe below operating sewage system to confirm it is benign.	A review of the future requirements for the redundant tank will be undertaken and actions reported in the 2019/20 Annual Review. The contractor that services the sewerage treatment plant (STP) at Abel has been approached to determine the source of the	31 March 2019	Site personnel have inspected and do not believe the pipe is connected to the sewage system. Advice was received from the wastewater treatment contractor confirming that the pipe is not associated with the STP but is rather a stormwater pipe draining from
Bush Fire Response Procedure Section be added to site induction presentation at next review.	pipe below the STP. The Abel Site Familiarisation Induction currently covers the Emergency Muster Area	Noted	the car park. No further actions required. No further action required.
	 36 MOD3 Continual Improvement Recommendations (C Clarify noise mitigation process in NMP under meteorological conditions to which noise limits do not apply. Energy efficiency opportunities for the Abel Underground Mine to be identified, assessed and reported through a series of five year assessment cycles in accordance with the Energy Efficiency Opportunities Act 2006 (EEO Act, 2006). Recommend clearly labelling column on water transfer amounts on site spreadsheet e.g. "Transfer from Big Kahuna to Lake Kennerson (ML)" and including pumped volumes in Annual Review. Recommend that refresher training provided to any personnel on site to ensure that waste management and waste bins handled correctly (see Plates 7, 8, 10, 14, 15 and 18). Investigate redundant tank (see Plate 19) and respond accordingly. Confirm source of which pipe below operating sewage system to confirm it is benign. Bush Fire Response Procedure Section be added to site 	Between the series of five year assessment cycles in accordance with the Energy Efficiency Opportunities Act 2006 (EEO Act, 2006). Accept recommendation and incorporate into the 2019 update of the Noise Management Plan. Recommend clearly labelling column on water transfer amounts on site spreadsheet e.g. "Transfer from Big Kahuna to Lake Kennerson (ML)" and including pumped volumes in Annual Review. Accept recommendations and update site water spreadsheet and incorporate into 2018/19 Abel Annual Review. Recommend that refresher training provided to any personnel on site to ensure that waste management and waste bins handled correctly (see Plates 7, 8, 10, 14, 15 and 18). A tool box talk will be provided to all operational personnel onsite in March 2019 on the future requirements for the redundant tank will be undertaken and actions reported in the 2019/20 Annual Review. Investigate redundant tank (see Plate 19) and respond operating sewage system to confirm it is benign. A review of the future requirements for the redundant tank will be undertaken and actions reported in the 2019/20 Annual Review. Bush Fire Response Procedure Section be added to site The Abel Site Familiarisation Induction	36 MOD3 Continual Improvement Recommendations (Cont'd) Clarify noise mitigation process in NMP under meteorological conditions to which noise limits do not apply. Accept recommendation and incorporate into the 2019 update of the Noise Management Plan. 30 April 2019 Energy efficiency opportunities for the Abel Underground Mine to be identified, assessment cycles in accordance with the Energy Efficiency Opportunities Act 2006 (EEO Act, 2006). Energy Efficiencies will be identified in the updated 2019 Air Quality Management Plan. Compliance with the Energy Efficiency Opportunities Act 2006 (EEO Act, 2006). 30 April 2019 Recommend clearly labelling column on water transfer mounts on site spreadsheet e.g. "Transfer from Big Kahuna to Lake Kennerson (ML)" and including pumped volumes in Annual Review. A tool box talk will be provided to all operational personnel ons ite to ensure that waste management and 18). 31 March 2019 Recommend that refresher training provided to any vaste bins handled correctly (see Plates 7, 8, 10, 14, 15 onsite. A tool box talk will be provided to all operational personnel onsite in March 2019 to outline the correct handling of waste onsite. 31 March 2019 Investigate redundant tank (see Plate 19) and respond accordingly. Confirm source of which pipe below operating sewage system to confirm it is benign. A review of the future requirements for the redundant tank will be undertaken and actions reported in the 2019/20 Annual Review. 31 March 2019 Bush Fire Response Procedure Section be added to site induction presentation at next review. The Abel Site Familiarisation Induction currently covers the Emer

Ref	Description	Donaldson Response	Timeline	Status Update
PA 05_0136 MOD	3 Continual Improvement Recommendations (Cont'd)			
Sch 4 Cond 29e)	Complete mine closure plan at least 5 years prior to closure or consent expiry date.	Accept recommendation and complete Mine Closure Plan 5 years prior to closure.	Noted	Currently no further action. Mine is currently in care and maintenance. Consent does not expire until 2030.
Sch 6 Cond 1f)	Recommend adding links to EMS attached documents or including as appendix to EMS.	Accept recommendation and on next update of the EMS, provide a link to the 'Abel Management Plans' page on the Donaldson Coal website.	Next update of the EMS	The Environmental Management Strategy (dated August 2018) has yet to be updated but will be reviewed during the next reporting period.
Sch 6 Cond 2	Condition list made into a table and included in each revised management plan during care and maintenance and demonstrate where each is addressed.	Accept comments and incorporate into future updates of Management Plans.	30 April 2019	The review and update of various management plans was completed and the plans approved 4 June 2019. The updated plans include a summary of relevant requirements and where each is addressed in the plan.
SOCs	Recommended that at next project approval modification (if mining recommences), a full review of the SOCs are undertaken and any commitments which are duplicative of development consent conditions are sought to be removed with a relevant justification.	Accept comment and action in the next modification of Abel Coal.	When mining recommences	Not yet applicable – mining has not yet recommenced.
Management Plans	Most plans required update for care and maintenance status. Detail in table A and B should be considered during this review. The plans would all benefit from clarification of what responsibilities are Bloomfield's (CHPP and rail loadout) and which are care and maintenance activities and as such the responsibility of Abel Mine.	Abel Coal Mine will update relevant management plans in 2019 and review comments provided by the audit team and where relevant, incorporate comments into the updated management plans.	30 April 2019	The review and update of various management plans was completed with agency comments addressed and final approval sought from DPIE 4 June 2019.
	Some of the changes will be inconsistent with the SOCs which include significant detail which is more suited to inclusion in the management plans.	Updated plans will be specific for Care and Maintenance and include a clarification of the responsibility		
	An appendix should include evidence of consultation with relevant regulators for each plan. Address recommended changes to each plan as listed in Table A of Appendix D. The RMP should include confirmation of where topsoil is stored and confirmation that adequate volumes exist to achieve the nominated final land use.	boundaries between Abel and Bloomfield. A summary of management plan status will be included in the Abel 2019/20 Annual Review.	31 March 2020	A summary of the management plans is provided in Section 4.2 of this Annual Review.

Page 5 of 6

	Page 6 of 6			
Ref	Description	Donaldson Response	Timeline	Status Update
EPL12856				
A1	Recommend that consideration be given to a variation to reduce the 'coal works' scale as mine in care and maintenance status. This assumes that CHPP and rail loadout facilitates are included in Bloomfield's EPL.	Abel will review this recommendation and determine the benefits of a license variation. A variation will be applied for if it is determined there is a benefit in reducing the scale of coal works on the sites license.	Noted	Comments on draft EPL variation returned to EPA 24 January 2020. Awaiting final issue of varied EPL.
P1	Recommend updating this condition when management plans updated. Consideration should be given to seek reduction or removal of depositional dust gauges from program.	A variation to the locations of monitoring sites was submitted to the EPA in 2018. The variation is currently being assessed by the EPA. Further review of locations within site management plans may trigger another variation if required.	Noted	Comments on draft EPL variation returned to EPA 24 January 2020. Awaiting final issue of varied EPL.
L2	Recommend updating noise monitoring locations and meteorological condition limit wording to make consistent with those shown in PA 05_0136 whilst operational.	A review of the noise monitoring locations and meteorological condition limit wording will be conducted with the update to the Noise Management Plan.	30 April 2019	The Noise Management has been updated and removes location K from the active monitoring locations. Whilst noise limits are specified within EPL 12856 for additional locations it does not specify that noise must be monitored at every (or any) location. Therefore, there is no inconsistency with the updated Noise Management Plan. Notwithstanding, noise monitoring has been requested to be removed from the EPL. Awaiting final issue of varied EPL
O4	Seek removal/amendment to condition O4.2 as no sprays are utilised by the septic system.	There is no plan to remove condition O4.2 from the EPL. Abel Coal may utilise sprays in future adjustments to the Sewerage Treatment Plant.	Noted	No further action required.
U1.3-1.5	Recommend requesting U1 removed at next variation as it has been completed	Accept recommendation and incorporate into the next EPL variation.	Noted	Comments on draft EPL variation returned to EPA 24 January 2020 requested removal of this condition. Awaiting final issue of varied EPL
ML1618			•	
11	Date of when mine entered Care and Maintenance is reported in the Annual Mining Lease Group Exploration report as being 02 May 2016, this date is not consistent with other reports e.g. the 2017 AEMR states mine entered care and maintenance on 28 April 2016. Recommend updated in next report.	Accept and incorporate into the next Annual Mining Lease Group Exploration report or Annual Review dependent on a review of the agreed date	31 March 2019	The official date the Abel Mine entered care and maintenance has been confirmed as 2 May 2016. This is reflected in the 2018 and 2019 Annual Reviews and will be reflected in future reporting.

11. INCIDENTS AND NON-COMPLIANCES DURING THE REPORTING PERIOD

During the reporting period there were no:

- reportable incidents or exceedances; or
- official cautions, warning letters, penalty notices or prosecution proceedings.

As discussed in Section 5, a Section 240(1)(c) notice was received directing the Company to undertake a range of actions. This notice is not a non-compliance or penalty notice. The status of the required actions is discussed in **Table 5.1**.

One administrative non-compliance was recorded for the reporting period. PA 05_0136 Schedule 2 Condition 11 requires that all new buildings and structures, and any alterations or additions are constructed in accordance with the relevant requirements of the BCA. Whilst Construction Certificates have been received for buildings within the surface infrastructure area, the Occupation Certificates have not yet been received. The certifying body inspected once and requested changes prior to issuing the Occupation Certificate. The requested changes have been made and the certifying body requested to reinspect. However, the certifying body has not yet issued the final certificate. This will continue to be followed up.

12. ACTIVITIES TO BE COMPLETED IN THE NEXT REPORTING PERIOD

As outlined in Section 4.3, a range of monitoring, including surface water, groundwater, flora and fauna and subsidence monitoring are planned during the next reporting period. This monitoring represents the monitoring approved through the updated management plans for care and maintenance. Notwithstanding, the need for and frequency of monitoring is to be continually reviewed together with corresponding management plans to ensure that an appropriate level of monitoring and management during care and maintenance is undertaken.

Appendices

(No. of pages including blank pages = 550)

Appendix 1	Noise Monitoring Reports (330 pages)
Appendix 2	Air and Water Monitoring Results (30 pages)
Appendix 3	2018/2019 Annual Monitoring Pambalong Nature Reserve (110 pages)
Appendix 4	Aquatic Monitoring Report: Autumn 2019 and Spring 2019 (54 pages)
Appendix 5	Subsidence Management Plan – End of Year Report 2019 (24 pages)

This page has intentionally been left blank

Appendix 1

Noise Monitoring Reports

- 1. Quarterly Noise Monitoring, Quarter Ending March 2019
- 2. Quarterly Noise Monitoring, Quarter Ending June 2019
- 3. Quarterly Noise Monitoring, Quarter Ending September 2019
- 4. Quarterly Noise Monitoring, Quarter Ending December 2019

(No. of pages including blank pages = 330)

This page has intentionally been left blank

DONALDSON AND ABEL COAL MINES

Quarterly Noise Monitoring Quarter Ending March 2019

Prepared for:

Donaldson Coal Pty Ltd PO Box 675 Green Hills 2320

SLR

SLR Ref: Q73 630.01053-R01 Version No: -v1.0 January 2020

PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: newcastleau@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Donaldson Coal Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
Q73-630.01053-R1D1	24 January 2020	Jordan Murray	Martin Davenport	Martin Davenport

CONTENTS

1	INTRODUCTION
1.1	Background
1.2	Objectives of this Report5
1.3	Acoustic Terminology
2	DEVELOPMENT CONSENT PROJECT APPROVAL
2.1	Donaldson Coal Mine Development Consent Conditions
2.2	Abel Coal Mine – Project Approval
3	NOISE MONITORING METHODOLOGY
3.1	General Requirements
3.2	Monitoring Locations
3.3	Unattended Continuous Noise Monitoring14
3.4	Operator Attended Noise Monitoring14
4	OPERATOR ATTENDED NOISE MONITORING14
4.1	Results of Operator Attended Noise Monitoring14
4.2	Operator Attended Noise Monitoring Summary
4.2.1	Donaldson Mine
4.2.2	Abel Coal Mine
4.3	Compliance Assessment and Discussion of Results20
4.3.1	Operations
4.3.2	Sleep Disturbance
5	UNATTENDED CONTINUOUS NOISE MONITORING 22
5.1	Results of Unattended Continuous Noise Monitoring22
5.2	Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine
5.2.1	Ambient LA90 Noise Levels
5.2.1.1	Baseline
5.2.1.2	Previous Quarter
5.2.1.3	Coinciding Period Last Year
5.2.2	Ambient LA10 Noise Comparison
5.2.2.1	Baseline
5.2.2.2	Previous Quarter
5.2.2.3	Coinciding Period Last Year
5.3	Rail Noise Monitoring

CONTENTS

	_	
1	С.	
	n	
	v	

CONCL

CLUSION	

DOCUMENT REFERENCES

TABLES

Table 1	Monitoring Locations	13
Table 2	Location D, Black Hill School, Black Hill	
Table 3	Location F, Lot 684 Black Hill Road, Black Hill	
Table 4	Location G, 156 Buchannan Road, Buchannan	17
Table 5	Location I, Magnetic Drive, Ashtonfield	18
Table 6	Location J, Parish Drive, Thornton	
Table 7	Location L, Kilshanny Ave, Ashtonfield	20
Table 8	Compliance Noise Assessment – Operations	
Table 9	Compliance Noise Assessment – Sleep Disturbance	21
Table 10	Noise Logger and Noise Monitoring Locations	22
Table 11	Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)	23
Table 12	LA90 Results Comparison – Baseline	27
Table 13	LA90 Results Comparison – Previous Quarter	28
Table 14	LA90 Results Comparison – Coinciding Period Last Year	29
Table 15	LA10 Results Comparison – Baseline	33
Table 16	LA10 Results Comparison – Previous Quarter	34
Table 17	LA10 Result Comparison – Coinciding Period Last Year	35
Table 18	Coal Train Loading Operations Log	

FIGURES

Figure 1	Long term Daytime LA90 Noise Levels	.24
Figure 2	Long term Evening LA90 Noise Levels	. 25
Figure 3	Long term Night-time LA90 Noise Levels	.26
Figure 4	Long term Daytime LA10 Noise Levels	. 30
Figure 5	Long term Evening LA10 Noise Levels	.31
Figure 6	Long term Night-time LA10 Noise Levels	. 32

APPENDICES

- Appendix A Acoustic Terminology
- Appendix B Calibration Certificates
- Appendix C Noise Monitoring Locations
- Appendix D Statistical Ambient Noise Levels

1 Introduction

1.1 Background

Donaldson Coal Pty Ltd has commissioned SLR Consulting Australia Pty Ltd (SLR) to conduct quarterly noise monitoring surveys for the Donaldson Coal Mine and Abel Coal Mine during the December 2018 quarter in accordance with the Abel Mine Project Noise Monitoring Program, dated 12 August 2014.

1.2 Objectives of this Report

The objectives of the noise monitoring survey for this operating quarter were as follows:

- Measure the ambient noise levels at six focus receptor locations (potentially worst affected) surrounding Donaldson Coal Mine and Abel Coal Mine.
- Qualify all sources of noise within each of the attended surveys, including estimated contribution or maximum level of individual noise sources.
- Assess the noise emissions of Donaldson Coal Mine and Abel Coal Mine with respect to the limits contained in the Development Consent.

1.3 Acoustic Terminology

The following report uses specialist acoustic terminology. An explanation of common terms is provided in **Appendix A**.

2 Development Consent Project Approval

Development consent was obtained by Donaldson Coal Pty Ltd for the Donaldson Mine in October 1999 following a Commission of Inquiry. Development Consent number N97/00147 was issued by the Minister for Urban Affairs pursuant to Section 101 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

Project Approval (Application No. 05_0136) granted by the Minister of Planning was obtained by Donaldson Coal Pty Ltd for Abel Coal Mine in 2007.

2.1 Donaldson Coal Mine Development Consent Conditions

The Development Consent nominates hours of operation and mine noise emission goals in the Sections entitled "Operation of Development, Condition No. 3(1) and 3(2)", and "Noise and Vibrational Noise Limits: Condition No. 15" as follows:

3.(1) Subject to (2) the approved hours of operation are as follows:

Works	Period	Hours
<i>Construction, including construction of any bunds</i>	Monday to Friday Saturday	7 am to 6 pm 8 am to 1 pm
Mining operations, including mining, haulage of waste to dumps and coal processing	Monday to Friday Saturday, Sunday	24 hours per day 7 am to 6 pm
Road Transportation and stockpiling of coal	7 days per week	24 hours per day
Rail loading of coal	7 days per week	7 am to 10 pm
Maintenance of mobile and fixed plant	7 days per week	24 hours per day
Blasting, not involving closure of John Renshaw Drive	Monday to Saturday	7 am to 5 pm
Blasting, involving closure of John Renshaw Drive	Monday to Saturday	10 am to 2 pm

Notes: Restrictions on Public Holidays are the same as Sundays

(2) The Applicant shall submit a report to the Director-General's satisfaction demonstrating the noise limits in Condition 15 can be met while rail loading of coal is occurring during the period from 6 pm to 10 pm. If that report does not demonstrate that the noise limits can be met to the Director-General's satisfaction, then the hours of operation for rail loading of coal shall be restricted to 7 am to 6 pm."

15. Unless subject to a negotiated agreement in accordance with Condition 23, the Applicant shall ensure that the noise emission from construction or mining operations, when measured or computed at the boundary of any dwelling not owned by the applicant (or within 30 metres of the dwelling, if the boundary is more than 30 metres from the dwelling), shall not exceed the following noise limits:

Location	LA10(15minute) Noise Limits (dBA)	
	Daytime	Night-time
Beresfield area (residential)	45	35
Steggles Poultry Farm	50	40
Ebenezer Park Area	46	41
Black Hill Area	40	38
Buchanan and Louth Park Area	38	36
Ashtonfield Area	41	35
Thornton Area	48	40

Note: Daytime is 7 am to 10 pm Monday-Saturday, and 8 am to 10 pm Sundays and Public Holidays. Night-time is 10 pm to 7 am Monday-Saturday, and 10 pm to 8 am Sundays and Public Holidays.

The noise limits apply for prevailing meteorological conditions (winds up to 3 m/s), except under conditions of temperature inversions."

Other Conditions of Consent relevant to noise are as follows:

- 18. The applicant shall survey and investigate noise reduction measures from plant and equipment and set targets for noise reduction in each Annual Environmental Management Report (AEMR), taking into consideration valid noise complaints received in the previous year. The Report shall also include remedial measures.
- 19. The Applicant shall revise the Noise Management Plan as necessary and provide an updated Plan five years after commencement of mining to the Director-General, the independent noise expert (Condition 48), EPA, Councils and the Community Consultative Committee.

2.2 Abel Coal Mine – Project Approval

Approved Operations

The following operations are approved under the Abel Coal Mine Project Approval:

- Extraction of up to 6.1 Mtpa of Run of Mine (ROM) coal from the Abel Underground Coal Mine.
- Transport coal to the existing Bloomfield Coal Handling and Preparation Plant by private haul roads, or by coal conveyor, or by a combination of both methods.
- Operate the Bloomfield Coal Handling Processing Plant (CHPP) to process coal extracted from the Abel Coal Mine and the Bloomfield and Donaldson Coal Mines.
- Transportation of product coal from the Bloomfield site by rail via the Bloomfield rail loading facility.

The Project Approval was modified in June 2010 (05_0136 MOD 1) allowing construction and operation of a downcast ventilation fan. In May 2011 the Project Approval was modified again (05_0136 MOD 2) to allow the construction and operation of an upcast ventilation fan (and associated facilities). In December 2013 the Project Approval was further modified (05_0136 MOD3) to account for the increase in coal extracted including the upgrade of the Bloomfield CHPP.

Consent Conditions

The relevant conditions relating to noise from the Abel Coal Mine approval are reproduced below.

Schedule 4

NOISE

Operational Noise Criteria

1. The Proponent shall ensure that the noise generated by the Project does not exceed the criteria in Table 4 at any residence on privately-owned land.

Table 4: Operational Noise Criteria dB(A)

Location	Receiver Area	Day	Evening	Night	
		LAeq(15minute)	LAeq(15minute)	LAeq(15minute)	LA1(1minute)
Location I	Lord Howe Drive, Ashtonfield	36	36	36	45
Location K	Catholic Diocese Land	37	37	37	45
Location L	Kilshanny Avenue Ashtonfield	40	40	40	47
All other Locations	All other privately owned Residences	35	35	35	45

Notes:

- To interpret the locations referred to in Table 4, see plan in Appendix 3 (Appendix A).
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy.

These noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Construction Noise Criteria

1. The proponent shall ensure that the noise generated during the construction of the downcast ventilation shaft as described in EA (MOD3) does not exceed the criteria in Table 5.

Table 5: Construction Noise Criteria dB(A)

Location	Bosoivor	Day
Location	Receiver	LAeq(15minute)
Location R	281 Lings Road, Buttai	50
Location S	189 Lings Road, Buttai	43

Notes:

- The criteria in Table 5 apply only whilst the downcast ventilation shaft is being constructed, and for a maximum of 12 weeks from the commencement of construction.
- To interpret the locations referred to in Table 5, see plan in Appendix 3 (attached to this report as Appendix A).
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy.

However, these noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Rail Noise Criteria

1. The proponent shall ensure that the noise from rail movements on the Bloomfield Rail Spur does not exceed the limits in Table 6 at any residence on privately owned land.

Table 6: Rail Spur noise criteria dB (A)

Location	Day	Evening	Night	
	LAeq(period)			
All privately-owned land	55	45	40	

Cumulative Noise Criteria

1. The proponent shall implement all reasonable and feasible measures to ensure that the noise generated by the project combined with noise generated by other mines does not exceed the criteria in Table 7 at any residence on privately-owned land.

Table 7: Cumulative noise criteria dB (A)

	Location	Day	Evening	Night	
Location LAeq(period)					
	All privately-owned land	55	45	40	

Notes: Cumulative noise is to be measured in accordance with the relevant requirements, and exemptions (including meteorological conditions), of the NSW Industrial Noise Policy. Appendix 4 sets out the metrological conditions under which these criteria apply and the requirements for evaluating compliance with these criteria.

Operating Conditions

- 1. The proponent shall:
 - a. Implement best management practise to minimise the construction, operational, road and rail noise of the project;
 - b. Operate an on-site noise management system to ensure compliance with the relevant conditions of this approval;
 - c. Minimise the noise impacts of the project during meteorological conditions under which the noise limits in this consent do not apply (see Appendix 4);
 - d. Only receive and/or dispatch locomotives and rolling stock either on or from the site that are approved to operate on the NSW rail network in accordance with the noise limits in ARTC's EPL (No. 3142);
 - e. Carry out regular monitoring to determine whether the project is complying with the noise criteria and other relevant conditions of approval, to the satisfaction of the Director-General.

Noise Management Plan

- 2. The proponent shall prepare and implement a Noise Management Plan for the project to the satisfaction of the Director-General. This plan must:
 - a. Be prepared in consultation with the EPA, and be submitted to the Director-General for approval within 6 months of the date of approval of MOD 3;
 - b. Describe the measures that would be implemented to ensure compliance with the noise criteria and operating conditions in this approval; Describe the proposed noise management system in detail; and
 - c. Include a monitoring program that:
 - Uses attended monitoring to evaluate the compliance of the project against the noise criteria in this approval;
 - Evaluates and reports on:
 - The effectiveness of the on-site noise management system; and
 - Compliance against the noise operating conditions; and

Defines what constitutes a noise incident, and includes protocol for identifying and notifying the Department and relevant stakeholders of any noise incidents. Appendix 4

Noise Compliance Assessment

Applicable Meteorological Conditions

- 1. The noise criteria in Tables 4 and 7 are to apply under all metrological conditions except the following:
 - a. During periods of rain or hail.
 - b. Average wind speed at microphone height exceeds 5 m/s;
 - c. Wind speeds greater than 3 m/s measured at 10m above ground level; or
 - d. Temperature inversion conditions greater than 3°C/100m.

Determination of metrological conditions

2. Except for wind speed at microphone height, the data to be used for determining metrological conditions shall be that recorded by the meteorological station located on the site.

Compliance monitoring

- 3. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- 4. Unless otherwise agreed with the director-general, this monitoring is to be carried out in accordance with the relevant requirements for reviewing performance set out in the NSW Industrial Noise Policy (as amended from time to time), in particular the requirements relating to:
 - a. Monitoring locations for the collection of representative noise data;
 - b. Metrological conditions during which collection of noise data is not appropriate;
 - c. Equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - d. Modification to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.

Appendix 5

Statement of Commitments

3. Noise

3.1 Construction Activities

The following noise control measures will be implemented prior to commencement of construction of the Abel Underground Mine or the upgrade of the Bloomfield CHPP.

- 1. Maintain all machinery and equipment in working order;
 - a. No construction activities at the Abel pit top will take place on Sundays or Public Holidays;
 - b. Where possible locate noisy site equipment behind structures that act as barriers or at the greatest distance from noise sensitive areas; and
 - c. Orientate equipment so that noise emissions are directed away from noise sensitive areas.

3.2 Noise Control Measures

- a. The following noise control measures will be implemented prior to the mining of coal from the Abel underground Mine:
 - *i.* Orientation of the ventilation fans away from residential receivers and angle the output parallel to the ground.
 - *ii.* The sound power level of the front end loader to be used near the portal should not exceed 113 dBA and will be fitted with a noise sensitive reversing alarm.
- b. The following noise control measures will be implemented prior to the Bloomfield CHPP receiving any ROM coal from Able Underground Mine;

i. Noise mitigation works including partial enclosure and noise screening of drives and conveyors of the Bloomfield CHPP to screen residences to the north of the site.

3.2 Monitoring

The Company will implement a Noise Monitoring Program for the Abel Underground Mine and the Bloomfield CHPP, to the satisfaction of the Director-General. The Noise Monitoring Program shall include a combination of real-time and supplementary attended monitoring measures, and a noise monitoring protocol for evaluating compliance with the noise environmental assessment. This plan will be integrated with the monitoring plans for the Tasman, Donaldson and Bloomfield Mines to provide a single integrated Noise Monitoring Program for all 4 mines.

3.4 Continuous Improvement

The Company shall:

a. Report on these investigations and implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director General.

The operator of the Bloomfield CHPP shall:

- b. Investigate ways to reduce the noise generated by the Bloomfield CHPP, including maximum noise levels which may result in sleep disturbance;
- c. Implement all reasonable and feasible best practice noise mitigation measures on the site; and
- d. Report on these investigations and the implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director-General.

3 Noise Monitoring Methodology

3.1 General Requirements

The operational noise monitoring program was conducted with reference to Development Consent N97/00147 (Donaldson Coal Mine), Project Approval 05_0136 (Abel Coal Mine), and in accordance with SLR's Report 630.01053.01300-R1 dated 12 August 2014 (*Noise Management Plan Abel Underground Mine*) and AS 1055-1997 *Acoustics - Description and Measurement of Environmental Noise*.

All acoustic instrumentation employed throughout the monitoring program has been designed to comply with the requirements of AS IEC 61672.1 – 2004 *Electroacoustics—Sound level meters – Specifications*, AS IEC 61672.2-2004, AS IEC 61672.3-2004 and carried current NATA or manufacturer calibration certificates. Certificates for acoustic instrumentation used during the March 2019 quarter is provided in **Appendix B**.

Instrument calibration was conducted before and after each measurement, with the variation in calibrated levels not exceeding ±0.5 dBA.

3.2 Monitoring Locations

Baseline and preceding operational quarterly surveys have been conducted at 11 locations surrounding the Donaldson Mine and Abel Coal Mine sites. With the experience of these previous surveys, it was decided to concentrate noise monitoring at six focus locations that represent the potentially most noise affected areas from Donaldson Mine and Abel Coal Mine. The details of the monitoring locations are contained within **Table 1**.

It is relevant to note that Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

Furthermore, Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite during the December 2018 noise monitoring period.

Table 1Monitoring Locations

Noise Monitoring Location	Description
D	Black Hill School, Black Hill
F	Lot 684 Black Hill Road, Black Hill
G	156 Buchannan Road, Buchannan
I	Magnetic Drive, Ashtonfield
J	Parish Drive, Thornton
L	Kilshanny Ave, Ashtonfield

A map giving the approximate location of the noise monitoring sites is contained within **Appendix C**.

3.3 Unattended Continuous Noise Monitoring

An environmental noise logger was deployed for a minimum of seven days between Wednesday 13 March 2019 and Thursday 21 March 2019 at each of the nominated locations given in **Table 1**.

All unattended monitoring equipment was programmed to continuously record statistical noise level indices in 15 minute intervals including the LAmax, LA1, LA10, LA90, LA99, LAmin and LAeq. The statistical noise exceedance levels (LAN) are the levels exceeded for N% of the 15 minute interval. The LA90 represents the level exceeded for 90% of the interval period and is referred to as the average minimum or background noise level. The LA10 is the level exceeded for 10% of the time and is usually referred to as the average maximum noise level. The LAeq is the equivalent continuous sound pressure level and represents the steady sound level which is equal in energy to the fluctuating level over the interval period. The LAmax is the maximum noise level recorded over the interval.

3.4 Operator Attended Noise Monitoring

Operator attended surveys were conducted at each of the six monitoring locations during the daytime, evening and night-time periods, to verify the unattended logging results and to determine the character and contribution of ambient noise sources.

4 **Operator Attended Noise Monitoring**

4.1 Results of Operator Attended Noise Monitoring

Operator attended noise measurements were conducted during the evening and night-time period on Tuesday 26 March 2019 and Wednesday 27 March 2019. Operator attended noise measurements were conducted during the daytime period on Wednesday 13 March 2019 and Thursday 21 March 2019. All operator attended noise surveys were conducted using a Brüel & Kjær 2250L integrating sound level meter (s/n: 3003389).

Results of the operator attended noise measurements are given in **Table 2** to **Table 7**.

Ambient noise levels given in the tables include all noise sources such as traffic, insects, birds, and mine operations as well as any other industrial operations.

The tables provide the following information:

- Monitoring location.
- Date and start time.
- Wind velocity (m/s) and Temperature (^oC) at the measurement location.
- Typical maximum (LAmax) and contributed noise levels.

Mine contributions listed in the tables are from the Abel Coal Mine and are stated only when a contribution could be quantified.

Table 2 Location D, Black Hill School, Black Hill

Period	Date/ Start time/ Weather			Noise De A re 20 μ	Description of Noise Emission, Typical				
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)		
Day	13/03/2019 13:00	78	68	56	44	56	Road traffic 50-78		
Day	26°C 2 m/s SE			Mine Nois Inaudible	Birdsong 45-60 Abel Mine Inaudible				
Fuening	26/03/2019 18:14	72	63	57	40	53	Road traffic 41-72 Birdsong 51-62		
Evening	23°C 1.5 m/s SE	Estimated Abel Mine Noise Contribution Inaudible					School air-conditioner 39 Abel Mine Inaudible		
	26/03/2019 22:00	79	58	43	39	57	Insects 38		
Night	18°C 1 m/s S	Estim		Mine Nois Inaudible	Traffic 40-79 Abel Mine Inaudible				

Table 3 Location F, Lot 684 Black Hill Road, Black Hill

Period	Date/ Start time/ Weather			Noise De A re 20 μ	Description of Noise Emission, Typical			
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)	
Dav	13/03/2019 13:30	83	66	56	45	55	Road Traffic 49-83	
Day 26°C 1 m/s SSE		Estima		Mine Noi Inaudible	Birdsong 45-66 Abel Mine Inaudible			
Evening	26/03/2019 18:39	74	67	58	38	55	Road Traffic 51-74 Insects 47	
Evening	22°C 1 m/s SE	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	
26/03/2019 22:22		68 64 55 33 52				52	Road traffic 42-68 Insects 39-41	
Night	18°C 1 m/s S	Estima		Mine Noi Inaudible	Abel Mine Inaudible			

Table 4 Location G, 156 Buchannan Road, Buchannan

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical		
	Start time/ Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)
Dav	13/03/2019 16:10	67	58	54	Wind related noise 60-67		
Day	Day 27°C 2 m/s SE			Mine Noi Inaudible	Road traffic 45-60 Abel Mine Inaudible		
Fuering	26/03/2019 19:54	71	66	62	37	57	Road traffic 38-71 Insects 38
Evening	20°C 1 m/s SE	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible
Nicht	27/03/2019 00:26	89	77	49	36	63	Road traffic 50-89 Insects 34
Night	17°C 1 m/s SE	Estima		Mine Noi Inaudible	Abel Mine Inaudible		

Table 5 Location I, Magnetic Drive, Ashtonfield

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical				
	Start time/ Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)		
Day	21/03/2019 11:15	75	69	62	47	68	Road traffic 53-75 Birdsong 62-69		
	25°C Calm	Estima		Mine Noi Inaudible	Abel Mine Inaudible				
Francisco	26/03/2019 20:51	68	53	45	41	45	Road traffic 42-68 Insects 39		
Evening	19°C 1 m/s SE	Estima		Mine Noi Inaudible	Domestic noise 46-51 Abel Mine Inaudible				
27/03/2019 01:18		70 58 50 36 47				47	Road traffic 40-48 Insects 36-38		
Night	18°C 1 m/s S	Estimated Abel Mine Noise Contribution Inaudible					Dog barking 68-70 Abel Mine Inaudible		

Table 6Location J, Parish Drive, Thornton

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical		
	Start time/ Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)
Day	21/03/2019 56 44 37 32 39 11:54 27°C Estimated Abel Mine Noise Contribution					Electric fence 31-33 Birdsong 37-56	
	LStillia		Inaudible	Abel Mine Inaudible			
Fuering	26/03/2019 20:51	59	44	40	37	39	Road traffic 37-41 Insects 35
Evening	19°C 1 m/s SE	Estima		Mine Noi Inaudible	Animal 59 Abel Mine Inaudible		
27/03/2019 01:45		50 44 41 34 38			38	Road traffic 43-46 Insects 38-42	
Night	18°C 1 m/s S	Estimated Abel Mine Noise Contribution Inaudible					Animal 50 Abel Mine Inaudible

Table 7 Location L, Kilshanny Ave, Ashtonfield

Period	Date/ Start time/ Period/ Weather			Noise De A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)
	13/03/2019 16:5624°C	74	61	56	42	52	Road traffic 40-74 Birdsong 53-61
Day	Estima		Mine Noi Inaudible	Abel Mine Inaudible			
Fuering	26/03/2019 20:26	80	65	47	41	59	Road traffic 41-80 Insects 42
Evening	19°C 1 m/s SE	Estima		Mine Noi Inaudible	Abel Mine Inaudible		
	27/03/2019 00:54	58	48	46	46	44	Road traffic 32-40 Insects 40-44
Night	17°C 1 m/s SE	Estimated Abel Mine Noise Contribution Inaudible					Dog barking 58 Abel Mine Inaudible

4.2 **Operator Attended Noise Monitoring Summary**

4.2.1 Donaldson Mine

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

4.2.2 Abel Coal Mine

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

The Bloomfield CHPP stockpile area was not audible during all operator attended noise surveys. Noise generated by local and distant traffic was a significant contributor to ambient noise levels at all monitored locations as well as 'natural' noises such as birds, insects.

4.3 Compliance Assessment and Discussion of Results

4.3.1 Operations

Results of the operational compliance assessment are given in **Table 8**.

Location	Estimated Abel LAeq(15minute) Contribution dBA		Consent Conditions			Compliance			
	Day	Eve	Night	Day	Eve	Night	Day	Eve	Night
D – Black Hill School, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
F – Black Hill Road, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
G – Buchanan Road, Buchanan	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
I – Magnetic Drive, Ashtonfield	Inaudible	Inaudible	Inaudible	36	36	36	Yes	Yes	Yes
J – Parish Drive, Thornton	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
L – Kilshanny Ave, Ashtonfield	Inaudible	Inaudible	Inaudible	40	40	40	Yes	Yes	Yes

Table 8 Compliance Noise Assessment – Operations

Results presented in **Table 8** indicate that compliance with the relevant consent conditions was achieved at all noise monitoring locations during all periods.

4.3.2 Sleep Disturbance

Results of the sleep disturbance compliance assessment are given in Table 9.

Table 9 Compliance Noise Assessment – Sleep Disturbance

Location	Estimated Bloomfield LA1(1minute) Contribution dBA	Consent Conditions LA1(1minute) dBA	Compliance
D – Black Hill School, Black Hill	Inaudible	45	Yes
F – Black Hill Road, Black Hill	Inaudible	45	Yes
G – Buchanan Road, Buchanan	Inaudible	45	Yes
I – Lord Howe Drive, Ashtonfield	Inaudible	45	Yes
J – Parish Drive, Thornton	Inaudible	45	Yes
L – Kilshanny Ave, Ashtonfield	Inaudible	47	Yes

Results presented in **Table 9** indicate that compliance with the sleep disturbance consent conditions was achieved at all noise monitoring locations during the night-time noise surveys.

5 Unattended Continuous Noise Monitoring

5.1 Results of Unattended Continuous Noise Monitoring

Unattended continuous noise monitoring was conducted between 13 March 2019 and Monday 21 March 2019 at each of the six monitoring locations given in **Table 10**.

Table 10	Noise Logger and Noise Monitoring Locations
----------	---

Location	Noise Logger Serial Number	Date of Logging
D – Black Hill School, Black Hill	ARL EL-316 16-207-050	13 March 2019 - 21 March 2019
F – Black Hill Road, Black Hill	ARL EL-316 16-203-505	13 March 2019 - 21 March 2019
G – Buchanan Road, Buchanan	ARL EL-316 16-203-508	13 March 2019 - 21 March 2019
I – Magnetic Drive, Ashtonfield	ARL EL-316 16-203-525	13 March 2019 - 21 March 2019
L – Kilshanny Ave, Kilshanny	ARL EL-316 16-103-494	13 March 2019 - 21 March 2019
J – Parish Drive, Thornton	SVAN 957 27522	13 March 2019 - 21 March 2019

The unattended ambient noise logger data from each monitoring location are presented graphically on a daily basis and are attached as **Appendix C**. A summary of the results of the unattended continuous noise monitoring is given in **Table 11**.

The ambient noise level data quantifies the overall noise level at a given location independent of its source or character.

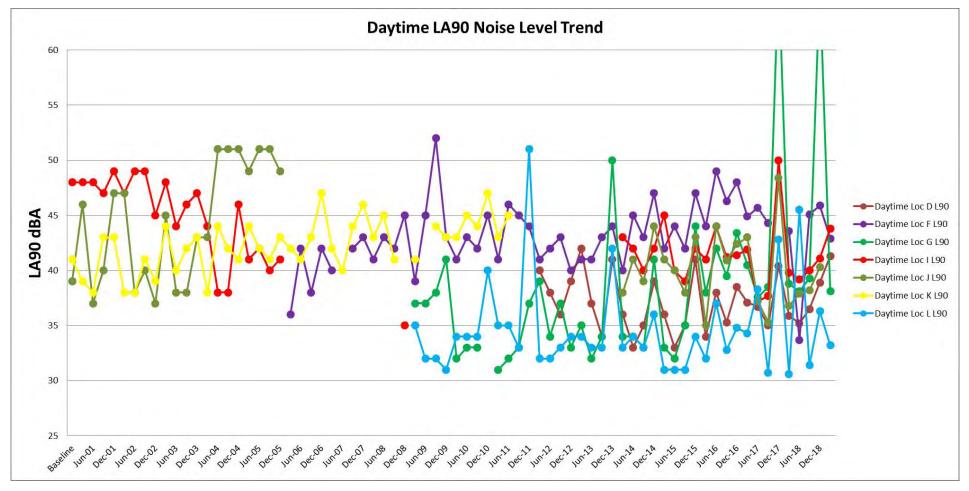
The measured ambient noise levels were divided into three periods representing day, evening and night as designated in the NSW Noise Policy for Industry (NPfI).

Precautions were taken to minimise influences from extraneous noise sources (eg optimum placement of the loggers away from creeks, trees, houses, etc), however, not all these sources or their effects can be eliminated. This is particularly the case during the warmer times of year when noise from insects, frogs, birds and other animals can become quite prevalent.

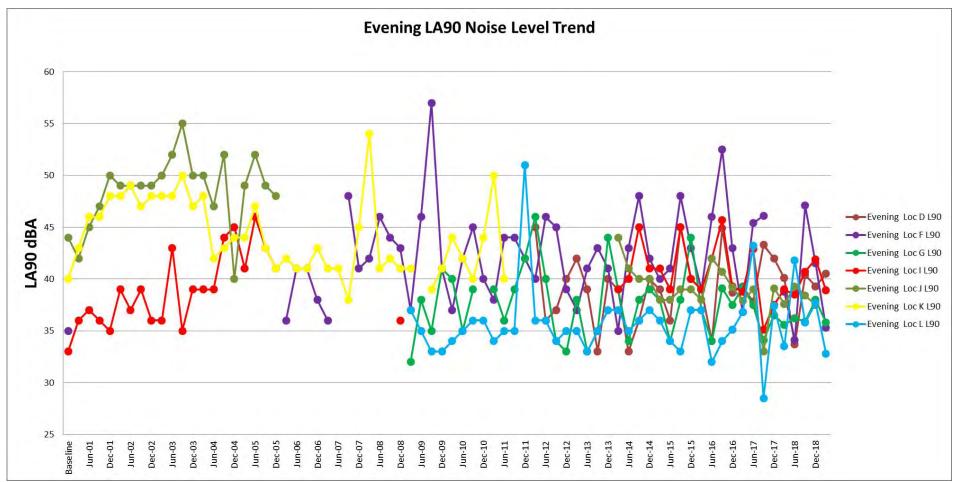
Weather data for the subject area during the noise monitoring period was provided by Bloomfield Colliery. Noise data during periods of any rainfall and/or wind speeds in excess of 5 m/s were discarded in accordance with NPfI weather affected data exclusion methodology.

Location	Period	Primary No	oise Descripto	or (dBA re 20	μΡΑ)
		LA1	LA10	LA90	LAeq
2	Day	68	58	41	58
D Black Hill School, Black Hill	Evening	62	52	41	54
Black Hill School, Black Hill	Night	55	50	40	52
_	Day	71	57	43	59
F Lot 684 Black Hill Road, Black Hill	Evening	63	53	35	54
	Night	59	52	33	52
	Day	51	48	38	49
G 156 Buchanan Road, Buchanan	Evening	48	45	36	45
190 Buchanan Noad, Buchanan	Night	45	41	32	44
	Day	71	63	44	67
I 49 Magnetic Drive, Ashtonfield	Evening	61	47	39	57
45 Wagnetie Drive, Ashtornieu	Night	52	48	38	50
	Day	33	53	33	52
L 17 Kilshanny Ave, Ashtonfield	Evening	3	50	33	53
Transianity Ave, Asitonnelu	Night	43	61	43	59
	Day	-	-	-	-
J 220 Parish Drive, Thornton ¹	Evening	-	-	-	-
	Night	-	-	-	-

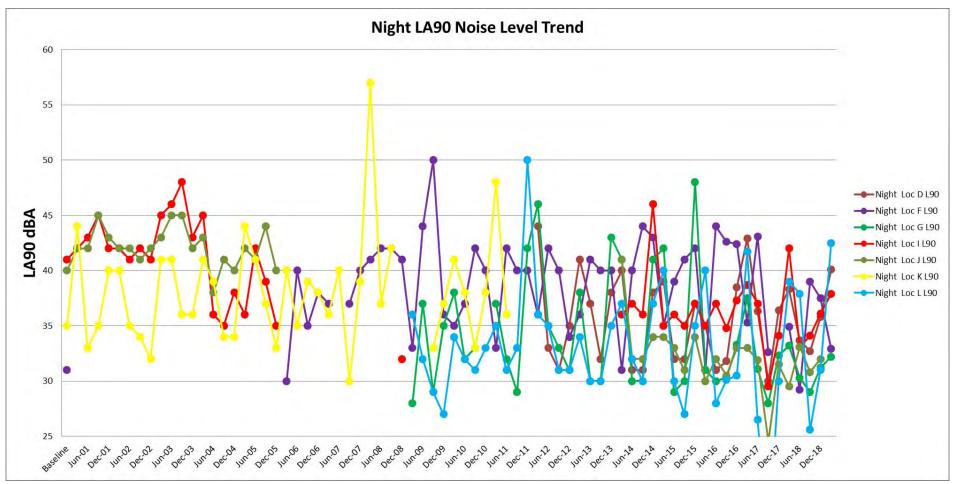
Table 11 Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)


1. Due to a technical error, no unattended monitoring data was available for Location J.

5.2 Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine


5.2.1 Ambient LA90 Noise Levels

The long term ambient LA90 noise levels collected from each monitoring location are presented graphically in **Figure 1**, **Figure 2** and **Figure 3** for the daytime, evening and night-time periods respectively.



5.2.1.1 Baseline

The summary of results in **Table 12** shows the ambient LA90 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring process (ie. prior to commencement of mining operation at Donaldson).

Table 12	LA90	Results	Com	oarison ·	- Baseline
	L/100	ile o alto		Julison	Duschine

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ³
		Baseline	March 2019	
	Day	N/A ²	41	N/A
D Black Hill School, Black Hill	Evening	N/A ²	41	N/A
	Night	N/A ²	40	N/A
F	Day	39	43	4
Lot 684 Black Hill Road,	Evening	35	35	0
Black Hill	Night	31	33	2
G	Day	N/A ²	38	N/A
156 Buchanan Road, Buchanan	Evening	N/A ²	36	N/A
	Night	N/A ²	32	N/A
l 49 Magnetic Drive, Ashtonfield	Day	48	44	-4
	Evening	33	39	6
	Night	41	38	-3
L	Day	N/A ²	33	N/A
17 Kilshanny Ave, Ashtonfield	Evening	N/A ²	33	N/A
	Night	N/A ²	43	N/A
	Day	39	-	-
J 220 Parish Drive, Thornton	Evening	44	-	-
220 Parish Drive, Thornton	Night	40	-	-

Note 1: Periods are as detailed the NPfI and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.1.2 Previous Quarter

Table 13 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured in the previous monitoring period.

Table 13 LA90 Results Comparison – Previous Quarter

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²
		December 2018	March 2019	Difference dB-
2	Day	39	41	2
D Black Hill School, Black Hill	Evening	39	41	2
	Night	36	40	4
F	Day	46	43	-3
Lot 684 Black Hill Road,	Evening	42	35	-7
Black Hill	Night	38	33	-5
G	Day	66	38	-28
156 Buchanan Road, Buchanan	Evening	38	36	-2
	Night	31	32	1
1	Day	41	44	3
49 Magnetic Drive, Ashtonfield	Evening	42	39	-3
	Night	36	38	2
L 17 Kilshanny Ave, Ashtonfield	Day	36	33	-3
	Evening	38	33	-5
	Night	31	43	12
	Day	40	-	-
J 220 Parish Drive, Thornton	Evening	38	-	-
220 Parish Drive, Thornton	Night	32	-	-

Note 1: 1. Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

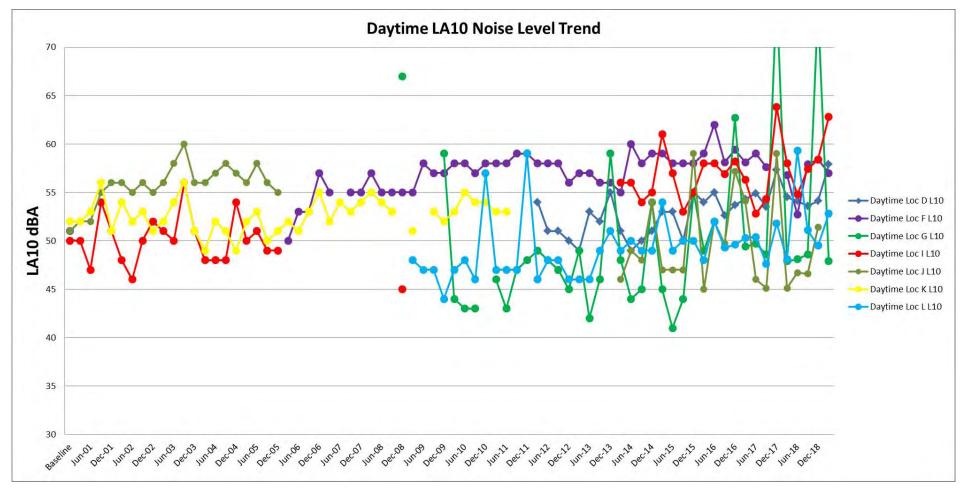
5.2.1.3 Coinciding Period Last Year

Table 14 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

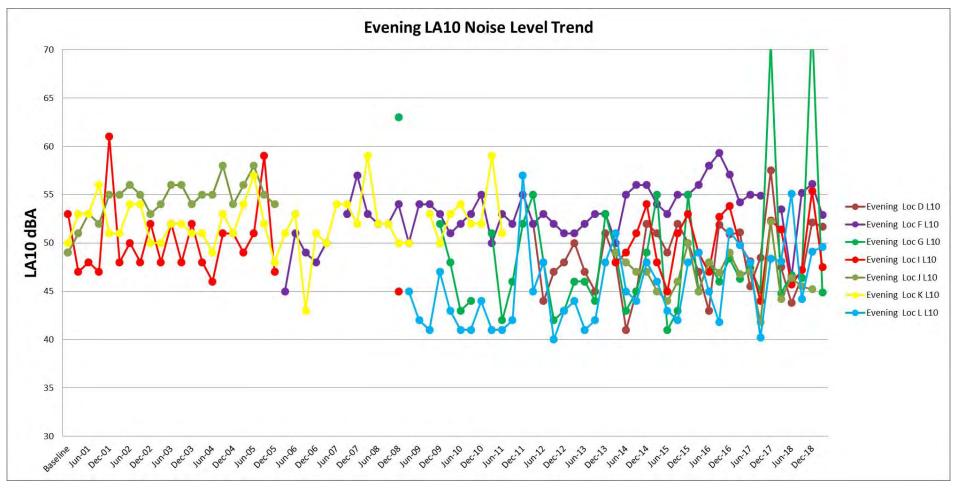
Table 14 LA90 Results Comparison – Coinciding Period Las
--

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²
		March 2018	March 2019	
	Day	36	41	5
D Black Hill School, Black Hill	Evening	40	41	1
	Night	38	40	2
F	Day	44	43	-1
Lot 684 Black Hill Road,	Evening	39	35	-4
Black Hill	Night	35	33	-2
G	Day	39	38	-1
156 Buchanan Road, Buchanan	Evening	36	36	0
	Night	33	32	-1
l 49 Magnetic Drive, Ashtonfield	Day	40	44	4
	Evening	39	39	0
	Night	42	38	-4
L	Day	31	33	2
17 Kilshanny Ave, Ashtonfield	Evening	34	33	-1
	Night	39	43	4
	Day	37	-	-
J ³	Evening	38	-	-
220 Parish Drive, Thornton	Night	30	-	-

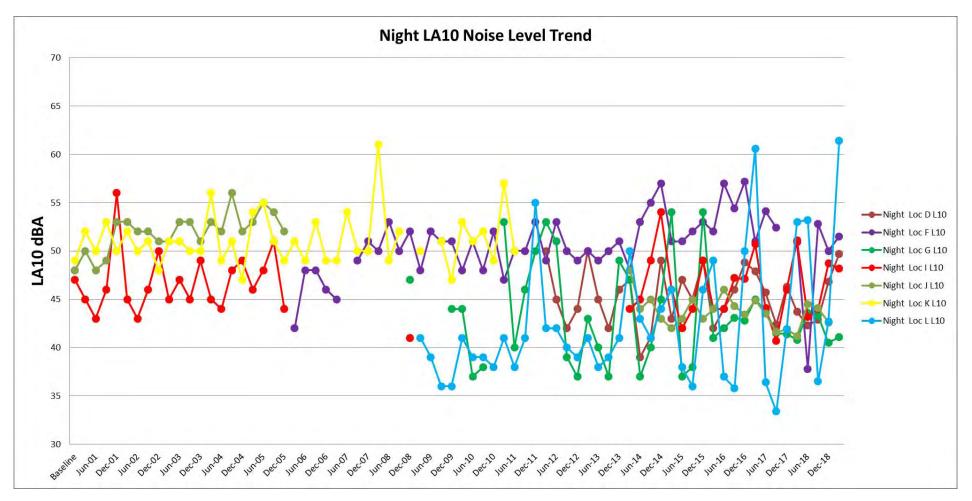
Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.


Note 2: Rounded to the nearest whole dB.

Note 3: Due to a logger error no results are available at location J for the March 2019 quarter, as such a comparison cannot be made.


5.2.2 Ambient LA10 Noise Comparison

The long term ambient LA10 noise levels collected from each monitoring location are presented graphically in **Figure 4**, **Figure 5** and **Figure 6** for the daytime, evening and night-time respectively.



5.2.2.1 Baseline

Table 15 presents the ambient LA10 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring period.

Table 15	LA10 Results	Comparison	– Baseline
	LATO NCOULO	companison	Duschine

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ³
		Baseline	March 2019	
	Day	N/A ²	58	N/A
D Black Hill School, Black Hill	Evening	N/A ²	52	N/A
	Night	N/A ²	50	N/A
F	Day	51	57	6
Lot 684 Black Hill Road,	Evening	49	53	4
Black Hill	Night	48	52	4
G 156 Buchanan Road, Buchanan	Day	N/A ²	48	N/A
	Evening	N/A ²	45	N/A
	Night	N/A ²	41	N/A
l 49 Magnetic Drive, Ashtonfield	Day	50	63	13
	Evening	53	48	-5
	Night	47	48	1
L	Day	N/A ²	53	N/A
- 17 Kilshanny Ave, Ashtonfield	Evening	N/A ²	50	N/A
	Night	N/A ²	61	N/A
	Day	51	-	-
J 220 Parish Drive, Thornton	Evening	49	-	-
220 Parish Drive, Thornton	Night	48	-	-

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.2.2 Previous Quarter

Table 16 presents the ambient LA10 noise levels recorded for the current monitoring period compared to thosemeasured during the previous monitoring period.

Table 16	LA10 Results	Comparison –	Previous Quarter

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ²
		December 2018	March 2019	Difference dB-
2	Day	54	58	4
D Black Hill School, Black Hill	Evening	52	52	0
Black Hill School, Black Hill	Night	47	50	3
F	Day	58	57	-1
Lot 684 Black Hill Road,	Evening	56	53	-3
Black Hill	Night	50	52	2
G	Day	74	48	-26
156 Buchanan Road, Buchanan	Evening	73	45	-28
	Night	41	41	0
1	Day	58	63	5
49 Magnetic Drive, Ashtonfield	Evening	55	48	-7
	Night	49	48	-1
L 17 Kilshanny Ave, Ashtonfield	Day	50	53	3
	Evening	49	50	1
	Night	43	61	18
	Day	51	-	-
J 220 Parish Drive, Thornton	Evening	45	-	-
220 Parish Drive, Thornton	Night	43	-	-

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

5.2.2.3 Coinciding Period Last Year

Table 17 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ²
		March 2018	March 2019	
	Day	55	58	3
D Black Hill School, Black Hill	Evening	48	52	4
	Night	44	50	6
F	Day	57	57	0
Lot 684 Black Hill Road,	Evening	54	53	-1
Black Hill	Night	51	52	1
G 156 Buchanan Road, Buchanan	Day	48	48	0
	Evening	45	45	0
	Night	41	41	0
1	Day	58	63	5
49 Magnetic Drive, Ashtonfield	Evening	51	48	-3
	Night	51	48	-3
L	Day	48	53	5
17 Kilshanny Ave, Ashtonfield	Evening	48	50	2
	Night	53	61	8
-2	Day	45	-	-
J ³ 220 Parish Drive, Thornton	Evening	44	-	-
220 Parish Drive, mornion	Night	41	-	-

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

Note 3: Due to a logger error no results are available at location J for the March 2019 quarter, as such a comparison can not be made.

5.3 Rail Noise Monitoring

Due to a logger error at Location J no unattended monitoring data was available for the March 2019 monitoring period. The train loading times during the noise monitoring period are presented in **Table 18**.

Date	Coal Train Loading Time	Period
13/03/19	12:45-16:15	Day
14/03/19	11:45-14:55	Day

Given the results of previous quarterly monitoring periods and that only one train movement occurred during each daytime period, it is considered likely that rail traffic noise was compliant during the March 2019 monitoring period.

6 Conclusion

SLR was engaged by Donaldson Coal Pty Ltd to conduct quarterly noise monitoring surveys for Donaldson Coal Mine and Abel Coal Mine in accordance with the Abel Coal Mine Noise Monitoring Program, dated 12 August 2014.

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

Operator-attended and unattended noise measurements were conducted for the March 2019 quarter at six focus locations surrounding the mine.

Abel portal operations were not observed to be audible at any locations during the monitoring period. Contributed noise levels from Abel Mine did not exceed noise emission goals (including night-time sleep arousal criteria) and compliance with the Abel Mine *Project Approval* was indicated at all locations.

A comparison of ambient LA10 and LA90 noise levels recorded during the current monitoring period (March 2019), the baseline monitoring period, the last monitoring period (December 2018), and the coinciding monitoring period from last year (March 2018) has been conducted.

Given the results of previous quarterly monitoring periods, rail noise levels from the Bloomfield Rail Spur were considered to be in compliance with the Abel Mine Project Approval during the noise monitoring period.

Acoustic Terminology

1. Sound Level or Noise Level

The terms 'sound' and 'noise' are almost interchangeable, except that 'noise' often refers to unwanted sound.

Sound (or noise) consists of minute fluctuations in atmospheric pressure. The human ear responds to changes in sound pressure over a very wide range with the loudest sound pressure to which the human ear can respond being ten million times greater than the softest. The decibel (abbreviated as dB) scale reduces this ratio to a more manageable size by the use of logarithms.

The symbols SPL, L or LP are commonly used to represent Sound Pressure Level. The symbol LA represents A-weighted Sound Pressure Level. The standard reference unit for Sound Pressure Levels expressed in decibels is 2 x 10^{-5} Pa.

2. 'A' Weighted Sound Pressure Level

The overall level of a sound is usually expressed in terms of dBA, which is measured using a sound level meter with an 'A-weighting' filter. This is an electronic filter having a frequency response corresponding approximately to that of human hearing.

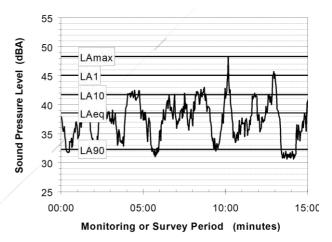
People's hearing is most sensitive to sounds at mid frequencies (500 Hz to 4,000 Hz), and less sensitive at lower and higher frequencies. Different sources having the same dBA level generally sound about equally loud.

A change of 1 dB or 2 dB in the level of a sound is difficult for most people to detect, whilst a 3 dB to 5 dB change corresponds to a small but noticeable change in loudness. A 10 dB change corresponds to an approximate doubling or halving in loudness. The table below lists examples of typical noise levels.

Sound Pressure Level (dBA)	Typical Source	Subjective Evaluation
130	Threshold of pain	Intolerable
120	Heavy rock concert	Extremely
110	Grinding on steel	noisy
100	Loud car horn at 3 m	Very noisy
90	Construction site with pneumatic hammering	
80	Kerbside of busy street	Loud
70	Loud radio or television	
60	Department store	Moderate to
50	General Office	quiet
40	Inside private office	Quiet to
30	Inside bedroom	very quiet
20	Recording studio	Almost silent

Other weightings (eg B, C and D) are less commonly used than A-weighting. Sound Levels measured without any weighting are referred to as 'linear', and the units are expressed as dB(lin) or dB.

3. Sound Power Level


The Sound Power of a source is the rate at which it emits acoustic energy. As with Sound Pressure Levels, Sound Power Levels are expressed in decibel units (dB or dBA), but may be identified by the symbols SWL or LW, or by the reference unit 10^{-12} W.

The relationship between Sound Power and Sound Pressure is similar to the effect of an electric radiator, which is characterised by a power rating but has an effect on the surrounding environment that can be measured in terms of a different parameter, temperature.

4. Statistical Noise Levels

Sounds that vary in level over time, such as road traffic noise and most community noise, are commonly described in terms of the statistical exceedance levels LAN, where LAN is the Aweighted sound pressure level exceeded for N% of a given measurement period. For example, the LA1 is the noise level exceeded for 1% of the time, LA10 the noise exceeded for 10% of the time, and so on.

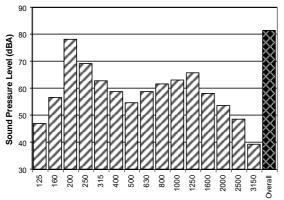
The following figure presents a hypothetical 15 minute noise survey, illustrating various common statistical indices of interest.

Of particular relevance, are:

- LA1 The noise level exceeded for 1% of the 15 minute interval.
- LA10 The noise level exceeded for 10% of the 15 minute interval. This is commonly referred to as the average maximum noise level.
- LA90 The noise level exceeded for 90% of the sample period. This noise level is described as the average minimum background sound level (in the absence of the source under consideration), or simply the background level.
- LAeq The A-weighted equivalent noise level (basically, the average noise level). It is defined as the steady sound level that contains the same amount of acoustical energy as the corresponding time-varying sound.

5. Frequency Analysis

Frequency analysis is the process used to examine the tones (or frequency components) which make up the overall noise or vibration signal.


The units for frequency are Hertz (Hz), which represent the number of cycles per second.

Frequency analysis can be in:

- Octave bands (where the centre frequency and width of each band is double the previous band)
- 1/3 octave bands (three bands in each octave band)
- Narrow band (where the spectrum is divided into 400 or more bands of equal width)

The following figure shows a 1/3 octave band frequency analysis where the noise is dominated by the 200 Hz band. Note that the indicated level of each individual band is less than the overall level, which is the logarithmic sum of the bands.

6. Annoying Noise (Special Audible Characteristics)

A louder noise will generally be more annoying to nearby receivers than a quieter one. However, noise is often also found to be more annoying and result in larger impacts where the following characteristics are apparent:

- Tonality tonal noise contains one or more prominent tones (ie differences in distinct frequency components between adjoining octave or 1/3 octave bands), and is normally regarded as more annoying than 'broad band' noise.
- Impulsiveness an impulsive noise is characterised by one or more short sharp peaks in the time domain, such as occurs during hammering.
- Intermittency intermittent noise varies in level with the change in level being clearly audible. An example would include mechanical plant cycling on and off.
- Low Frequency Noise low frequency noise contains significant energy in the lower frequency bands, which are typically taken to be in the 10 to 160 Hz region.

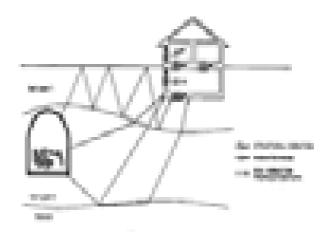
7. Vibration

Vibration may be defined as cyclic or transient motion. This motion can be measured in terms of its displacement, velocity or acceleration. Most assessments of human response to vibration or the risk of damage to buildings use measurements of vibration velocity. These may be expressed in terms of 'peak' velocity or 'rms' velocity.

The former is the maximum instantaneous velocity, without any averaging, and is sometimes referred to as 'peak particle velocity', or PPV. The latter incorporates 'root mean squared' averaging over some defined time period.

Vibration measurements may be carried out in a single axis or alternatively as triaxial measurements (ie vertical, longitudinal and transverse). The common units for velocity are millimetres per second (mm/s). As with noise, decibel units can also be used, in which case the reference level should always be stated. A vibration level V, expressed in mm/s can be converted to decibels by the formula 20 log (V/Vo), where Vo is the reference level (10^{-9} m/s). Care is required in this regard, as other reference levels may be used.

8. Human Perception of Vibration


People are able to 'feel' vibration at levels lower than those required to cause even superficial damage to the most susceptible classes of building (even though they may not be disturbed by the motion). An individual's perception of motion or response to vibration depends very strongly on previous experience and expectations, and on other connotations associated with the perceived source of the vibration. For example, the vibration that a person responds to as 'normal' in a car, bus or train is considerably higher than what is perceived as 'normal' in a shop, office or dwelling.

9. Ground-borne Noise, Structure-borne Noise and Regenerated Noise

Noise that propagates through a structure as vibration and is radiated by vibrating wall and floor surfaces is termed 'structure-borne noise', 'ground-borne noise' or 'regenerated noise'. This noise originates as vibration and propagates between the source and receiver through the ground and/or building structural elements, rather than through the air.

Typical sources of ground-borne or structure-borne noise include tunnelling works, underground railways, excavation plant (eg rockbreakers), and building services plant (eg fans, compressors and generators).

The following figure presents an example of the various paths by which vibration and ground-borne noise may be transmitted between a source and receiver for construction activities occurring within a tunnel.

The term 'regenerated noise' is also used in other instances where energy is converted to noise away from the primary source. One example would be a fan blowing air through a discharge grill. The fan is the energy source and primary noise source. Additional noise may be created by the aerodynamic effect of the discharge grill in the airstream. This secondary noise is referred to as regenerated noise.

Calibration Certificates

Certificate Of Calibration

CERTIFICATE NO.: SLM 23293 & FILT 4792

Equipment Description: Sound & Vibration Analyser

Manufacturer:	B&K		
Model No:	2250	Serial No:	3003389
Microphone Type:	4950	Serial No:	2913816
Preamplifier Type:	ZC0032	Serial No:	20519
Filter Type:	1/3 Octave	Serial No:	3003389
Comments:	All tests pass	ed for class 1	l.
	(See over for	details)	
Owner:	SLR Consulti	ng Australia I	Pty Ltd
	Level 2, 2 Lin	coln Street	
	Lane Cove, N	ISW 2066	
Ambient Pressure:	990 hPa ±1	.5 hPa	
Temperature:	25 °C ±2°	C Relative H	ımidity: 29% ±5%
Date of Calibration: Acu-Vib Test Procedure	06/08/2018 e: AVP10 (SLM	Issue Dat 1) & AVP06 (1	

CHECKED BY:

AUTHORISED SIGNATURE:

Jack 7

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards,

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 23293 & FILT 4792

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	1 7	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 06/08/2018 Issue Date: 07/08/2018

Checked by:

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT10

Level 7 Building 2 423 Pennent Hills Rd Pennent Hills NSW AUSTRALIA 2320 Ph: +61 2 9484 0800 A.B.N. 65 160 399 129 www.acousticresearch.com.au

Sound Level Meter AS 1259.1:1990 - AS 1259.2:1990 **Calibration Certificate**

Calibration Number C17235

	Client Deta	.ls	L) one dur y Australia P	ty Lid	
		10.1	neeln Sizeet		
			ne Cove NSW 2066		
		1	HC C.DYL (45 W 2000		
եզաթո	nent Tested' Model Number		11 LL 316		
	Instrumential Number	16	.107 30		
	Microphone - rial Number	: 3]]	8219		
P	re-amplifier Serial Number	: 174	n1		
	A 100	oherie	(Jiu		
	Ambient Temperature		(
	Relative Hamidity		u		
	Barometric Pre-110	100),0 ^{51,0} 3		
Calibration Techn	lejnin : Vick inswal		Sciondury Check:	Ritey Looper	
Calibration	Date : 30/05 017		lieport Issue Date :	31/05/2017	
	Approve 18 cantory	() 👘	C.C.C.		Kon Williams
Clause and C = as	an Forsaul	Result			Result
U.J.J. Also the nati	kilv.	Pers	is a full dat solem to	nine level	Pass
10 * is 1 = nex weip	bline	Pass	10.4. Time w htime et	Charter Fand 1	S Puss
10 V. H Vindica	iings.	Pass	10.3.4 Ti hti	tistic	Pars
II Accil of less	leannea la	1 455	10-1.5 R.M.5 torm		Pass
8.9: Detector-indicator	lir ne	1 159	9, Lance ave ing		Puero
8,10: Differential level .	lu u v	10-2	03.5: Overload indication	l l	Press
	t Uno		of Mediaterizat		
Accusto Lests	1	1104	tomation to Conditions.		
1) (1) ho shite	12 110			- Sapari	
11 1611	-1		Relative Huntches	11	
16111.	Ma		Karousen v Pressure	1 10	
in terral bests if \$17 to 20 kHz	A 12.16				
	Humonican sectional at the		Below I with the merches	10 11	
The annual heart on her son	den herd and a stratig of a conference of			Hue and so thed the	IS 1259.1 1990
	12.59	14.411.00	th to Automatic		

The calibration certification to be read to confinentian with the calibration feet range the

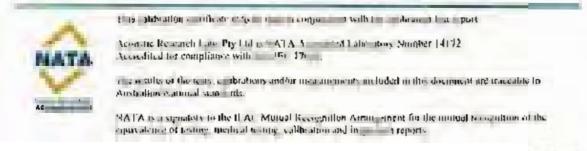
Acoustic Research Julis Pix Links, NAT A Accordend Laborary Number 14172. Associated for complement with ISO/D / 17025

The residence of the start of the way of the concerning involved by this destinet and traceduly to Austration about

NATA is a senatory to the ILAC Mutual This is a set of the mutual recognition of the equivalence of the method for they, cald to all the scare as

Level 7 Building 2 423 Pennant Hills Rd Pennant Hills NSW AUSTRALIA 2220 Ph: +62 29484 0800 A.B.N. 65 160 399 219 Www.acousticresearch.com.au

Sound Level Meter AS 1259,1:1990 - AS 1259.2:1990 Calibration Certificate


Calibratian Number 017217

	C ent Det_il	21	R Const. Guy Australia Pty. Ltd. incoln Street ne Covy NSW 2066	
laste Miere	ested/ Model Number : unient Serial Number : pliane Serial Number : plifter Serial Number :	16	203-5-5 2080 089	
	Atinost	erle	Conditions	
,	Relative Linonidity : Barometric Pressure :	14. 46	9°C 4% 1.27kPa	
Calibration feebalcan : Calibration Date :			Second at Check: Riley Couper Report are Date : 13/06/2017 K	en William
Clause and Characteris c	lesica R	c li	Clause and Character Texte	Result
10.7 Absolute ser with		'un s	10.1 finlier or gener or er	4 - 4
10 3: Frequency w hting	1	oss.	10.4 1 with time thomatematic Land S	P
10 "Over dilude ti as	,	'uss	10 s thin that istic !	Puss.
10-13: A of lex 1	. onting /	1285	10.4.5, R.M	Pass
		115.5	93.2 Fink tyc 102	Pass
8 9: Detector-indicator Hueach 8, 10: Offerential level linearth			945 Overload indication	trank

	1	k 1/, dawa wasa di	
Acoustic Test.		Freedom at statements	
41 S.H. In Skill	-11 16dB	Terry dure	40.00 · · ·
1" 54 11	11.1.115	h' in Hannahry	
tohii	-11 19,111	Recommenter Pressentes	- # 01. Pa
Electrical Losis			
st. SH w kH-	10 1 2010		

All two examples one descent at the second on the best while a survey for the of .

The control benef mater under test have been shown to a new at the type 1 - 20 - 11. her, retaile a story . dow A to 38 1 - 30 1 1090 and 18 1 - 1990 me the 1 - tated above

Pstall tail

Let 7 Building 2 For Mills Rd For Hills N W AU TRALIA A.B.N 3 9 WWW.ac 10

Calibrat on Certificat-

Calibration Number C18514

C'llent De al	SLE i madring 1986 - 2, 2 Guota De Kastropé 19 - Marco III 12
upment lete inde	ALLEINS
Instroment Serial Number :	16 207 3
Microphone hered Sunder	3170***
Pr	124,1
n nie pt	erie Contlan II-
Amblent Temperature :	21.740
Relative Humidity :	\$3 8
Barometele Pressure ;	հար ծն <u>ի</u> լու
Californian Tanta Inner Lucks Inc.	Kannandaran Kanadar yang sang

Calibration for in the state Lucky lies Calibration Date 1 - 14 June 18		Report Issue Date : 1-1 Jun 201	
Approved Si	gnatory :	ala - s	son Williams
finnereristie Fester	756	Cla má Chai te-tic f-d	Result
In the formations	1.00	should be a none etc.	
har list a visiting	Poss	112-1.2. Fina weighting chores retraine F and S	Pres

10 1 I No A ighting	Prove	1194.2. Fing weighting choose terians F and S	$P_{i=2}$
10.5 · · · · · · · · · · · · · · · · · · ·	Post	10.4.3 firm we dine care wristed	Par
hus han a di lesel a 👘 empol	H	NULLS R.M. ip plomi n	$Pr \rightarrow$
8.9 D. cetter-inductor function	Pass	9.3.7. How miny	Peran
8.10; Differential fasel functify	Preca	A 3.5 (Doc - Diath action	£

		(11) 000 00 M.	
42 6 1		Fuying the human	
. 3 11 4 × 540	# 3 - 14	$f' = i_{f}$ $r_{1i_{f}}$	1.00
1 skitz	. Jarla	R ore, Hamale	1.1.10
trikit	19 119 10	Recomment Provident	, 14 H C
the most to be			
11511-11. 11	0.12.14		

All monthumber and decidence in the Company Section funders and Print of 2

the cound I to a number of the constraint on an transformer I want on the second state of the second state

	for exploration of a labor strength of with the all of the off
ATA	Assume Revenue for Phylicity (CRAcondited for the optical of the form Assume on option of USOF Charge and Agreent
V .	The sensitive the set of difference of the profilent terms in the second set are been a Marken in the second state of
	SATA and the life Menoric contingence of adaption of the contract of the second contract of

Parie I

Acoustic Level 7 Building 2 423 Pennant Hills Rd Research Pennant Hills NSW AUSTRALIA 2120 Ph: +61 2 9484 0800 A.B.N. 65 160 399 119 Labs Pty Ltd www.acousticresearch.com.au

Sound Level Meter AS 1259.1:1990 - AS 1259.2:1990 **Calibration Certificate**

	auon			
Calibration N	umber C	17277		
Client	Details SL	R Consulting	_	
		ite 2, 2 Domville Aven	ue	
		wthorn VIC 3122		
	114	withoffi vic 5122		
Equipment Tested/ Model Nu	mber : AF	RL EL-316		
Instrument Serial Number :		-203-505		
Microphone Serial Number :		8370		
Pre-amplifier Serial Number :		26962		
			•	
	Atmospheric			
Ambient Temper	ature: 24	.9°C		
Relative Hun	nidity: 44.	.3%		
Barometric Pre	ssure : 10	0.78kPa		
Calibration Technician : Vicky Jaiswal		Secondary Chec	k: Riley Cooper	
Calibration Date: 14/06/2017		Report_Issue Date	e: 15/06/2017	
Campration Date . 14/00/2017		Report issue Date	e: 15/06/2017	
		Report Issue Date		
Approved Sign	atory : 12	Report issue Date		n Williams
Approved Sign	atory : 15 Result	Clause and Charae	Ke	
Approved Sign Clause and Characteristic Tested		Clause and Charae 10.3.4: Inherent system	Ker cteristic Tested n noise level	
Approved Sign Clause and Characteristic Tested 10.2.2: Absolute sensitivity	Result	Clause and Charac 10.3.4: Inherent system 10.4.2: Time weighting	Ker cteristic Tested a noise level g characteristic F and S	Result Pass Pass
Approved Sign Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications	Result Pass	Clause and Charac 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting	Ker cteristic Tested a noise level g characteristic F and S g characteristic I	Result Pass Pass Pass
Approved Sign Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting	Result Pass Pass	Clause and Charac 10.3.4: Inherent system 10.4.2: Time weighting	Ker cteristic Tested a noise level g characteristic F and S g characteristic I	Result Pass Pass
Approved Sign Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity	Result Pass Pass Pass	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging	Ker cteristic Tested a noise level g characteristic F and S g characteristic I ance	Pass Pass Pass Pass
Approved Sign Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control	Result Pass Pass Pass Pass Pass	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform	Ker cteristic Tested a noise level g characteristic F and S g characteristic I ance	Result Pass Pass Pass Pass
Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity 8.10: Differential level linearity	Result Pass Pass Pass Pass Pass Pass	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging 9.3.5: Overload indicat	Ker cteristic Tested a noise level g characteristic F and S g characteristic I ance	Result Pass Pass Pass Pass Pass
Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity 8.10: Differential level linearity Leas	Result Pass Pass Pass Pass Pass Pass St Uncertainties	Clause and Charac 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging 9.3.5: Overload indicat	Ker cteristic Tested a noise level g characteristic F and S g characteristic I ance	Result Pass Pass Pass Pass Pass
Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity 8.10: Differential level linearity Leas	Result Pass Pass Pass Pass Pass Pass St Uncertainties	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging 9.3.5: Overload indicat	Ker cteristic Tested a noise level g characteristic F and S g characteristic I ance	Result Pass Pass Pass Pass Pass
Approved Sign. Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity 8.10: Differential level linearity Lease Acoustic Tests	Result Pass Pass Pass Pass Pass Pass St Uncertainties	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging 9.3.5: Overload indicat	Exteristic Tested n noise level g characteristic F and S g characteristic I ance tion	Result Pass Pass Pass Pass Pass
Approved Sign. Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity 8.10: Differential level linearity Lease Acoustic Tests 31.5 Hz to 8kHz ±0.16dB	Result Pass Pass Pass Pass Pass Pass St Uncertainties	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging 9.3.5: Overload indicat of Measurement - ironmental Conditions <i>Temperature</i>	$\pm 0.05^{\circ}C$ Ker	Result Pass Pass Pass Pass Pass
Approved Sign. Clause and Characteristic Tested 10.2.2: Absolute sensitivity 10.2.3: Frequency weighting 10.3.2: Overload indications 10.3.3: Accuracy of level range control 8.9: Detector-indicator linearity 8.10: Differential level linearity Least Acoustic Tests 31.5 Hz to 8kHz ±0.16dB 12.5kHz ±0.2dB	Result Pass Pass Pass Pass Pass Pass St Uncertainties	Clause and Charae 10.3.4: Inherent system 10.4.2: Time weighting 10.4.3: Time weighting 10.4.5: R.M.S perform 9.3.2: Time averaging 9.3.5: Overload indicat of Measurement - ironmental Conditions Temperature Relative Humidity	${2}$ Ker cteristic Tested In noise level g characteristic F and S g characteristic I ance tion $\frac{\pm 0.05^{\circ}C}{\pm 0.46\%}$	Result Pass Pass Pass Pass Pass

All uncertainties are derived at the 95% confidence level with a coverage factor of 2.

The sound level meter under test has been shown to conform to the type 1 requirements for periodic testing as described in AS 1259.1:1990 and AS 1259.2:1990 for the tests stated above.

This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025.

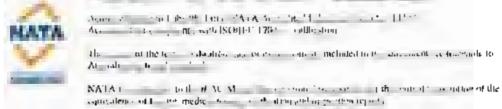
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

most martial www.accountierassanch.com.mr

Level Meter As remained the and 25th Damage

Calibrat on Certificat-


Calibration Namber Classifi

	ent D	SLR Cocatin	
		Suite Don ill. Aver	
		Howtharii Yix 1122	
gu duent l'ann	ing in a star of a	ARE DO STO	
Instrument Strut & umber . 16-103-294			
Miccopha	ne Serial Number :	312150	
e mplifi	er Serlal Number :	180.0	
	ingspit	erie & onthions	
Amb	tent fontgorature :	115 C	
F	Relative Humbliny :	42.000	
136.	cometrie Pressore :	99 Ikca	
Calibration Technician ; 1	nel - In wa	se ont to Check: 1 with	· · · arimula
	1 1010 1/1 9		48 18
Childrandin oper .		sections is the same rest.	ur - 10
4 P	(noved Signatory -	the fame is	Ken William
and ba er to	4	e t Cim e non , haroct h	ed all
10.7 ' At plans physitical a	157		
(0.) F menes w little	Ps.		
0.2.2. Overload indications	P_{Ψ}		
D.3 + Accur / bruel ion evin			Bes
C De storsind neor binearity	Po		Pres
10: Dif alah 1 lingarity	Po	as 9.5 Ov d'indication	Pros
	L1 L 1.01	12 - 01	
NG0 10		Lats metry.	
1 . 11 kll- (11.1 s.d.		n she	
1 · · · · · · · · · · · · · · · · · · ·		so lower thoughty	
i transference i tran		Downstra Breason - 0 Pi	r
a need pro-			
All MOLLING	offers are derford in the s	we have to when a second 2	
the count l. 1 27 other tes has t		in Trophosical in	- 52 - 0 - 18 12, 2,1 1990
	10 M 11 1. 1. 4. 7 1 -1	6 with to construct distants	

Anna a chickene ben "ArA to the 11" of the

to the term of a allowing on the other of meladed to the according to the stands to

Accession in the second score is a collection of the score is a second score in the score in

41:-

At tale to the tale

PAGPARATE

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 23294 & FILT 4793

Equipment Description: Sound & Vibration Analyser

Manufacturer:	Svantek			
Model No:	Svan-957	Serial No:	27522	
Microphone Type:	7052E	Serial No:	62914	
Preamplifier Type:	SV12L	Serial No:	49862	
Filter Type:	1/1 Octave	Serial No:	27522	
Comments:	All tests passed for class 1.			
	(See over for details)			
Owner:	SLR Consulting Australia Pty Ltd			
	Level 2, 2 Lincoln Street			
	Lane Cove, NSW 2066			
Ambient Pressure:	996 hPa ±1	I.5 hPa		
Temperature:	23 °C ±2°	C Relative H	umidity: 27% ±5%	
Date of Calibration: Acu-Vib Test Procedur	07/08/2018 e: AVP10 (SLM	Issue Dat (1) & AVP06 (

CHECKED BY:

AUTHORISED SIGNATURE:

Jack

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

> Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 23294 & FILT 4793

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Pass
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 07/08/2018

07/08/2018 Issue Date:

Checked by:

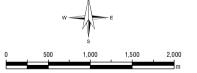
Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Page 2 of 2 End of Calibration Certificate AVCERT10

APPENDIX C

Noise Monitoring Locations

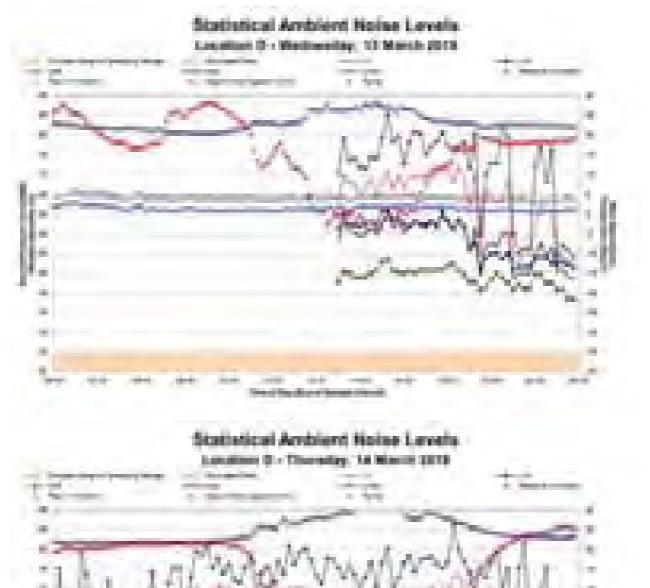


	Project No .:	630.01053.01200
	Date:	11/01/2018
	Drawn by:	NT
	Scale:	1:45,000
	Sheet Size:	A4
	Projection:	GDA 1994 MGA Zone 56

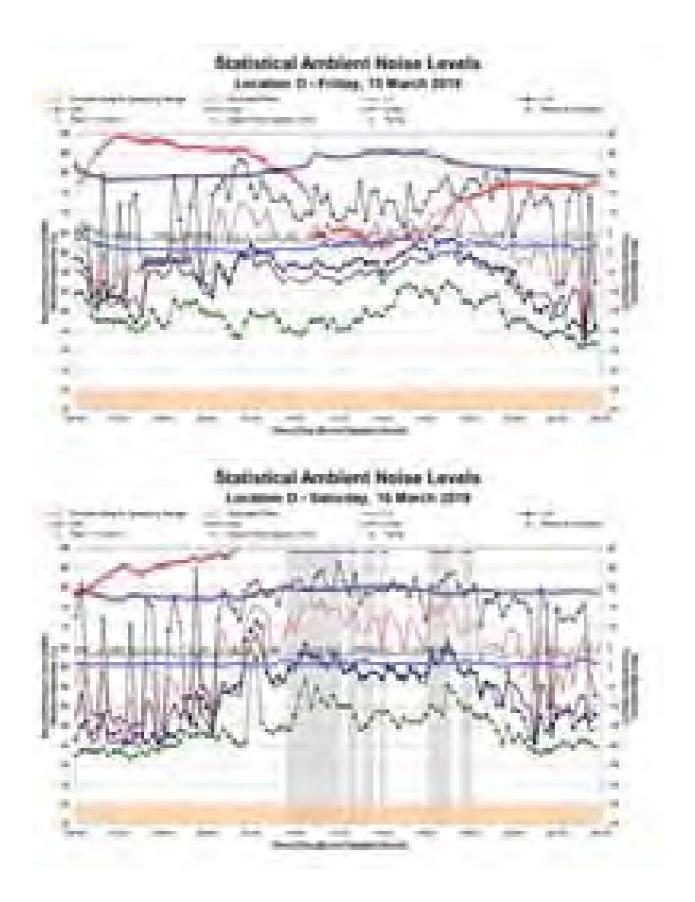
LEGEND

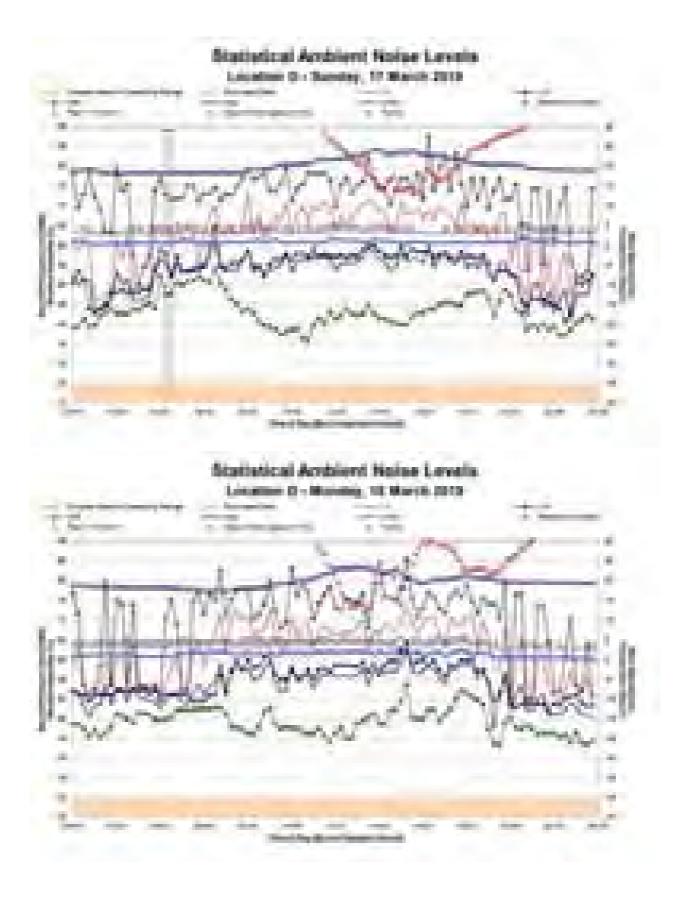
Noise Monitoring Locations

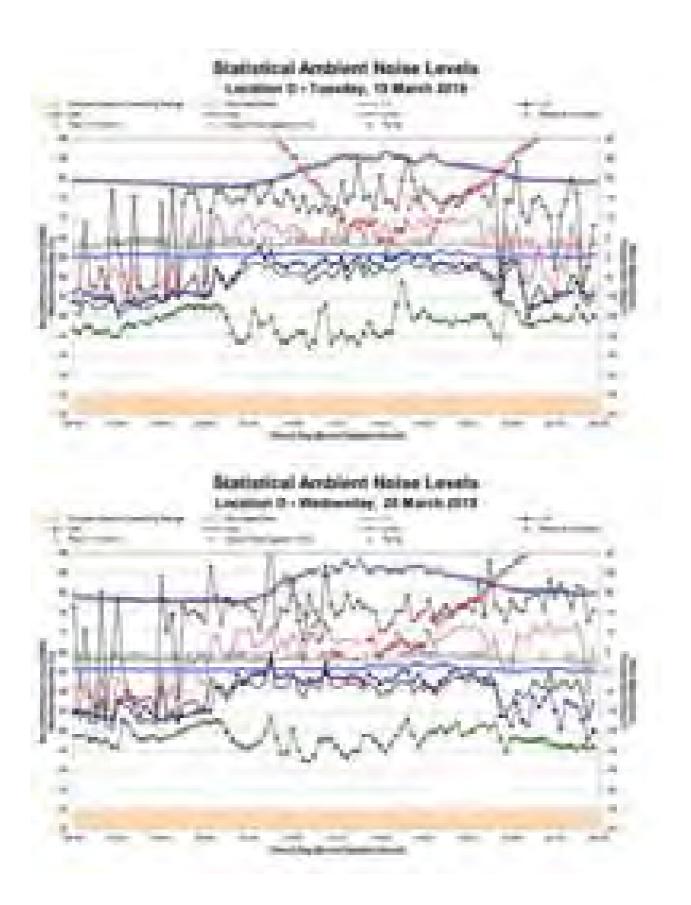
Donaldson Coal

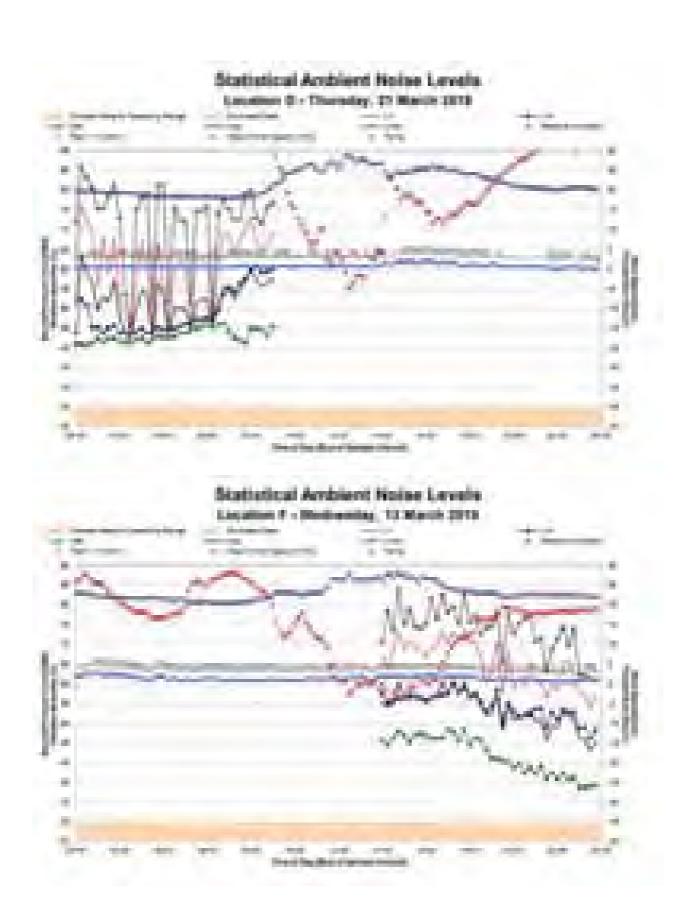

Noise Monitoring

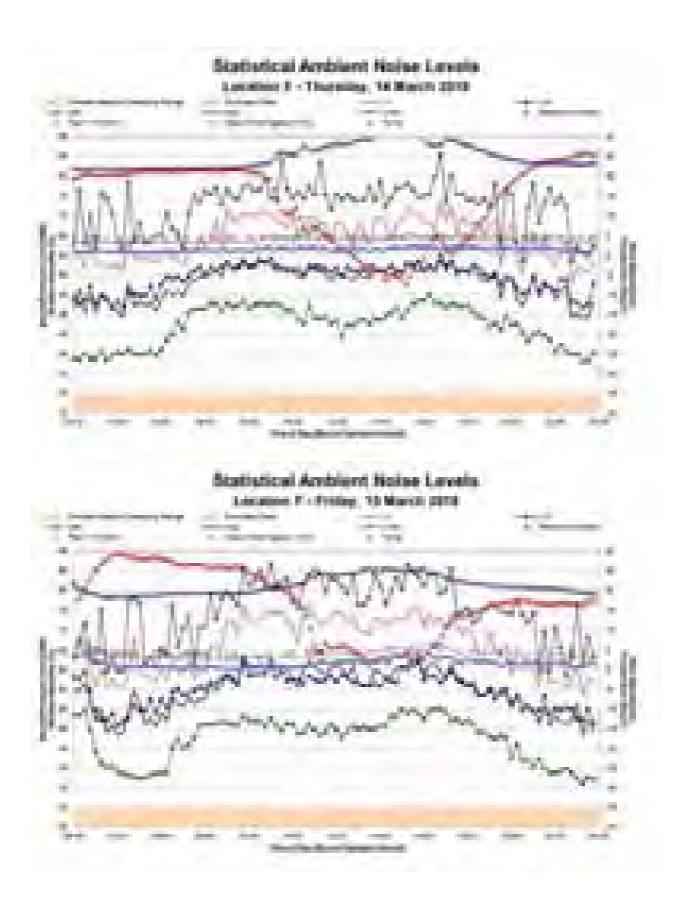
Noise Monitoring Locations

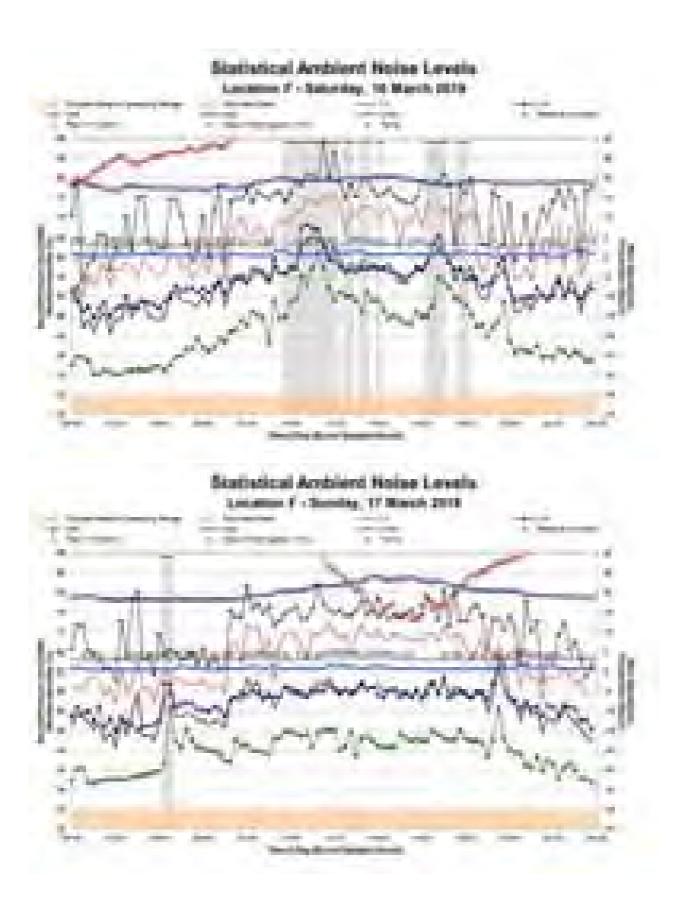

APPENDIX B

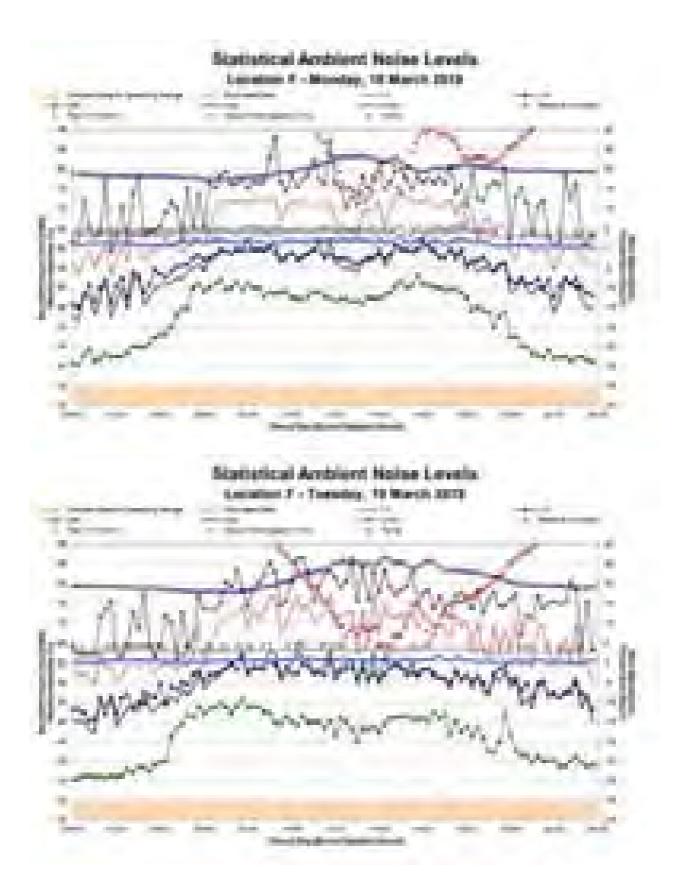

APPENDIX D

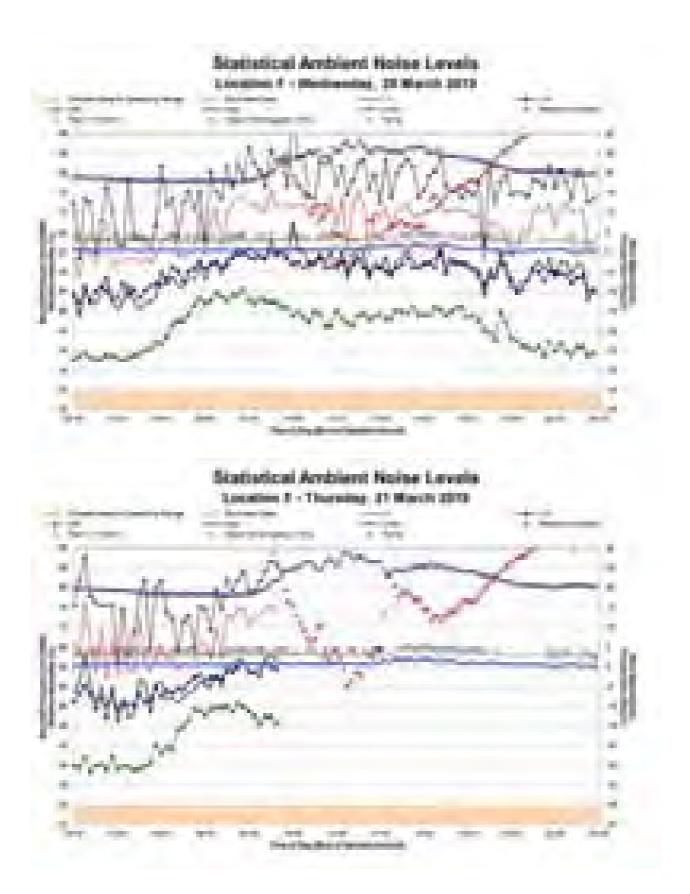

Statistical Ambient Noise Levels

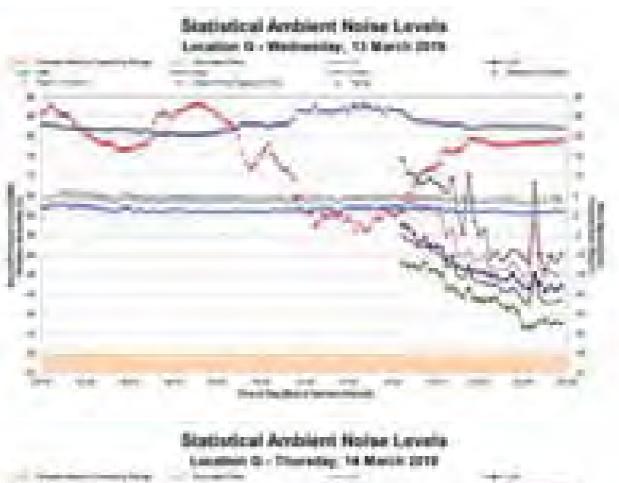


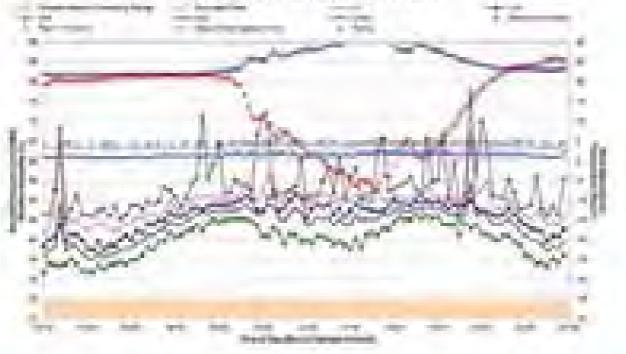


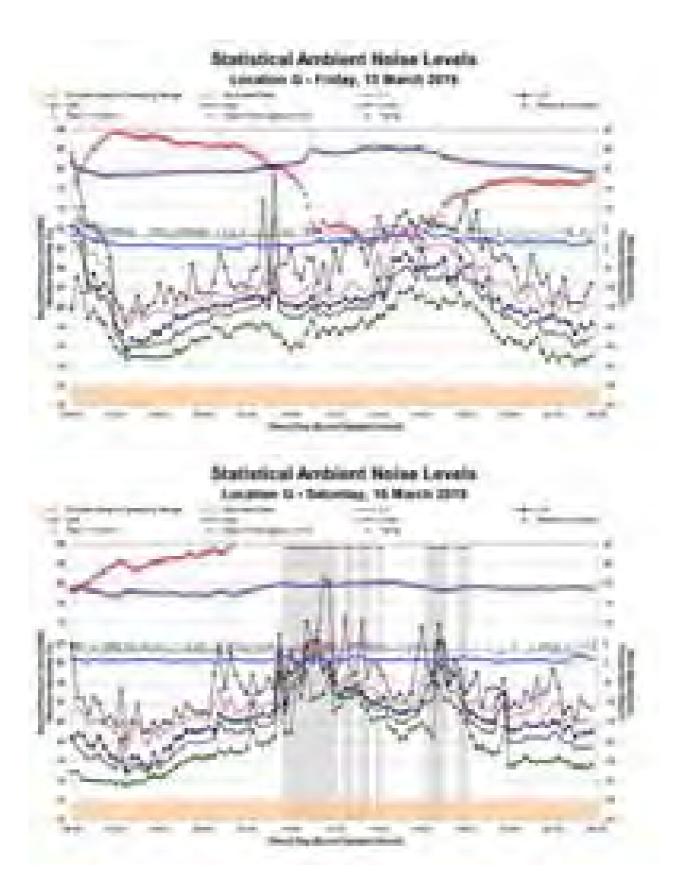


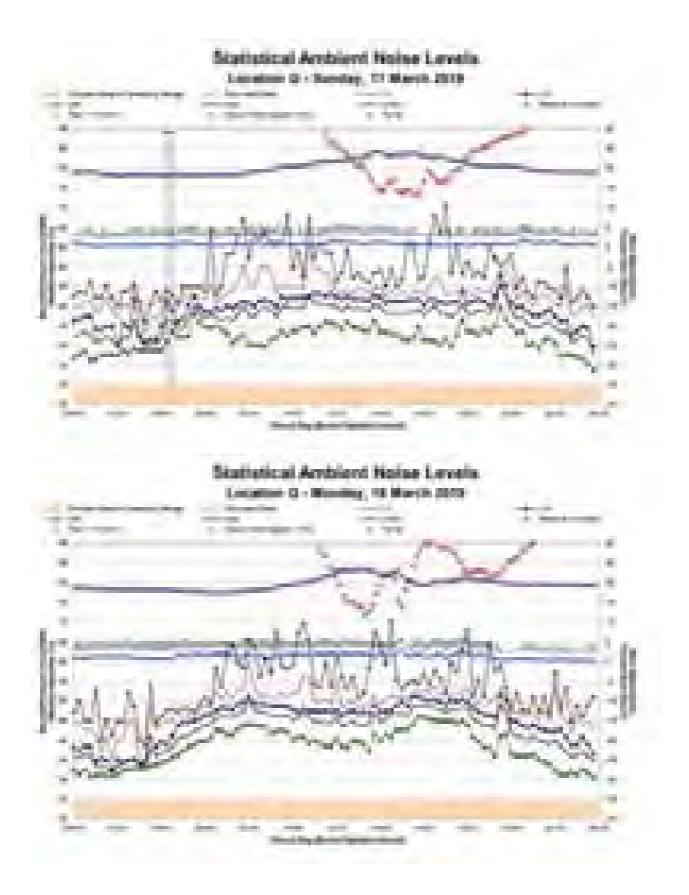


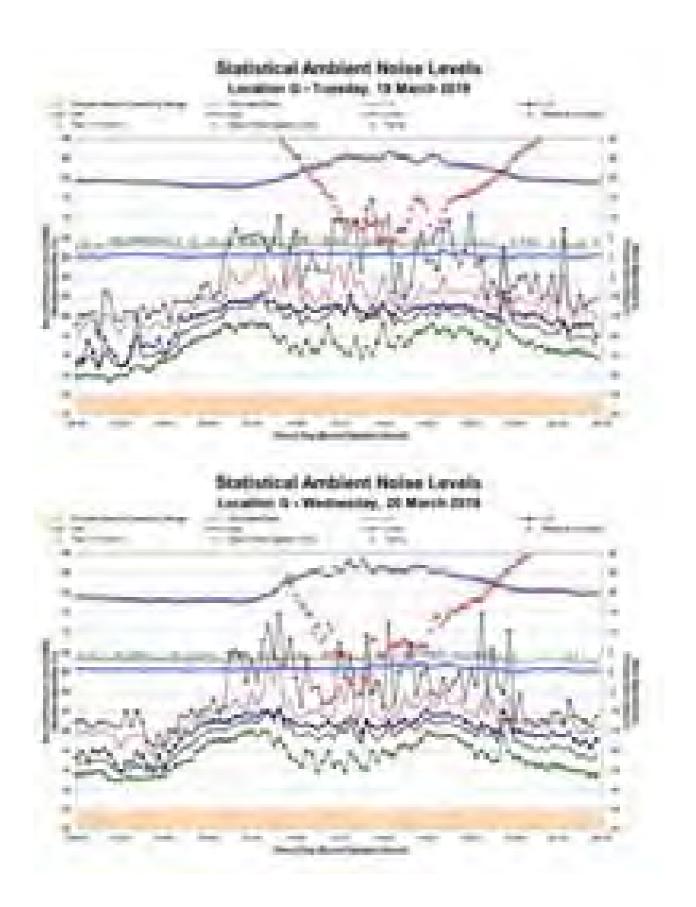


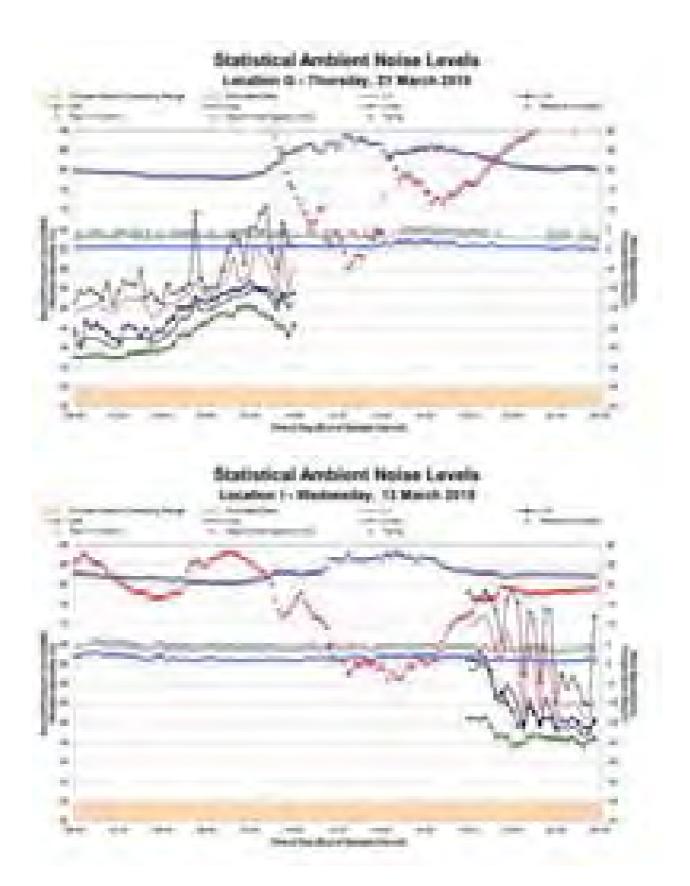


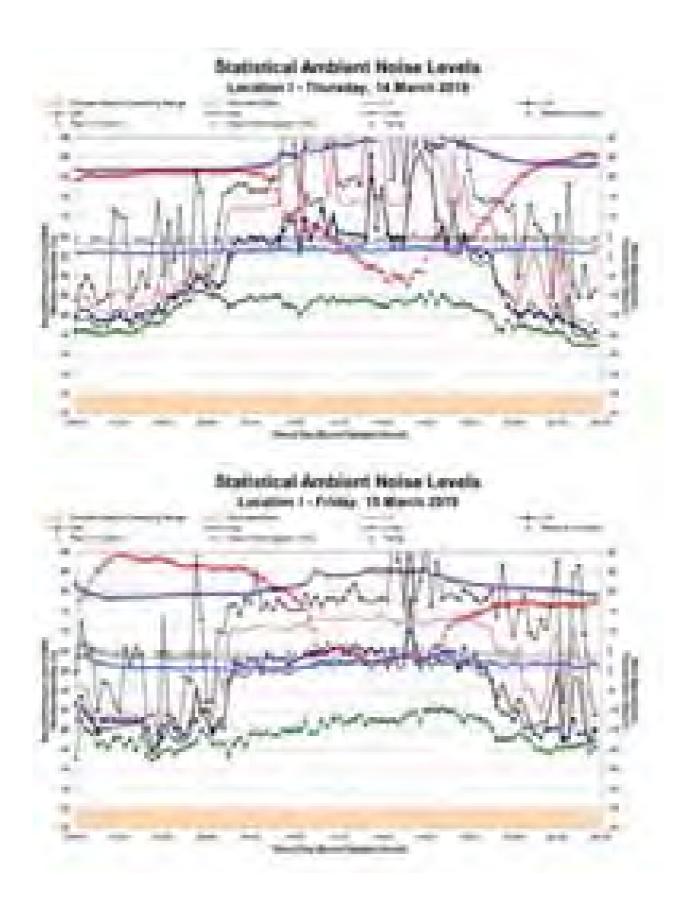


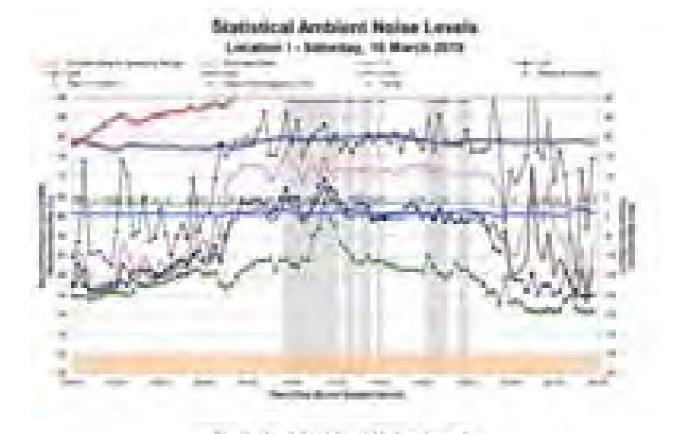


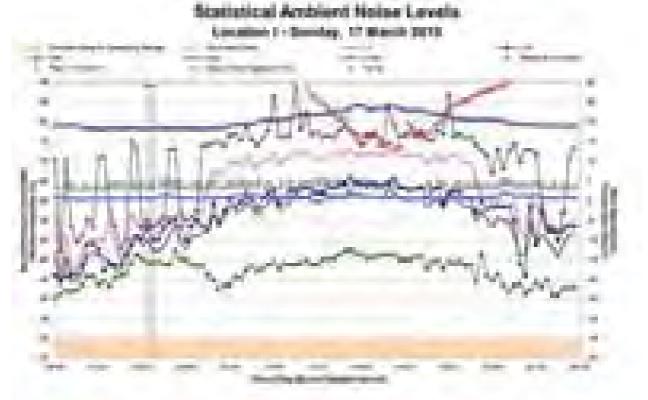


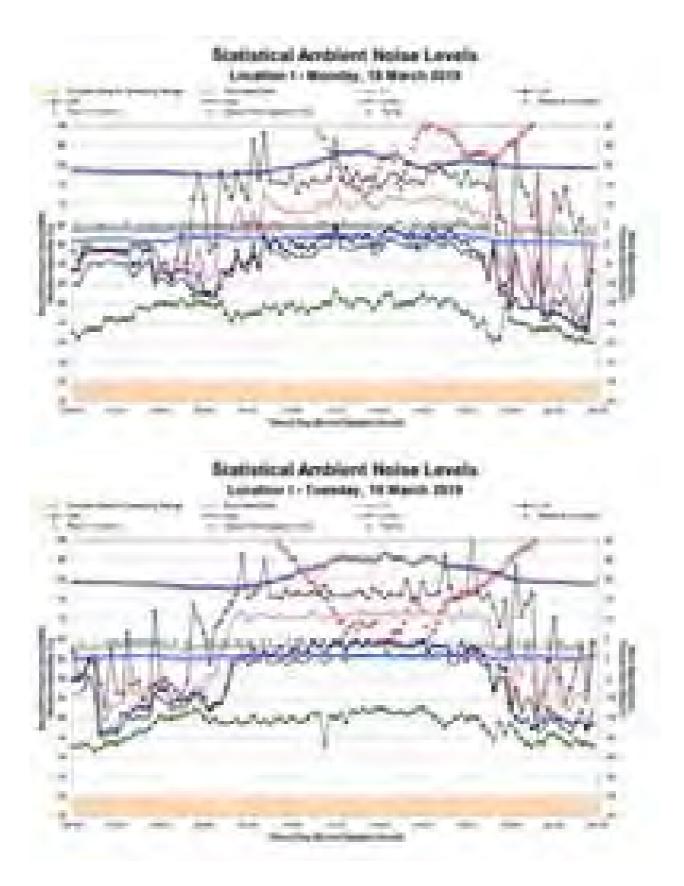


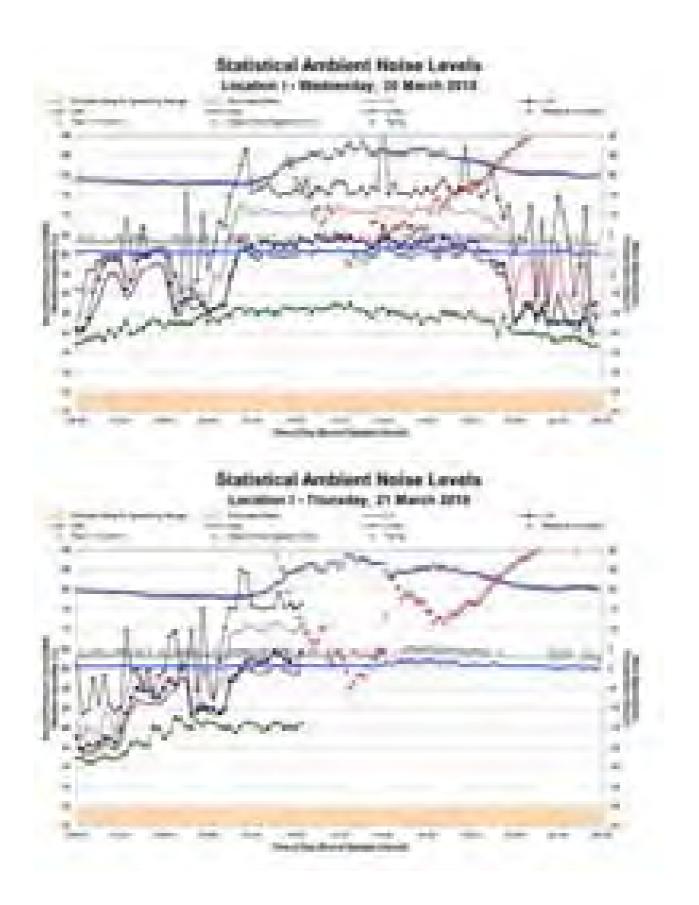


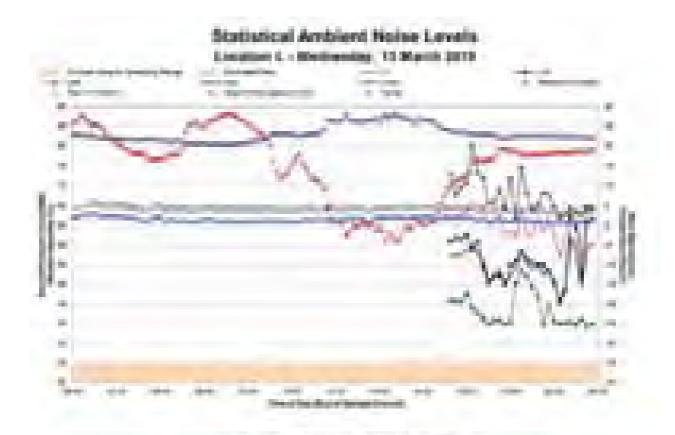


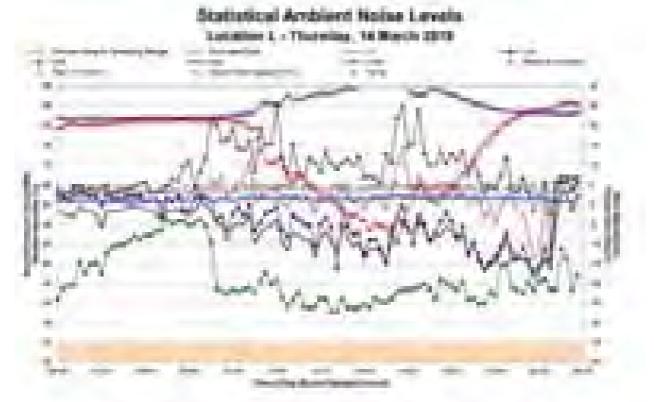


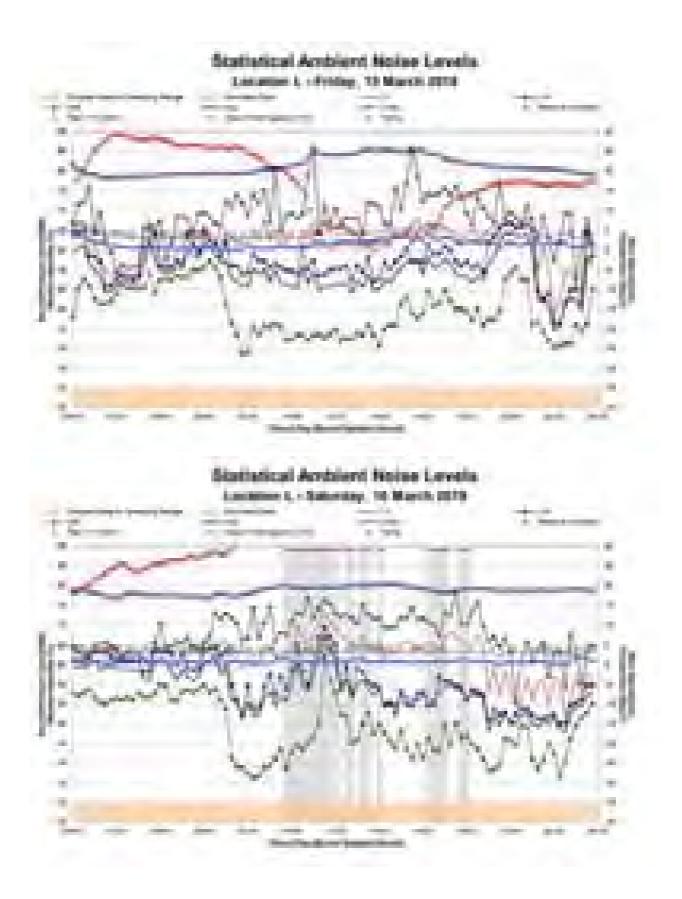


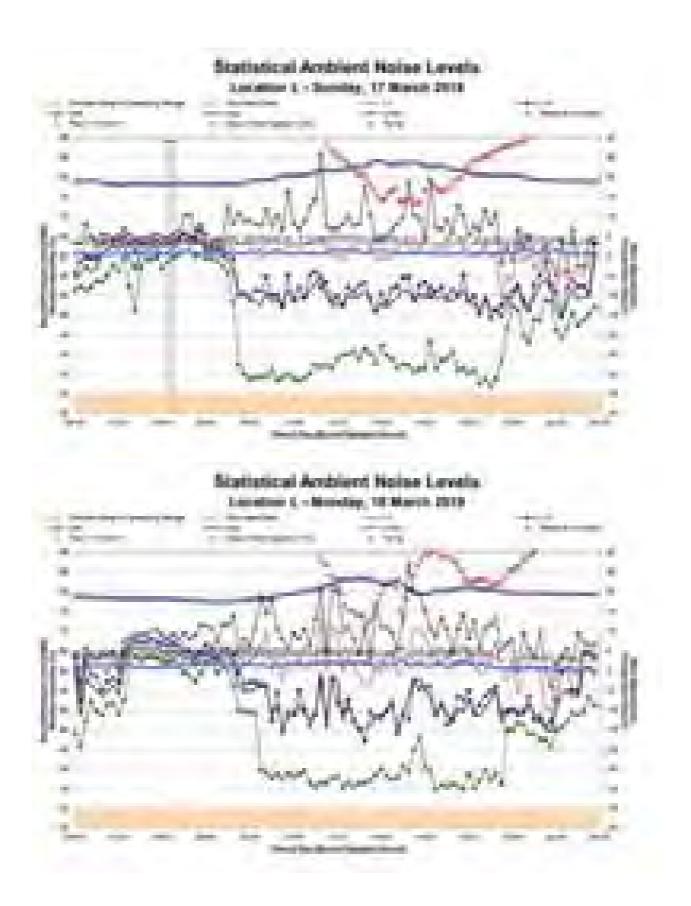


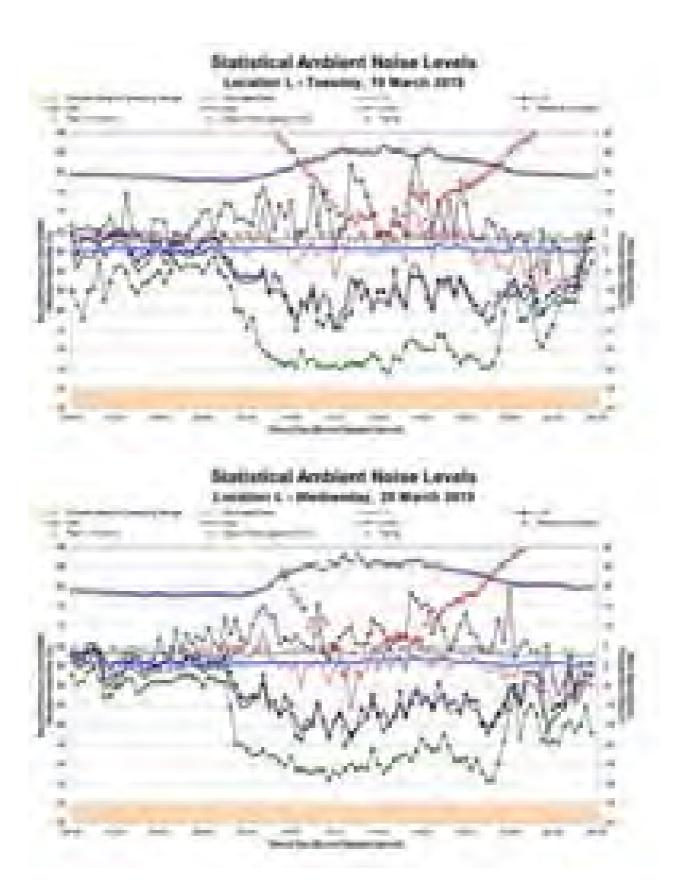


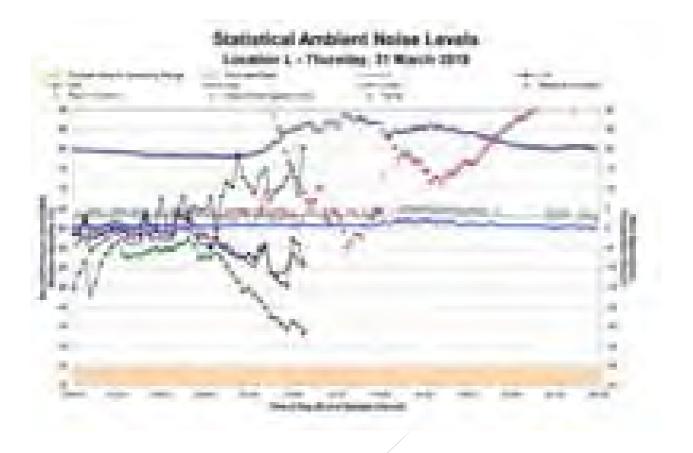












ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

МАСКАУ

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

ROCKHAMPTON

rockhampton@slrconsulting.com M: +61 407 810 417

AUCKLAND

68 Beach Road Auckland 1010 New Zealand T: +64 27 441 7849

CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

2 Lincoln Street Lane Cove NSW 2066 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

DARWIN

5 Foelsche Street Darwin NT 0800 Australia T: +61 8 8998 0100 F: +61 2 9427 8200

NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

TAMWORTH

PO Box 11034 Tamworth NSW 2340 Australia M: +61 408 474 248 F: +61 2 9427 8200

NEW PLYMOUTH

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand T: +64 0800 757 695

GOLD COAST

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001

DONALDSON AND ABEL COAL MINES

Quarterly Noise Monitoring Quarter Ending June 2019

Prepared for:

Donaldson Coal Pty Ltd PO Box 675 Green Hills 2320

SLR

SLR Ref: Q74 630.01053-R01 Version No: -v1.0 October 2019

PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: newcastleau@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Donaldson Coal Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
Q74 630.01053-R01-v1.0	14 October 2019	Jeff Sit	Martin Davenport	Martin Davenport

CONTENTS

1	INTRODUCTION
1.1	Background5
1.2	Objectives of this Report5
1.3	Acoustic Terminology5
2	DEVELOPMENT CONSENT PROJECT APPROVAL
2.1	Donaldson Coal Mine Development Consent Conditions6
2.2	Abel Coal Mine – Project Approval7
3	NOISE MONITORING METHODOLOGY
3.1	General Requirements
3.2	Monitoring Locations
3.3	Unattended Continuous Noise Monitoring14
3.4	Operator Attended Noise Monitoring14
4	OPERATOR ATTENDED NOISE MONITORING 14
4.1	Results of Operator Attended Noise Monitoring14
4.2	Operator Attended Noise Monitoring Summary
4.2.1	Donaldson Mine
4.2.2	Abel Coal Mine 20
4.3	Compliance Assessment and Discussion of Results20
4.3.1	Operations
4.3.2	Sleep Disturbance
5	UNATTENDED CONTINUOUS NOISE MONITORING 22
5.1	Results of Unattended Continuous Noise Monitoring22
5.2	Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine
5.2.1	Ambient LA90 Noise Levels
5.2.1	Baseline
5.2.1.2	Previous Quarter
5.2.1.3	Coinciding Period Last Year
5.2.2	Ambient LA10 Noise Comparison
5.2.2.1	Baseline
5.2.2.2	Previous Quarter
5.2.2.3	Coinciding Period Last Year
5.3	Rail Noise Monitoring35

CONTENTS

6	

CONCI

CLUSION	

DOCUMENT REFERENCES

TABLES

Table 1	Monitoring Locations	13
Table 2	Location D, Black Hill Public School, Black Hill	15
Table 3	Location F, Lot 684 Black Hill Road, Black Hill	16
Table 4	Location G, Buchanan Road, Buchanan	17
Table 5	Location I, Magnetic Drive, Ashtonfield	
Table 6	Location J, Parish Drive, Thornton	19
1	Table 7 Location L, 65 Tipperary Dr, Ashtonfield	20
Table 8	Compliance Noise Assessment – Operations	21
Table 9	Compliance Noise Assessment – Sleep Disturbance	21
Table 10	Noise Logger and Noise Monitoring Locations	22
Table 11	Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)	23
Table 12	LA90 Results Comparison – Baseline	27
Table 13	LA90 Results Comparison – Previous Quarter	
Table 14	LA90 Results Comparison – Coinciding Period Last Year	29
Table 15	LA10 Results Comparison – Baseline	
Table 16	LA10 Results Comparison – Previous Quarter	
Table 17	LA10 Result Comparison – Coinciding Period Last Year	35
Table 18	Coal Train Loading Operations Log	35
Table 19	Rail Noise Impact Monitoring Results	

FIGURES

Figure 1	Long term Daytime LA90 Noise Levels	24
Figure 2	Long term Evening LA90 Noise Levels	25
Figure 3	Long term Night-time LA90 Noise Levels	
Figure 4	Long term Daytime LA10 Noise Levels	30
Figure 5	Long term Evening LA10 Noise Levels	31
Figure 6	Long term Night LA10 Noise Levels	

APPENDICES

- Appendix A Acoustic Terminology
- Appendix B Noise Monitoring Locations
- Appendix C Calibration Certificates
- Appendix D Statistical Ambient Noise Levels

1 Introduction

1.1 Background

Donaldson Coal Pty Ltd has commissioned SLR Consulting Australia Pty Ltd (SLR) to conduct quarterly noise monitoring surveys for the Donaldson Coal Mine and Abel Coal Mine during the June 2019 quarter in accordance with the Abel Mine Project Noise Monitoring Program, dated 12 August 2014.

1.2 Objectives of this Report

The objectives of the noise monitoring survey for this operating quarter were as follows:

- Measure the ambient noise levels at six focus receptor locations (potentially worst affected) surrounding Donaldson Coal Mine and Abel Coal Mine.
- Qualify all sources of noise within each of the attended surveys, including estimated contribution or maximum level of individual noise sources.
- Assess the noise emissions of Donaldson Coal Mine and Abel Coal Mine with respect to the limits contained in the Development Consent.

1.3 Acoustic Terminology

The following report uses specialist acoustic terminology. An explanation of common terms is provided in **Appendix A**.

2 Development Consent Project Approval

Development consent was obtained by Donaldson Coal Pty Ltd for the Donaldson Mine in October 1999 following a Commission of Inquiry. Development Consent number N97/00147 was issued by the Minister for Urban Affairs pursuant to Section 101 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

Project Approval (Application No. 05_0136) granted by the Minister of Planning was obtained by Donaldson Coal Pty Ltd for Abel Coal Mine in 2007.

2.1 Donaldson Coal Mine Development Consent Conditions

The Development Consent nominates hours of operation and mine noise emission goals in the Sections entitled "Operation of Development, Condition No. 3(1) and 3(2)", and "Noise and Vibrational Noise Limits: Condition No. 15" as follows:

3.(1) Subject to (2) the approved hours of operation are as follows:

Works	Period	Hours
Construction, including construction of any bunds	Monday to Friday Saturday	7 am to 6 pm 8 am to 1 pm
Mining operations, including mining, haulage of waste to dumps and coal processing	Monday to Friday Saturday, Sunday	24 hours per day 7 am to 6 pm
Road Transportation and stockpiling of coal	7 days per week	24 hours per day
Rail loading of coal	7 days per week	7 am to 10 pm
Maintenance of mobile and fixed plant	7 days per week	24 hours per day
Blasting, not involving closure of John Renshaw Drive	Monday to Saturday	7 am to 5 pm
Blasting, involving closure of John Renshaw Drive	Monday to Saturday	10 am to 2 pm

Notes: Restrictions on Public Holidays are the same as Sundays

(2) The Applicant shall submit a report to the Director-General's satisfaction demonstrating the noise limits in Condition 15 can be met while rail loading of coal is occurring during the period from 6 pm to 10 pm. If that report does not demonstrate that the noise limits can be met to the Director-General's satisfaction, then the hours of operation for rail loading of coal shall be restricted to 7 am to 6 pm."

15. Unless subject to a negotiated agreement in accordance with Condition 23, the Applicant shall ensure that the noise emission from construction or mining operations, when measured or computed at the boundary of any dwelling not owned by the applicant (or within 30 metres of the dwelling, if the boundary is more than 30 metres from the dwelling), shall not exceed the following noise limits:

Location	LA10(15minute) Noise Limits (dBA)		
	Daytime	Night-time	
Beresfield area (residential)	45	35	
Steggles Poultry Farm	50	40	
Ebenezer Park Area	46	41	
Black Hill Area	40	38	
Buchanan and Louth Park Area	38	36	
Ashtonfield Area	41	35	
Thornton Area	48	40	

Note: Daytime is 7 am to 10 pm Monday-Saturday, and 8 am to 10 pm Sundays and Public Holidays. Night-time is 10 pm to 7 am Monday-Saturday, and 10 pm to 8 am Sundays and Public Holidays.

The noise limits apply for prevailing meteorological conditions (winds up to 3 m/s), except under conditions of temperature inversions."

Other Conditions of Consent relevant to noise are as follows:

- 18. The applicant shall survey and investigate noise reduction measures from plant and equipment and set targets for noise reduction in each Annual Environmental Management Report (AEMR), taking into consideration valid noise complaints received in the previous year. The Report shall also include remedial measures.
- 19. The Applicant shall revise the Noise Management Plan as necessary and provide an updated Plan five years after commencement of mining to the Director-General, the independent noise expert (Condition 48), EPA, Councils and the Community Consultative Committee.

2.2 Abel Coal Mine – Project Approval

Approved Operations

The following operations are approved under the Abel Coal Mine Project Approval:

- Extraction of up to 6.1 Mtpa of Run of Mine (ROM) coal from the Abel Underground Coal Mine.
- Transport coal to the existing Bloomfield Coal Handling and Preparation Plant by private haul roads, or by coal conveyor, or by a combination of both methods.
- Operate the Bloomfield Coal Handling Processing Plant (CHPP) to process coal extracted from the Abel Coal Mine and the Bloomfield and Donaldson Coal Mines.
- Transportation of product coal from the Bloomfield site by rail via the Bloomfield rail loading facility.

The Project Approval was modified in June 2010 (05_0136 MOD 1) allowing construction and operation of a downcast ventilation fan. In May 2011 the Project Approval was modified again (05_0136 MOD 2) to allow the construction and operation of an upcast ventilation fan (and associated facilities). In December 2013 the Project Approval was further modified (05_0136 MOD3) to account for the increase in coal extracted including the upgrade of the Bloomfield CHPP.

Consent Conditions

The relevant conditions relating to noise from the Abel Coal Mine approval are reproduced below.

Schedule 4

NOISE

Operational Noise Criteria

1. The Proponent shall ensure that the noise generated by the Project does not exceed the criteria in Table 4 at any residence on privately-owned land.

Table 4: Operational Noise Criteria dB(A)

Location	Receiver Area	Day	Evening	Night	
		LAeq(15minute)	LAeq(15minute)	LAeq(15minute)	LA1(1minute)
Location I	Lord Howe Drive, Ashtonfield	36	36	36	45
Location K	Catholic Diocese Land	37	37	37	45
Location L	Kilshanny Avenue, Ashtonfield	40	40	40	47
All other Locations	All other privately owned Residences	35	35	35	45

Notes:

- To interpret the locations referred to in Table 4, see plan in Appendix 3 (Appendix A).
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy.

These noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Construction Noise Criteria

1. The proponent shall ensure that the noise generated during the construction of the downcast ventilation shaft as described in EA (MOD3) does not exceed the criteria in Table 5.

Table 5: Construction Noise Criteria dB(A)

Location	Receiver	Day	
	Receiver	LAeq(15minute)	
Location R	281 Lings Road, Buttai	50	
Location S	189 Lings Road, Buttai	43	

Notes:

- The criteria in Table 5 apply only whilst the downcast ventilation shaft is being constructed, and for a maximum of 12 weeks from the commencement of construction.
- To interpret the locations referred to in Table 5, see plan in Appendix 3 (attached to this report as Appendix A).
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain
 meteorological conditions), of the NSW Industrial Noise Policy.

However, these noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Rail Noise Criteria

1. The proponent shall ensure that the noise from rail movements on the Bloomfield Rail Spur does not exceed the limits in Table 6 at any residence on privately owned land.

Table 6: Rail Spur noise criteria dB (A)

Location Evening		Evening	Night
Location	LAeq(period)		
All privately-owned land	55	45	40

Cumulative Noise Criteria

1. The proponent shall implement all reasonable and feasible measures to ensure that the noise generated by the project combined with noise generated by other mines does not exceed the criteria in Table 7 at any residence on privately-owned land.

Table 7: Cumulative noise criteria dB (A)

	Location	Day	Evening	Night
		LAeq(period)		
	All privately-owned land	55	45	40

Notes: Cumulative noise is to be measured in accordance with the relevant requirements, and exemptions (including meteorological conditions), of the NSW Industrial Noise Policy. Appendix 4 sets out the metrological conditions under which these criteria apply and the requirements for evaluating compliance with these criteria.

Operating Conditions

- 1. The proponent shall:
 - a. Implement best management practise to minimise the construction, operational, road and rail noise of the project;
 - b. Operate an on-site noise management system to ensure compliance with the relevant conditions of this approval;
 - c. Minimise the noise impacts of the project during meteorological conditions under which the noise limits in this consent do not apply (see Appendix 4);
 - d. Only receive and/or dispatch locomotives and rolling stock either on or from the site that are approved to operate on the NSW rail network in accordance with the noise limits in ARTC's EPL (No. 3142);
 - e. Carry out regular monitoring to determine whether the project is complying with the noise criteria and other relevant conditions of approval, to the satisfaction of the Director-General.

Noise Management Plan

- 2. The proponent shall prepare and implement a Noise Management Plan for the project to the satisfaction of the Director-General. This plan must:
 - a. Be prepared in consultation with the EPA, and be submitted to the Director-General for approval within 6 months of the date of approval of MOD 3;
 - b. Describe the measures that would be implemented to ensure compliance with the noise criteria and operating conditions in this approval; Describe the proposed noise management system in detail; and
 - c. Include a monitoring program that:
 - Uses attended monitoring to evaluate the compliance of the project against the noise criteria in this approval;
 - Evaluates and reports on:
 - The effectiveness of the on-site noise management system; and
 - Compliance against the noise operating conditions; and

Defines what constitutes a noise incident, and includes protocol for identifying and notifying the Department and relevant stakeholders of any noise incidents. Appendix 4

Noise Compliance Assessment

Applicable Meteorological Conditions

- 1. The noise criteria in Tables 4 and 7 are to apply under all metrological conditions except the following:
 - a. During periods of rain or hail.
 - b. Average wind speed at microphone height exceeds 5 m/s;
 - c. Wind speeds greater than 3 m/s measured at 10m above ground level; or
 - d. Temperature inversion conditions greater than 3°C/100m.

Determination of metrological conditions

2. Except for wind speed at microphone height, the data to be used for determining metrological conditions shall be that recorded by the meteorological station located on the site.

Compliance monitoring

- 3. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- 4. Unless otherwise agreed with the director-general, this monitoring is to be carried out in accordance with the relevant requirements for reviewing performance set out in the NSW Industrial Noise Policy (as amended from time to time), in particular the requirements relating to:
 - a. Monitoring locations for the collection of representative noise data;
 - b. Metrological conditions during which collection of noise data is not appropriate;
 - c. Equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - d. Modification to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.

Appendix 5

Statement of Commitments

3. Noise

3.1 Construction Activities

The following noise control measures will be implemented prior to commencement of construction of the Abel Underground Mine or the upgrade of the Bloomfield CHPP.

- 1. Maintain all machinery and equipment in working order;
 - a. No construction activities at the Abel pit top will take place on Sundays or Public Holidays;
 - b. Where possible locate noisy site equipment behind structures that act as barriers or at the greatest distance from noise sensitive areas; and
 - c. Orientate equipment so that noise emissions are directed away from noise sensitive areas.

3.2 Noise Control Measures

- a. The following noise control measures will be implemented prior to the mining of coal from the Abel underground Mine:
 - *i.* Orientation of the ventilation fans away from residential receivers and angle the output parallel to the ground.
 - *ii.* The sound power level of the front end loader to be used near the portal should not exceed 113 dBA and will be fitted with a noise sensitive reversing alarm.
- b. The following noise control measures will be implemented prior to the Bloomfield CHPP receiving any ROM coal from Able Underground Mine;

i. Noise mitigation works including partial enclosure and noise screening of drives and conveyors of the Bloomfield CHPP to screen residences to the north of the site.

3.2 Monitoring

The Company will implement a Noise Monitoring Program for the Abel Underground Mine and the Bloomfield CHPP, to the satisfaction of the Director-General. The Noise Monitoring Program shall include a combination of real-time and supplementary attended monitoring measures, and a noise monitoring protocol for evaluating compliance with the noise environmental assessment. This plan will be integrated with the monitoring plans for the Tasman, Donaldson and Bloomfield Mines to provide a single integrated Noise Monitoring Program for all 4 mines.

3.4 Continuous Improvement

The Company shall:

a. Report on these investigations and implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director General.

The operator of the Bloomfield CHPP shall:

- b. Investigate ways to reduce the noise generated by the Bloomfield CHPP, including maximum noise levels which may result in sleep disturbance;
- c. Implement all reasonable and feasible best practice noise mitigation measures on the site; and
- d. Report on these investigations and the implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director-General.

3 Noise Monitoring Methodology

3.1 General Requirements

The operational noise monitoring program was conducted with reference to Development Consent N97/00147 (Donaldson Coal Mine), Project Approval 05_0136 (Abel Coal Mine), and in accordance with SLR's Report 630.01053.01300-R1 dated 12 August 2014 (*Noise Management Plan Abel Underground Mine*) and AS 1055-1997 *Acoustics - Description and Measurement of Environmental Noise*.

All acoustic instrumentation employed throughout the monitoring program has been designed to comply with the requirements of AS IEC 61672.1 – 2004 *Electroacoustics—Sound level meters – Specifications*, AS IEC 61672.2-2004, AS IEC 61672.3-2004 and carried current NATA or manufacturer calibration certificates. Certificates for acoustic instrumentation used during the June 2019 quarter is provided in **Appendix B**.

Instrument calibration was conducted before and after each measurement, with the variation in calibrated levels not exceeding ± 0.5 dBA.

3.2 Monitoring Locations

Baseline and preceding operational quarterly surveys have been conducted at 11 locations surrounding the Donaldson Mine and Abel Coal Mine sites. With the experience of these previous surveys, it was decided to concentrate noise monitoring at six focus locations that represent the potentially most noise affected areas from Donaldson Mine and Abel Coal Mine. The details of the monitoring locations are contained within **Table 1**.

It is relevant to note that Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

Furthermore, Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite during the June 2019 noise monitoring period.

Noise Monitoring Location	Description
D	Black Hill School, Black Hill
F	Lot 684 Black Hill Road, Black Hill
G	156 Buchannan Road, Buchannan
I	Magnetic Drive, Ashtonfield
J	Parish Drive, Thornton
L	65 Tipperary Dr, Ashtonfield

Table 1 Monitoring Locations

A map giving the approximate location of the noise monitoring sites is contained within **Appendix C**.

3.3 Unattended Continuous Noise Monitoring

An environmental noise logger was deployed for a minimum of a seven day period between Thursday 20 June 2019 and Friday 28 June 2019 at each of the six (6) nominated locations given in Table 1. Due to technical issues, the logger at location J was redeployed from 28 June 2019 to 5 July 2019.

All unattended monitoring equipment was programmed to continuously record statistical noise level indices in 15 minute intervals including the LAmax, LA1, LA10, LA90, LA99, LAmin and LAeq. The statistical noise exceedance levels (LAN) are the levels exceeded for N% of the 15 minute interval. The LA90 represents the level exceeded for 90% of the interval period and is referred to as the average minimum or background noise level. The LA10 is the level exceeded for 10% of the time and is usually referred to as the average maximum noise level. The LAeq is the equivalent continuous sound pressure level and represents the steady sound level which is equal in energy to the fluctuating level over the interval period. The LAmax is the maximum noise level recorded over the interval.

3.4 Operator Attended Noise Monitoring

Operator attended surveys were conducted at each of the six monitoring locations during the daytime, evening and night-time periods, to verify the unattended logging results and to determine the character and contribution of ambient noise sources.

4 **Operator Attended Noise Monitoring**

4.1 **Results of Operator Attended Noise Monitoring**

Operator attended noise measurements were conducted during the evening and night-time period on Thursday 20 June 2019 and Friday 21 June 2019. Operator attended noise measurements were conducted during the daytime period on Thursday 20 June 2019 and Friday 28 June 2019. Operator attended noise surveys were conducted using a Brüel & Kjær Type 2270 (serial number 2679354) and Brüel & Kjær Type 2250L integrating sound level meter (serial number 3003389).

Ambient noise levels given in the tables include all noise sources such as traffic, insects, birds, and mine operations as well as any other industrial operations.

The tables provide the following information:

- Monitoring location.
- Date and start time.
- Wind velocity (m/s) and Temperature (°C) at the measurement location.
- Typical maximum (LAmax) and contributed noise levels.

Mine contributions listed in the tables are from the Abel Coal Mine and are stated only when a contribution could be quantified.

Table 2 Location D, Black Hill Public School, Black Hill

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical				
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)		
20/06/2019 15:45	15:45	72	67	55	38	54	Road Traffic 60-72		
Баў	Day 14°C 1.3 m/s SSE			Mine Noi Inaudible	Birdsong 55-61 Abel Mine Inaudible				
Evening	20/06/2019 20:46 11.7°C	59	43	40	35	38	Trees 38-41 Insects 42		
Lvening	2.4 m/s S	Estima		Mine Noi Inaudible	Abel Mine Inaudible				
20/06/2019 22:39		57	42	39	35	38	Road Traffic 35-42 Insects/Frogs 30-35		
Night	10°C 1.2 m/s SW	Estima		Mine Noi Inaudible		oution	Operator 57 Abel Mine Inaudible		

Table 3 Location F, Lot 684 Black Hill Road, Black Hill

Period	Date/ Start time/Weather			Noise De A re 20 μ	Description of Noise Emission, Typical			
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
Davi	20/06/2019 16:21 Day 13.2°C 0.5 m/s S	86	74	57	49	61	Road Traffic 75-86 Birdsong 37-45	
Бау		Estima		Mine Noi Inaudible		oution	Insects 40-47 Abel Mine Inaudible	
Evening	20/06/2019 20:22 11.2°C	66	61	55	37	51	Road Traffic 64-66 Insects 34-36	
Evening	1 m/s S	Estima		Mine Noi Inaudible	Birdsong 48-53 Abel Mine Inaudible			
20/06/2019 23:00 Night 9.5°C		58 55 51 35 47				47	Road Traffic 43-58 Insects/Frogs 30-35	
NBIL	0.5 m/s WSW	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	

Table 4 Location G, Buchanan Road, Buchanan

Period	Date/ Start time/ Weather			Noise De A re 20 μ	Description of Noise Emission, Typical			
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
28/06/2019 11:48	11:48	58	50	46	40	44	Bird Noise 43-58 Insect 42-45 Road traffic 56	
Day	Day 18.3°C 1 m/s NNE	Estima		Mine Noi Inaudible	se Contril	oution	Abel Mine Inaudible	
Evening	20/06/2019 19:40 11.7°C	53	50	48	Road traffic 45-53 Insects 32-39			
Evening	1 m/s S	Estima		Mine Noi Inaudible	Abel Mine Inaudible			
21/06/2019 00:13 10.7°C 0.5 m/s SSW	00:13	52 44 39 32 36				36	Road traffic 45-52 Insects 28-33 Other industry 32-39	
		Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	

Table 5 Location I, Magnetic Drive, Ashtonfield

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical			
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
20/06/2019 13:30	71	59	54	48	52	Road Traffic 47-71		
Бау	Day 15.5°C 0.5 m/s SSE	Estima		Mine Noi Inaudible		oution	Insects 46-48 Abel Mine Inaudible	
Fuening	20/06/2019 21:41 10.6°C	70	55	47	42	47	Road Traffic 46 70 Insects 41-43	
Evening	0.5 m/s NNW	Estima		Mine Noi Inaudible	Abel Mine Inaudible			
20/06/2019 22:24 10°C 0.5 m/s WSW	62 51 47 38 44				44	Operator 62 Road Traffic 40-43		
		Estima		Mine Noi Inaudible	Insects 38-41 Abel Mine Inaudible			

Table 6Location J, Parish Drive, Thornton

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical			
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
Davi	20/06/2019 13:30	63	50	45	42	44	Road Traffic 54 Birdsong 48-63	
Day	Day 15.5°C 0.5 m/s SSE			Mine Noi Inaudible	Birdsong 48-63 Abel Mine Inaudible			
Evening	20/06/2019 21:15	58	46	44	40	42	Road Traffic 45 58 Dog Barking 43	
Evening	11.4°C 0.5 m/s S	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	
Night 20/06/2019 22:08 10.2°C 0.5 m/s NNW	64	50	45	39	43	Road Traffic 43-64		
	10.2°C	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	

1 Table 7 Location L, 65 Tipperary Dr, Ashtonfield

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical		
	Start time/ Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax — dBA)
	28/06/2019 12:26 19.4°C	76	61	44	35	50	Lawnmower 37
Day		Estima	ated Abel	Mine Noi Inaudible	Road traffic 67-76 Birdsong 40-60 Abel Mine Inaudible		
Evening	20/06/2019 18:24 11.6°C	70	64	50	35	50	Road Traffic 56-70
Evening	0.5 m/s S	Estima	ated Abel	Mine Noi Inaudible	Dog Barking 37-42 Abel Mine Inaudible		
21/06/2019 00:45 Night 8.9°C		52 38 32 25 30				Road Traffic 33 Birdsong 49	
Night	1 m/s SW	Estimated Abel Mine Noise Contribution Inaudible					Operator 52 Abel Mine Inaudible

4.2 **Operator Attended Noise Monitoring Summary**

4.2.1 Donaldson Mine

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

4.2.2 Abel Coal Mine

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

The Bloomfield CHPP and stockpile area was inaudible during all operator attended noise surveys. Noise generated by local and distant traffic was a significant contributor to ambient noise levels at all monitored locations as well as 'natural' noises such as birds, insects.

4.3 Compliance Assessment and Discussion of Results

4.3.1 Operations

Results of the operational compliance assessment are given in Table 8.

Location	Estimated Contributio	Abel LAeq(15 on dBA	minute)	Consent Conditions		IS	Compliance		
	Day	Eve	Night	Day	Eve	Night	Day	Eve	Night
D – Black Hill School, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
F – Black Hill Road, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
G – Buchanan Road, Buchanan	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
I – Magnetic Drive, Ashtonfield	Inaudible	Inaudible	Inaudible	36	36	36	Yes	Yes	Yes
J – Parish Drive, Thornton	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
L – 65 Tipperary Dr, Ashtonfield	Inaudible	Inaudible	Inaudible	40	40	40	Yes	Yes	Yes

Table 8 Compliance Noise Assessment – Operations

Results presented in **Table 8** indicate that compliance with the relevant consent conditions was achieved at all noise monitoring locations during all periods.

4.3.2 Sleep Disturbance

Results of the sleep disturbance compliance assessment are given in Table 9.

Table 9 Compliance Noise Assessment – Sleep Disturbance

Location	Estimated Bloomfield LA1(1minute) Contribution dBA	Consent Conditions LA1(1minute) dBA	Compliance
D – Black Hill School, Black Hill	Inaudible	45	Yes
F – Black Hill Road, Black Hill	Inaudible	45	Yes
G – Buchanan Road, Buchanan	Inaudible	45	Yes
I – Magnetic Drive, Ashtonfield	Inaudible	45	Yes
J – Parish Drive, Thornton	Inaudible	45	Yes
L – 65 Tipperary Dr, Ashtonfield	Inaudible	47	Yes

Results presented in **Table 9** indicate that compliance with the sleep disturbance consent conditions was achieved at all noise monitoring locations during the night-time noise surveys.

5 Unattended Continuous Noise Monitoring

5.1 Results of Unattended Continuous Noise Monitoring

Unattended continuous noise monitoring was conducted between Thursday 20 June 2019 and Friday 28 June 2019 at each of the six monitoring locations given in **Table 10**. Due to technical issues, the unattended continuous noise monitoring equipment was redeployed from Friday 28 June 2019 to Monday 8 July 2019.

Location	Noise Logger Serial Number	Date of Logging
D – Black Hill School, Black Hill	SVAN 957 23241	20 June 2019 - 28 June 2019
F – Black Hill Road, Black Hill	SVAN 957 23815	20 June 2019 - 28 June 2019
G – Buchanan Road, Buchanan	SVAN 957 27579	20 June 2019 - 28 June 2019
I – Magnetic Drive, Ashtonfield	ARL EL-316 16-103-494	20 June 2019 - 28 June 2019
L – 65 Tipperary Dr, Ashtonfield	ARL EL-316 16-203-508	20 June 2019 - 28 June 2019
J – Parish Drive, Thornton ¹	SVAN 957 21425 ARL EL-316 16-203-508	20 June 2019 - 28 June 2019 28 June 2019 – 8 July 2019

Table 10 Noise Logger and Noise Monitoring Locations

Note 1 - Due to a logger error no results are available from the SVAN 957 21425 logger at this location.

The unattended ambient noise logger data from each monitoring location are presented graphically on a daily basis and are attached as **Appendix C**. A summary of the results of the unattended continuous noise monitoring is given in **Table 11**.

The ambient noise level data quantifies the overall noise level at a given location independent of its source or character.

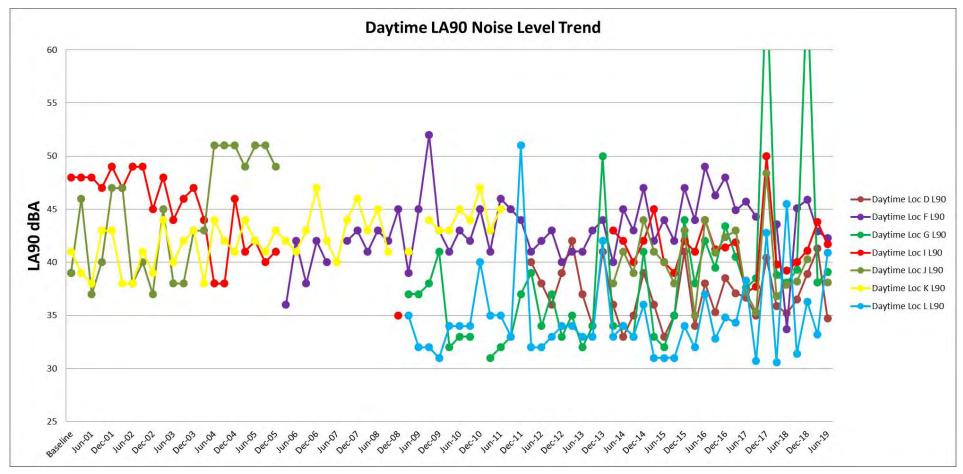
The measured ambient noise levels were divided into three periods representing day, evening and night as designated in the NSW Noise Policy for Industry (NPfI).

Precautions were taken to minimise influences from extraneous noise sources (eg optimum placement of the loggers away from creeks, trees, houses, etc), however, not all these sources or their effects can be eliminated. This is particularly the case during the warmer times of year when noise from insects, frogs, birds and other animals can become quite prevalent.

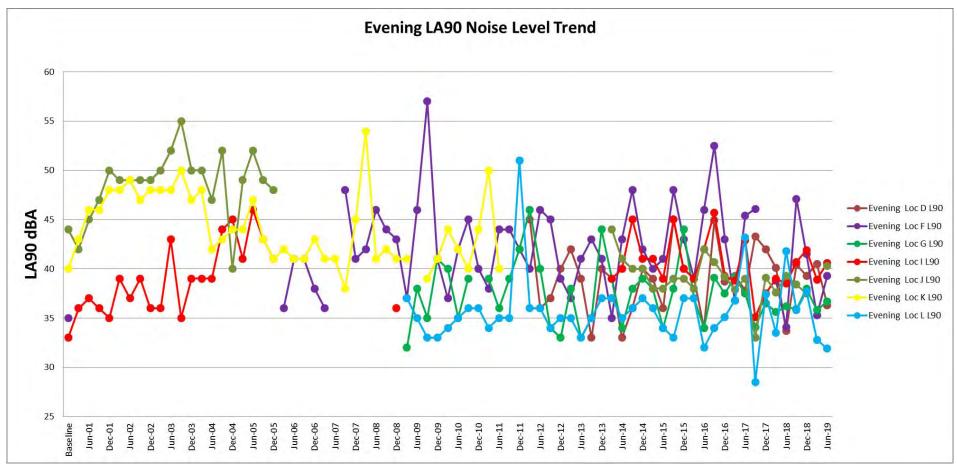
Weather data for the subject area during the noise monitoring period was provided by Bloomfield Colliery. Noise data during periods of any rainfall and/or wind speeds in excess of 5 m/s were discarded in accordance with NPfl weather affected data exclusion methodology.

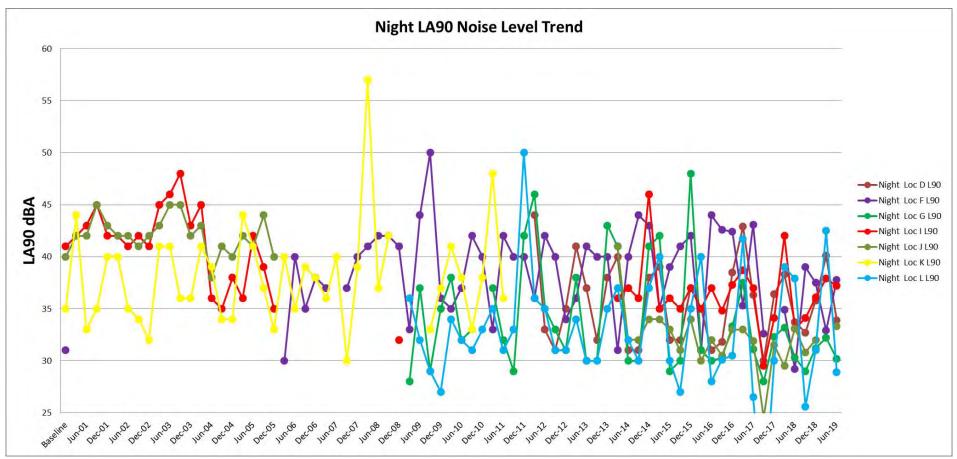
Location	Period	Primary No	ise Descriptc	or (dBA re 20	μΡΑ)
		LA1	LA10	LA90	LAeq
2	Day	67	54	35	64
D Black Hill School, Black Hill	Evening	60	44	36	51
	Night	51	42	34	49
_	Day	71	57	42	59
F Lot 684 Black Hill Road, Black Hill	Evening	64	54	39	54
Lot 684 Black Hill Road, Black Hill	Night	59	52	38	52
	Day	51	48	39	47
G 156 Buchanan Road, Buchanan	Evening	49	46	37	45
190 Buchanan Road, Buchanan	Night	47	43	30	43
	Day	68	58	42	58
I 49 Magnetic Drive, Ashtonfield	Evening	59	45	41	52
+5 Wagnetie Drive, Asitonneta	Night	49	43	37	47
	Day	62	51	41	52
L 65 Tipperary Dr, Ashtonfield	Evening	59	43	32	47
os hpperary Dr, Ashtonneid	Night	45	37	29	44
	Day	51	47	38	49
J 220 Parish Drive, Thornton	Evening	49	46	40	46
	Night	48	44	33	44

Table 11 Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)


5.2 Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine

5.2.1 Ambient LA90 Noise Levels


The long term ambient LA90 noise levels collected from each monitoring location are presented graphically in **Figure 1**, **Figure 2** and **Figure 3** for the daytime, evening and night-time periods respectively.



5.2.1.1 Baseline

The summary of results in **Table 12** shows the ambient LA90 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring process (ie. prior to commencement of mining operation at Donaldson).

Table 12	LA90 Results	Comparison –	Baseline
	EASO RESOLUTES	Companison	Duschine

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ³	
		Baseline	June 2019		
_	Day	N/A ²	35	N/A ²	
D Black Hill School, Black Hill	Evening	N/A ²	36	N/A ²	
Black Hill School, Black Hill	Night	N/A ²	34	N/A ²	
F	Day	39	42	3	
Lot 684 Black Hill Road,	Evening	35	39	4	
Black Hill	Night	31	38	7	
G	Day	N/A ²	39	N/A ²	
156 Buchanan Road, Buchanan	Evening	N/A ²	37	N/A ²	
	Night	N/A ²	30	N/A ²	
1	Day	48	42	-6	
49 Magnetic Drive,	Evening	33	41	8	
Ashtonfield	Night	41	37	-4	
L	Day	N/A ²	41	N/A ²	
65 Tipperary Drive,	Evening	N/A ²	32	N/A ²	
Ashtonfield	Night	N/A ²	29	N/A ²	
	Day	39	38	-1	
J 220 Parish Drive, Thornton	Evening	44	40	-4	
	Night	40	33	-7	

Note 1: Periods are as detailed the NPfl and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.1.2 Previous Quarter

Table 13 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured in the previous monitoring period.

Table 13	LA90 Results (Comparison –	Previous Quarter
	ERSO RESOLUTES	companison	The field of a charter

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²	
		March 2019	June 2019		
_	Day	41	35	-5	
D Black Hill School, Black Hill	Evening	41	36	-4	
	Night	40	34	-6	
F	Day	43	42	-1	
Lot 684 Black Hill Road,	Evening	35	39	4	
Black Hill	Night	33	38	5	
G	Day	38	39	1	
156 Buchanan Road, Buchanan	Evening	36	37	1	
	Night	32	30	-2	
1	Day	44	42	-2	
49 Magnetic Drive,	Evening	39	41	2	
Ashtonfield	Night	38	37	-1	
L	Day	33	41	8	
65 Tipperary Drive,	Evening	33	32	-1	
Ashtonfield	Night	43	29	-14	
	Day	N/A ²	38	N/A	
J 220 Parish Drive, Thornton	Evening	N/A ²	40	N/A	
	Night	N/A ²	33	N/A	

Note 1: 1. Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during this quarter's measurements, no comparisons can be made.

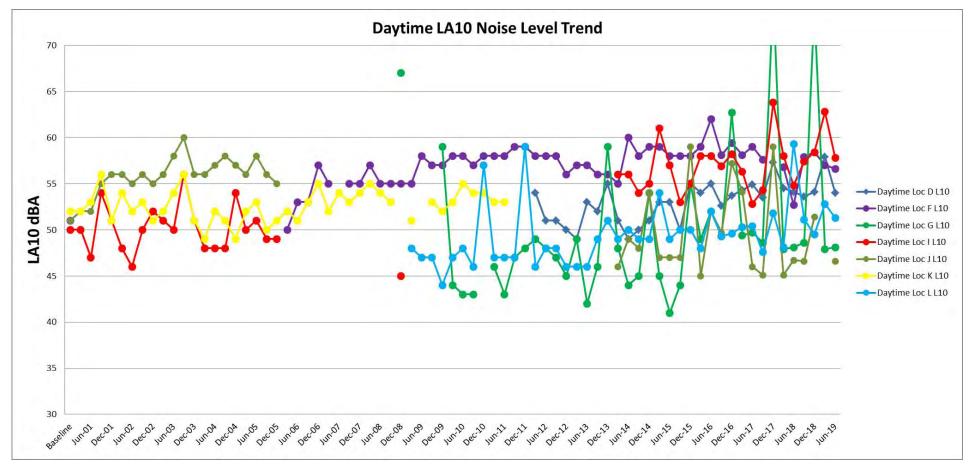
Note 3: Rounded to the nearest whole dB.

5.2.1.3 Coinciding Period Last Year

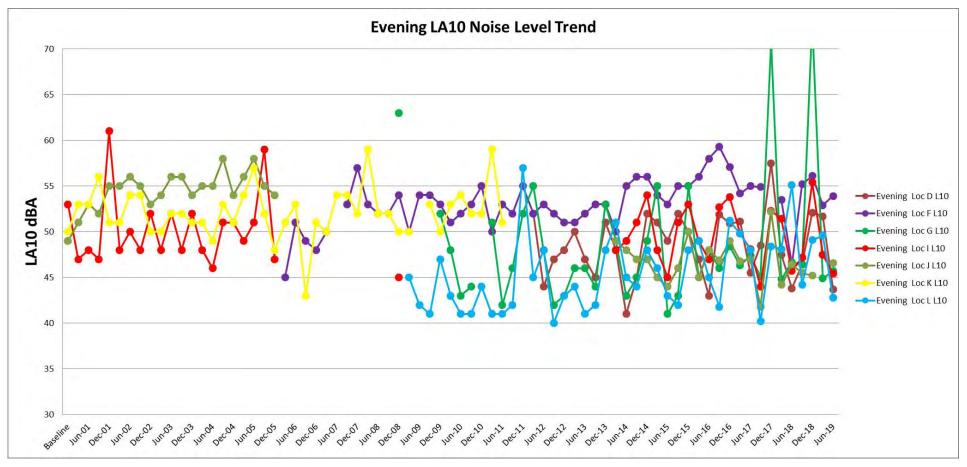
Table 14 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Table 14	LA90 Results	Comparison –	Coinciding	Period Last Year
----------	--------------	--------------	-------------------	------------------

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²	
		June 2018	June 2019		
_	Day	35	35	1	
D Black Hill School, Black Hill	Evening	34	36	3	
	Night	34	34	0	
F	Day	34	42	9	
Lot 684 Black Hill Road,	Evening	34	39	5	
Black Hill	Night	29	38	9	
G	Day	38	39	1	
156 Buchanan Road, Buchanan	Evening	36	37	1	
	Night	30	30	0	
1	Day	39	42	3	
49 Magnetic Drive,	Evening	39	41	2	
Ashtonfield	Night	33	37	4	
L	Day	46	41	-5	
65 Tipperary Drive,	Evening	42	32	-10	
Ashtonfield	Night	38	29	-9	
	Day	38	38	0	
J 220 Parish Drive, Thornton	Evening	39	40	1	
	Night	33	33	0	


Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.


5.2.2 Ambient LA10 Noise Comparison

The long term ambient LA10 noise levels collected from each monitoring location are presented graphically in **Figure 4**, **Figure 5** and **Figure 6** for the daytime, evening and night-time respectively.

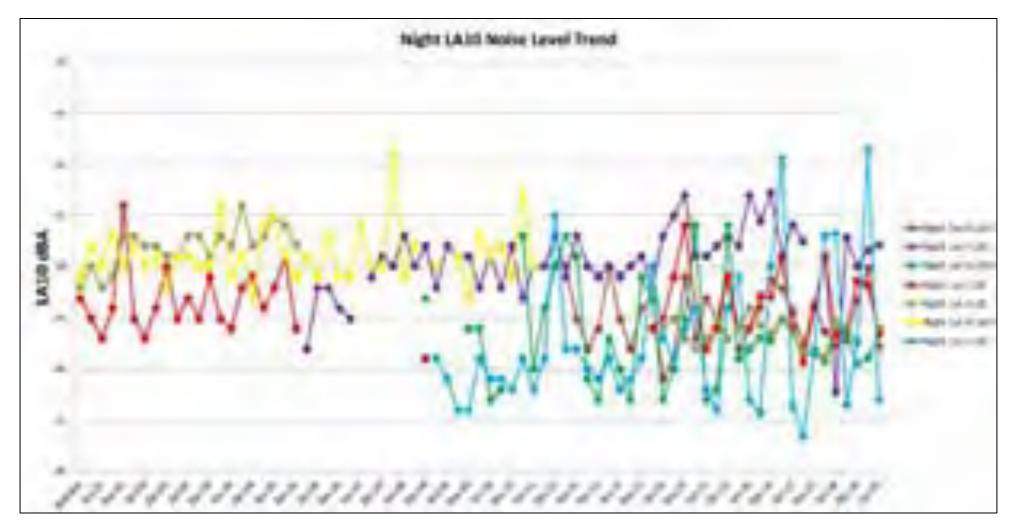


Figure 6 Long term Night LA10 Noise Levels

5.2.2.1 Baseline

Table 15 presents the ambient LA10 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring period.

Tuble 15 LATO RESults comparison Duschne	Table 15	LA10 Results Comparison – Baseline
--	----------	------------------------------------

Monitoring Location	Period ¹	Long term Ni Noise Levels	ght-time LA10	Difference dB ³	
		Baseline	June 2019		
_	Day	N/A ²	54	N/A	
D Black Hill School, Black Hill	Evening	N/A ²	44	N/A	
	Night	N/A ²	42	N/A	
F	Day	51	57	6	
Lot 684 Black Hill Road,	Evening	49	54	5	
Black Hill	Night	48	52	4	
G	Day	N/A ²	48	N/A	
156 Buchanan Road, Buchanan	Evening	N/A ²	46	N/A	
	Night	N/A ²	43	N/A	
	Day	50	58	8	
49 Magnetic Drive,	Evening	53	45	-8	
Ashtonfield	Night	47	43	-4	
L	Day	N/A ²	51	N/A	
65 Tipperary Drive, Ashtonfield	Evening	N/A ²	43	N/A	
	Night	N/A ²	37	N/A	
	Day	51	47	-4	
J 220 Parish Drive, Thornton	Evening	49	46	-3	
	Night	48	44	-4	

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.2.2 Previous Quarter

Table 16 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the previous monitoring period.

Table 16	LA10 Results Com	narison –	Previous	Quarter
Table TO	LAID RESULTS COM	parisuii – I	rievious	Quarter

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ³	
		March 2019	June 2019		
	Day	58	54	-4	
D Black Hill School, Black Hill	Evening	52	44	-8	
	Night	50	42	-8	
F	Day	57	57	0	
Lot 684 Black Hill Road,	Evening	53	54	1	
Black Hill	Night	52	52	1	
G	Day	48	48	0	
156 Buchanan Road, Buchanan	Evening	45	46	1	
	Night	41	43	2	
1	Day	63	58	-5	
49 Magnetic Drive,	Evening	48	45	-2	
Ashtonfield	Night	48	43	-5	
L	Day	53	51	-2	
65 Tipperary Drive,	Evening	50	43	-7	
Ashtonfield	Night	61	37	-24	
	Day	N/A ²	47	N/A	
J 220 Parish Drive, Thornton	Evening	N/A ²	46	N/A	
	Night	N/A ²	44	N/A	

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.2.3 Coinciding Period Last Year

Table 17 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ²	
		June 2018	June 2019		
_	Day	54	54	0	
D Black Hill School, Black Hill	Evening	44	44	0	
	Night	42	42	0	
F	Day	53	57	4	
Lot 684 Black Hill Road,	Evening	46	54	8	
Black Hill	Night	38	52	14	
G	Day	48	48	0	
156 Buchanan Road, Buchanan	Evening	47	46	-1	
	Night	44	43	0	
1	Day	55	58	3	
49 Magnetic Drive,	Evening	46	45	0	
Ashtonfield	Night	43	43	0	
L	Day	59	51	-8	
65 Tipperary Dr,	Evening	55	43	-12	
Ashtonfield	Night	53	37	-16	
	Day	47	47	0	
J 220 Parish Drive, Thornton	Evening	46	46	0	
	Night	45	44	0	

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

5.3 Rail Noise Monitoring

In order to determine compliance with the rail noise criteria, a noise logger was positioned at Location J. The train loading times during the noise monitoring period are presented in **Table 18**.

Table 18	Coal	Train	Loading	Operation	s Log
----------	------	-------	---------	-----------	-------

Date	Coal Train Loading Time	Period
2/07/19	09:57-13:11	Day
04/07/19	13:21-16:15	Day

The measured LAeq(period) noise level for each period from rail traffic at Location J are presented in **Table 19**.

Location	Date	Period	Measured LAeq(period)	Criteria LAeq(period)	Compliance
J	2/07/19	Day	37	55	Yes
	04/07/19	Day	34	55	Yes

Table 19 Rail Noise Impact Monitoring Results

Results presented in **Table 19** indicate that rail noise levels from the Bloomfield Rail Spur were in compliance with the Abel Mine Project Approval during the noise monitoring period.

6 Conclusion

SLR was engaged by Donaldson Coal Pty Ltd to conduct quarterly noise monitoring surveys for Donaldson Coal Mine and Abel Coal Mine in accordance with the Abel Coal Mine Noise Monitoring Program, dated 12 August 2014.

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

Operator-attended and unattended noise measurements were conducted for the June 2019 quarter at six focus locations surrounding the mine.

Abel portal operations were not observed to be audible at any locations during the monitoring period. Contributed noise levels from Abel Mine did not exceed noise emission goals (including night-time sleep arousal criteria) and compliance with the Abel Mine *Project Approval* was indicated at all locations.

A comparison of ambient LA10 and LA90 noise levels recorded during the current monitoring period (June 2019), the baseline monitoring period, the last monitoring period (March 2019), and the coinciding monitoring period from last year (June 2018) has been conducted.

Rail noise levels from the Bloomfield Rail Spur were considered to be in compliance with the Abel Mine Project Approval during the noise monitoring period.

Acoustic Terminology

1. Sound Level or Noise Level

The terms 'sound' and 'noise' are almost interchangeable, except that 'noise' often refers to unwanted sound.

Sound (or noise) consists of minute fluctuations in atmospheric pressure. The human ear responds to changes in sound pressure over a very wide range with the loudest sound pressure to which the human ear can respond being ten million times greater than the softest. The decibel (abbreviated as dB) scale reduces this ratio to a more manageable size by the use of logarithms.

The symbols SPL, L or LP are commonly used to represent Sound Pressure Level. The symbol LA represents A-weighted Sound Pressure Level. The standard reference unit for Sound Pressure Levels expressed in decibels is 2×10^{-5} Pa.

2. 'A' Weighted Sound Pressure Level

The overall level of a sound is usually expressed in terms of dBA, which is measured using a sound level meter with an 'A-weighting' filter. This is an electronic filter having a frequency response corresponding approximately to that of human hearing.

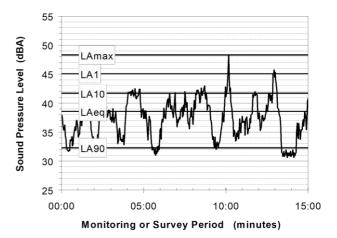
People's hearing is most sensitive to sounds at mid frequencies (500 Hz to 4,000 Hz), and less sensitive at lower and higher frequencies. Different sources having the same dBA level generally sound about equally loud.

A change of 1 dB or 2 dB in the level of a sound is difficult for most people to detect, whilst a 3 dB to 5 dB change corresponds to a small but noticeable change in loudness. A 10 dB change corresponds to an approximate doubling or halving in loudness. The table below lists examples of typical noise levels.

Sound Pressure Level (dBA)	Typical Source	Subjective Evaluation
130	Threshold of pain	Intolerable
120	Heavy rock concert	Extremely
110	Grinding on steel	noisy
100	Loud car horn at 3 m	Very noisy
90	Construction site with pneumatic hammering	
80	Kerbside of busy street	Loud
70	Loud radio or television	
60	Department store	Moderate to
50	General Office	quiet
40	Inside private office	Quiet to
30	Inside bedroom	very quiet
20	Recording studio	Almost silent

Other weightings (eg B, C and D) are less commonly used than A-weighting. Sound Levels measured without any weighting are referred to as 'linear', and the units are expressed as dB(lin) or dB.

3. Sound Power Level


The Sound Power of a source is the rate at which it emits acoustic energy. As with Sound Pressure Levels, Sound Power Levels are expressed in decibel units (dB or dBA), but may be identified by the symbols SWL or LW, or by the reference unit 10^{-12} W.

The relationship between Sound Power and Sound Pressure is similar to the effect of an electric radiator, which is characterised by a power rating but has an effect on the surrounding environment that can be measured in terms of a different parameter, temperature.

4. Statistical Noise Levels

Sounds that vary in level over time, such as road traffic noise and most community noise, are commonly described in terms of the statistical exceedance levels LAN, where LAN is the A-weighted sound pressure level exceeded for N% of a given measurement period. For example, the LA1 is the noise level exceeded for 1% of the time, LA10 the noise exceeded for 10% of the time, and so on.

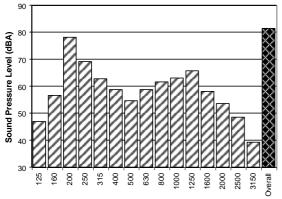
The following figure presents a hypothetical 15 minute noise survey, illustrating various common statistical indices of interest.

Of particular relevance, are:

- LA1 The noise level exceeded for 1% of the 15 minute interval.
- LA10 The noise level exceeded for 10% of the 15 minute interval. This is commonly referred to as the average maximum noise level.
- LA90 The noise level exceeded for 90% of the sample period. This noise level is described as the average minimum background sound level (in the absence of the source under consideration), or simply the background level.
- LAeq The A-weighted equivalent noise level (basically, the average noise level). It is defined as the steady sound level that contains the same amount of acoustical energy as the corresponding time-varying sound.

5. Frequency Analysis

Frequency analysis is the process used to examine the tones (or frequency components) which make up the overall noise or vibration signal.


The units for frequency are Hertz (Hz), which represent the number of cycles per second.

Frequency analysis can be in:

- Octave bands (where the centre frequency and width of each band is double the previous band)
- 1/3 octave bands (three bands in each octave band)
- Narrow band (where the spectrum is divided into 400 or more bands of equal width)

The following figure shows a 1/3 octave band frequency analysis where the noise is dominated by the 200 Hz band. Note that the indicated level of each individual band is less than the overall level, which is the logarithmic sum of the bands.

6. Annoying Noise (Special Audible Characteristics)

A louder noise will generally be more annoying to nearby receivers than a quieter one. However, noise is often also found to be more annoying and result in larger impacts where the following characteristics are apparent:

- Tonality tonal noise contains one or more prominent tones (ie differences in distinct frequency components between adjoining octave or 1/3 octave bands), and is normally regarded as more annoying than 'broad band' noise.
- Impulsiveness an impulsive noise is characterised by one or more short sharp peaks in the time domain, such as occurs during hammering.
- Intermittency intermittent noise varies in level with the change in level being clearly audible. An example would include mechanical plant cycling on and off.
- Low Frequency Noise low frequency noise contains significant energy in the lower frequency bands, which are typically taken to be in the 10 to 160 Hz region.

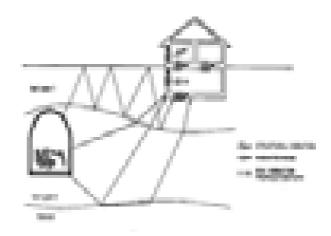
7. Vibration

Vibration may be defined as cyclic or transient motion. This motion can be measured in terms of its displacement, velocity or acceleration. Most assessments of human response to vibration or the risk of damage to buildings use measurements of vibration velocity. These may be expressed in terms of 'peak' velocity or 'rms' velocity.

The former is the maximum instantaneous velocity, without any averaging, and is sometimes referred to as 'peak particle velocity', or PPV. The latter incorporates 'root mean squared' averaging over some defined time period.

Vibration measurements may be carried out in a single axis or alternatively as triaxial measurements (ie vertical, longitudinal and transverse). The common units for velocity are millimetres per second (mm/s). As with noise, decibel units can also be used, in which case the reference level should always be stated. A vibration level V, expressed in mm/s can be converted to decibels by the formula 20 log (V/Vo), where Vo is the reference level (10^{-9} m/s). Care is required in this regard, as other reference levels may be used.

8. Human Perception of Vibration


People are able to 'feel' vibration at levels lower than those required to cause even superficial damage to the most susceptible classes of building (even though they may not be disturbed by the motion). An individual's perception of motion or response to vibration depends very strongly on previous experience and expectations, and on other connotations associated with the perceived source of the vibration. For example, the vibration that a person responds to as 'normal' in a car, bus or train is considerably higher than what is perceived as 'normal' in a shop, office or dwelling.

9. Ground-borne Noise, Structure-borne Noise and Regenerated Noise

Noise that propagates through a structure as vibration and is radiated by vibrating wall and floor surfaces is termed 'structure-borne noise', 'ground-borne noise' or 'regenerated noise'. This noise originates as vibration and propagates between the source and receiver through the ground and/or building structural elements, rather than through the air.

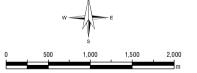
Typical sources of ground-borne or structure-borne noise include tunnelling works, underground railways, excavation plant (eg rockbreakers), and building services plant (eg fans, compressors and generators).

The following figure presents an example of the various paths by which vibration and ground-borne noise may be transmitted between a source and receiver for construction activities occurring within a tunnel.

The term 'regenerated noise' is also used in other instances where energy is converted to noise away from the primary source. One example would be a fan blowing air through a discharge grill. The fan is the energy source and primary noise source. Additional noise may be created by the aerodynamic effect of the discharge grill in the airstream. This secondary noise is referred to as regenerated noise.

APPENDIX B

Noise Monitoring Locations



Project No .:	630.01053.01200
Date:	11/01/2018
Drawn by:	NT
Scale:	1:45,000
Sheet Size:	A4
Projection:	GDA 1994 MGA Zone 56

LEGEND

Noise Monitoring Locations

Donaldson Coal

Noise Monitoring

Noise Monitoring Locations

APPENDIX B

Calibration Certificates

Certificate Of Calibration

CERTIFICATE NO.: SLM 23293 & FILT 4792

Equipment Description: Sound & Vibration Analyser

Manufacturer:	B&K		
Model No:	2250	Serial No:	3003389
Microphone Type:	4950	Serial No:	2913816
Preamplifier Type:	ZC0032	Serial No:	20519
Filter Type:	1/3 Octave	Serial No:	3003389
Comments:	All tests pass	ed for class 1	l.
	(See over for	details)	
Owner:	SLR Consulting Australia Pty Ltd		
	Level 2, 2 Lincoln Street		
	Lane Cove, NSW 2066		
Ambient Pressure:	990 hPa ±1	.5 hPa	
Temperature:	25 °C ±2°	C Relative H	ımidity: 29% ±5%
Date of Calibration: Acu-Vib Test Procedure	06/08/2018 e: AVP10 (SLM	Issue Dat 1) & AVP06 (1	

CHECKED BY:

AUTHORISED SIGNATURE:

Jack 7

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards,

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 23293 & FILT 4792

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	1 7	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 06/08/2018 Issue Date: 07/08/2018

Checked by:

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT10

		FICATE OF TRACEAB RATION	LE
Skodsborgvej 307, DK-2850 Nærum, Denmark	No.	: CDK1706457	Page 1 of 3
CALIBRATION OF:			
Manufacturer: Hand-held Analyzer Type: Application:	Brüel & Kjær Type: 2270 Type: BZ-7233	Serial No.: 2679354 Version No.: 4.6.3	
Intensity Probe Type: Customer identification:	Type: 3654 -	Serial No.: 2783762	
CUSTOMER:			
SLR Consulting Australia H PO Box 176 2066 Lane Cove New South Wales Australia	Pty Ltd		
CALIBRATION CONDITIO	NS:		
Preconditioning:	4 hours at 23° C \pm 3°	С	
Environment conditions:	in iomportunation	23 °C ± 3 °C 101,3 kPa ± 5 kPa 50% RH ± 25% RH	

PROCEDURE:

The pressure residual intensity index for the complete system is then calibrated in accordance with the demands in IEC 1043 class 1 using the Brüel & Kjær calibration procedure P_3654_A05.

RESULTS:

Calibration after repair or adjustment

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA-4/02

Date of Calibration: 2017-09-01

<u>Nicki Eriksen</u>

Calibration Technician

Certificate Issued: 2017-09-01

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

The Calibration Laboratory Skodsborgvej 307, DK-2850 Nærum, Denmark

No.: CDK1706457

Page 2 of 3

RESULTS:

List of performed (sub)tests with status:

- "OK" Means the result of the test is within tolerances.
 - "-" Means the result of the test is outside these tolerances.

Visual inspection:

	Result accepted?
Visual inspection	OK

Status of System Elements:

	Calibration Date	Result accepted?
Calibration of microphones	2017-09-01	OK ²

¹⁾ Accredited calibration, Environmental conditions $23^{\circ}C \pm 3^{\circ}C$, $1013 \text{ hPa} \pm 5 \text{ hPa}$

²⁾ Factory calibration, Environmental conditions $23^{\circ}C \pm 2^{\circ}C$, > 960 hPa

Sound Pressure Calibration:

Measured Value	Measured Value	Deviation	Maximum	Calibration
Channel A	Channel B	Deviation	Deviation	Uncertainty
[dB re 1V/Pa]	[dB re 1V/Pa]	[dB]	[±dB]	[dB]
-38,75	-38,39	0,35	1,00	0,24

3654 Gain Diviation	Open-circuit Sensitivity	Measured Value	Deviation	Calibration Uncertainty
	[dB re 1V/Pa]	[dB re 1V/Pa]	[dB]	[dB]
Mic. Part 1	-38,40	-38,75	-0,35	0,24
Mic. Part 2	-38,20	-38,39	-0,19	0,24

Brüel & Kjær The Calibration Laboratory

Skodsborgvei 307 DK-2850 Nærum Denmar

No.: CDK1706457

Page 3 of 3

Measurement of the P-I index for the system:

Minimum levels are in accordance with IEC 1043 class 1 limits, with a 12 spacer

Frequency	Min. Level	Direction	Measured P-I index	Calibration Uncertainty
[Hz]	[dB]		[dB]	[dB]
50	9		23,6	< 1
63	10		25,1	< 1
80	11		25,6	< 1
100	12		27,2	< 1
125	13		29,6	< 1
160	14		33,2	< 1
200	15		37,7	< 1
250	16		40,7	< 1
315	16	-	36,8	< 1
400	16	-	45,6	< 1
500	16		40,5	< 1
630	16		27,7	< 1
800	16	-	27,2	< 1
1000	16	-	27,1	< 1
1250	16	-	35,9	< 1
1600	16	-	26,8	< 1
2000	16	-	33,5	< 1
2500	16		34,6	< 1
3150	16		32,6	< 1
4000	16		29,1	< 1
5000	16		27,8	< 1

System configuration:

Part 1 to channel: A

Part 2 to channel: B

Notes:

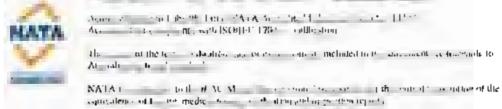
CALIBRATION EQUIPMENT:

Description	Туре	Serial No.
Pistonphone	4228	1908475
Intensity Coupler	UA-0914	1913431
Sound Source	ZI-0055	-
Vaisala Barometer	PTB100A	U2450020
Vaisala Thermometer	HMT331	C1750032

most martial www.accountierassanch.com.mr

Level Meter As remained the and 20th Damage

Calibrat on Certificat-


Calibration Namber Classifi

	ent D	514	C to constitu		
			is i non-tille Aver		
			Wilharti Yrc 11??		
		1003			
ga ment l'	10 ⁻¹ - 600 ⁻¹ - 7	. NR	1 12 310		
Instrum	ient Sirial & umber	. 16-	(0,3 - 30b)		
Miccophy	one Secial Number	1 312	1.50		
	fice Serial Number		0.2		
	i nuga	pneme	C pushrious		
Am	blent fontporations	a 11	5 C		
	Relative Humbling	: 42	Ph .		
13	arometric Pressore		Ikea		
Calibration Technician ;	Lingt - In was		St one u. Check:	i wie ii armun	1
	11 bus 2019		Report I a Date	14 har 18	
Childrandin optic :	1.1.7013 71		section of the same	1.1.1.016 1.05	
4	pluosed Signatory	• B	Column .		Cen Williams
and bar er fr	untral I	.ent l	Ciar e ana , haract	h eð	ulu
10.7 ' Al-plans physitical		L'ann	the second se	1 1 1	110
10.1 F menes W little		Page	Mali fings d - ed	aracle to F and S	
ft.2.2. Overload infocations		14.0	10.4 × Time: weighting ch	n e de C	Parts
D.3 & Accur - flexel tanen se	intend	Cass	12 R M. perkenning	¢ .	Pres
C De storsind near tinearity		Post	9 1 1 00		Press
10: Dif atal (1 linearity		Pass	2.2 Ov dintication		Pros
	L.11.	tone - 0	al st		
NG0 - 10		Lanse	n with's		
1 . 11 kll- (11.1 s.d.					
1 - 7					
A P IN THE			Provincitity ("technich	• () (r) • •	
 A the second pro- center of the	<i>b</i>				
All MALLA	landles an distort in the	No. of	an terdankar fi	car of 2	
the mount le ' 21 other tee has			Trephicolent for the	948 W 5 - 27 - 0 - 1	841, 214998
		1 2 2 1 12 1			

Anna a chickene ben "ArA to the 11" of the

to the term of a allowing on the other of meladed to the according to the stands to

Accession in the second score is a collection of the score is a second score in the score in

41:-

At tale to the tale

PAGPARALE

Let 7 Building 2 For Mills Rd For Hills N W AU TRALIA A.B.N 3 9 WWW.ac 10

Calibrat on Certificat-

Calibration Number C18514

C'llent De al	SLE i madring 1986 - 2, 2 Guota De Kastropé 19 - Marco III 12
upment lete inde	ALLEINS
Instroment Serial Number :	16 207 3
Microphone hered Sunder	3170***
Pr	124,1
n nie pt	erie Contlan II-
Amblent Temperature :	21.740
Relative Humidity :	\$3 8
Barometele Pressure ;	հար ծն <u>ի</u> լու
Californian Tanta Inner Lucks Inc.	Kannandaran Kanadar yang sang

Calibration for in the state Lucky lies Calibration Date : 14 June 18		Report Issue Date : 1-1 Jun 201	
Approved Si	gnatory :	ala - s	son Williams
finnereristie Fester	756	Cla má Chai te-tic f-d	Result
In the formations	1.00	should be a none glue.	
har list a visiting	Poss	112-1.2. Fina weighting chores seriates F and S	Pres

10 1 I No A ighting	Prove	1194.2. Fing weighting choose terians F and S	$P_{i=2}$
10.5 · · · · · · · · · · · · · · · · · · ·	Post	10.4.3 firm we dine care wristed	Par
hus han a di lesel a 👘 empol	H	NULLS R.M. ip plomi n	$Pr \rightarrow$
8.9 D. cetter-inductor function	Pass	9.3.7. How miny	Peran
8.10; Differential fasel functify	Preca	A 3.5 (Doc - Diath action	£

		(11) 000 00 M.	
42 6 1		Fuying the human	
. 3 11 so 5 140	# 3 - 16	$f' = i_{f}$ $r_{1i_{f}}$	1.00
1 skitz	. Jarla	R ore, Hamale	1.1.10
trikit	19 119 10	Recomment Provident	, 14 H C
the most to the			
11511-11. 11	0.12.14		

All monthumber and decidence in the Company Section funders and Print of 2

the cound I to a number of the constraint on an transformer I want on the second state of the second state

	for exploration of a labor strength of with the all of the off
ATA	Assume Revenue for Phylicity (CRAcondited for the optical of the form Assume on option of USOF Charge and Agreent
V .	The sensitive the set of difference of the profilent terms in the second set are been a Marken in the second state of
	SATA and the life Menoric contingence of adaption of the contract of the second contract of

Parie I

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 24613 & FILT 5164

Equipment Description: Sound & Vibration Analyser

Manufacturer:	Svantek		
Model No:	Svan-957	Serial No:	23241
Microphone Type:	7052H	Serial No:	43035
Preamplifier Type:	SV12L	Serial No:	29858 💻
Filter Type:	1/3 Octave	Serial No:	23241
Comments:	All tests pass (See over for		
Owner:	SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066		
Ambient Pressure:	1003 hPa ±1	.5 hPa	
Temperature:	23 °C ±2°	C Relative Hu	amidity: 65% ±5%

Date of Calibration: 03/05/2019 Issue Date: 09/05/2019 Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Filters)

CHECKED BY:

AUTHORISED SIGNATURE:

Jack Kiel

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

HEAD OFFICE Unit 14, 22 Hudson Ave, Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Acoustic and Vibration Measurements Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 24613 & FILT 5164

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Pass
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of 1EC61672-1:2013. A full technical report is available if required.

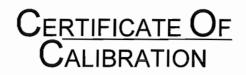
This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 03/05/2019 Issue Date: 09/05/2019 Checked by:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.



Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Jnit 14, 22 Hudson Ave. Castle Hill NSW 215 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 04,13 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT10

CERTIFICATE NO.: SLM 21303 & FILT 4154

Equipment Description: Sound & Vibration Analyzer

Manufacturer:	Svantek		
Model No:	Svan-957	Serial No:	23815
Microphone Type:	7052E	Serial No:	47873
Filter Type:	1/3 Octave	Serial No:	23815
Comments:	All tests pass (See over for		1
Owner:	SLR Consult Level 2, 2 Lir Lane Cove, N		Pty Ltd
Ambient Pressure:	1004 hPa ±	1.5 hPa	
Temperature:	24 °C ±2°	C Relative H	umidity: 34% ±5%
Date of Calibration: Acu-Vib Test Procedur CHECKED BY:		Issue Dat (1) & AVP06 (1 SIGNATURE:	

Accredited for compliance with ISO/IEC 17025 The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

> Page 1 of 2 AVCERT10 Rev. 1.2 03.02.15

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 23295 & FILT 4794

Equipment Description: Sound & Vibration Analyser

Manufacturer:	Svantek			
Model No:	Svan-957	Serial No:	27579	
Microphone Type:	7052E	Serial No:	506 1 3	
Preamplifier Type:	SV12L	Serial No:	5 <mark>8</mark> 524	
Filter Type:	1/3 Octave	Serial No:	27579	
Comments:	All tests passed for class 1. (See over for detaits)			
Owner:	SLR Consult	ting Australia	Pty Ltd	

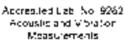
Level 2, 2 Lincoln Street Labe Cove, NSW 2066

Ambient	Pressure:	99
---------	-----------	----

997 hPa ±1.5 hPa

Temperature: 25 °C ±2° C Relative Humidity: 25% ±5%

Gard Kord


Date of Calibration: 07/08/2018 Issue Date: 07/08/2018 Acu-Vib Test Procedure: AVP10 (SLM) & AVP06 (Fillers)

CHECKED BY:

AUTHORISED SIGNATURE:

Accentidad los compliance valh ISC/JEC 17025 - Calibration The results of the rosts, calibration anolog measurements included in this document are traceable to Averation/national standards

HEAD OFFICE 1241 14, 27 Husker Avel Costle Hell 5 5V/ 2154 THI (02) 56808735 Filtr 102(5680822) Moster 0410 509806 web set whith Sourd Com Ju

> Page 1 of 2 AVCERTIO Rev 10 1005 (6

CERTIFICATE NO.: SLM 23295 & FILT 4794

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Pass
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class I periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 07/08/2018 07/08/2018 Issue Date:

Checked by: ...

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Page 2 of 2 End of Calibration Certificate AVCERT10

CERTIFICATE OF CALIBRATION

CERTIFICATE NO: 23450

EQUIPMENT TESTED: Sound Level Calibrator

Manufacturer: Type No: **Owner:**

Svantek SV-30A Serial No: 39482 SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066

Tests Performed: Measured output pressure level was found to be:

Parameter	Pre-Adj	Adj Y/N	Output: (db re 20 μPa)	Frequency: (Hz)	THD&N (%)
Level 1:	NA	N	94.02	1000.21	2.00
Level 2:	NA	N	114.01	1000.06	0.40
Uncertainty:			±0.11 dB	±0.05%	±0.20 %
Uncertainty (at 95% c.l.) k=2					

CONDITION OF TEST:

1015 hPa ±1.5 hPa Relative Humidity: 41% ±5% **Ambient Pressure:** 23 °C ±2° C **Temperature:** Issue Date: 04/09/2018

Date of Calibration: 04/09/2018

Acu-Vib Test Procedure: AVP02 (Calibrators)

Test Method: AS IEC 60942 - 2004

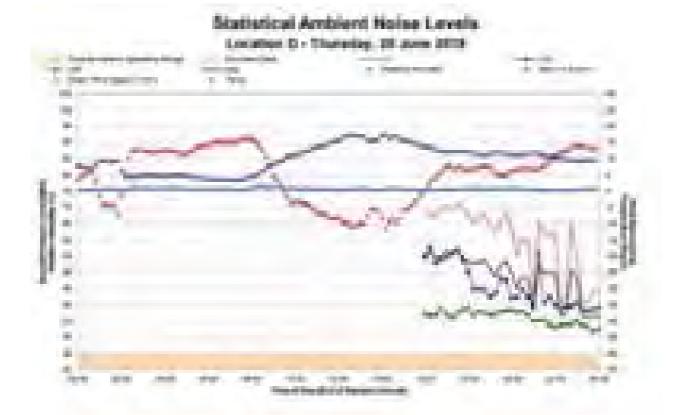
CHECKED BY: AUTHORISED SIGNATURE:

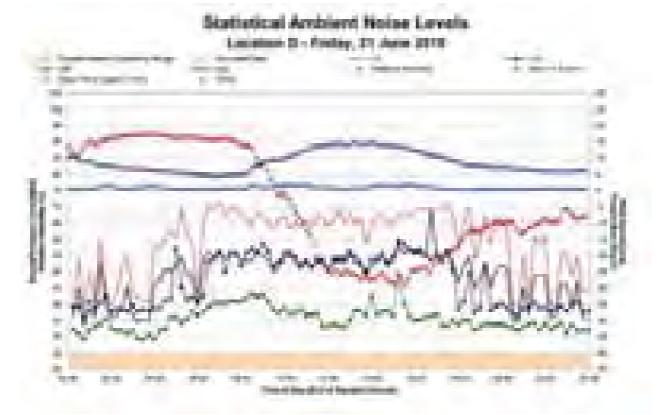
Accredited for compliance with ISO/IEC 17025 - Calibration

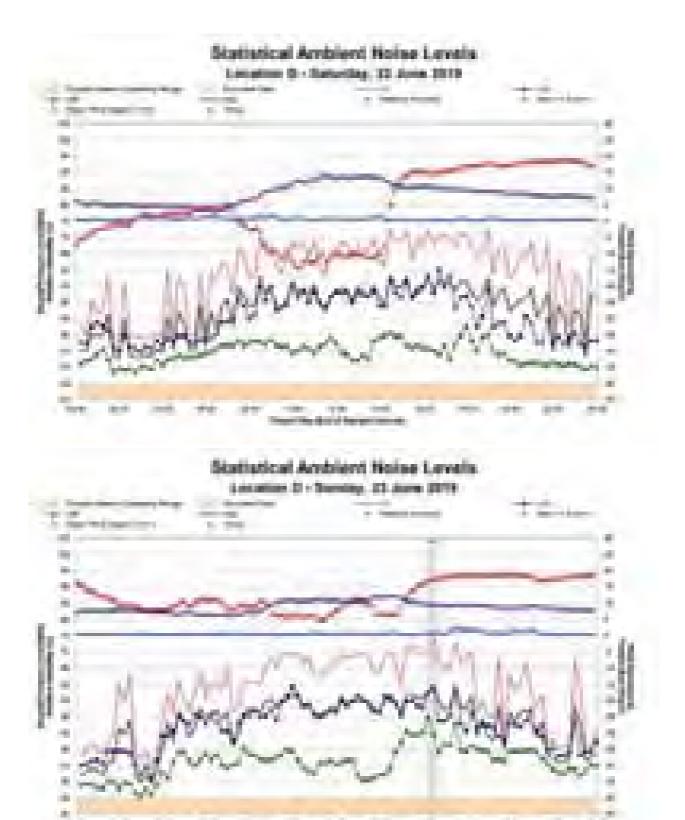
The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties guoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements


HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au


Page 1 of 1 End of Calibration Certificate AVCERT02 Rev.1.4 05.02.18


APPENDIX D

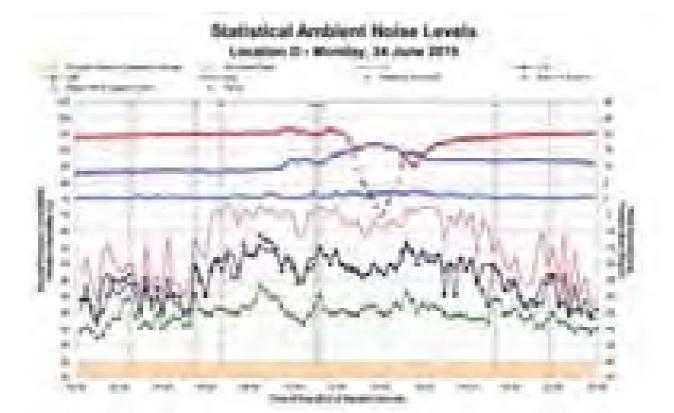
Statistical Ambient Noise Levels

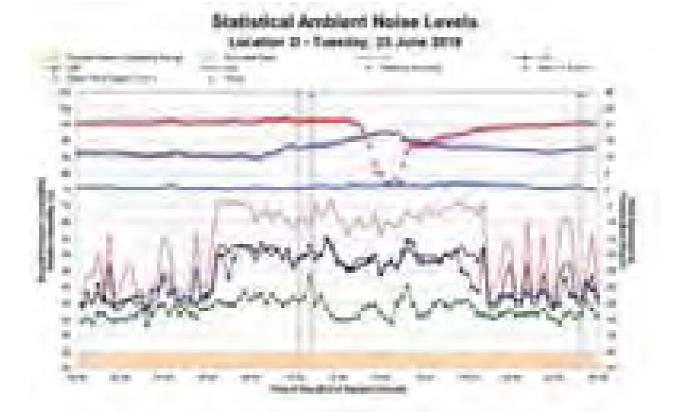
a distant in

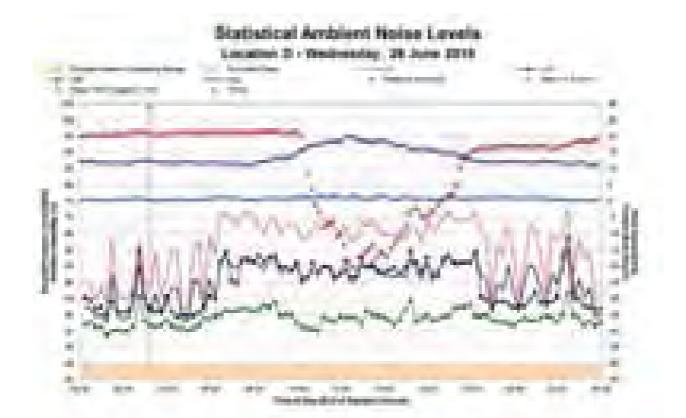
Q74 630.01053-R01-v1.0.docx

.....

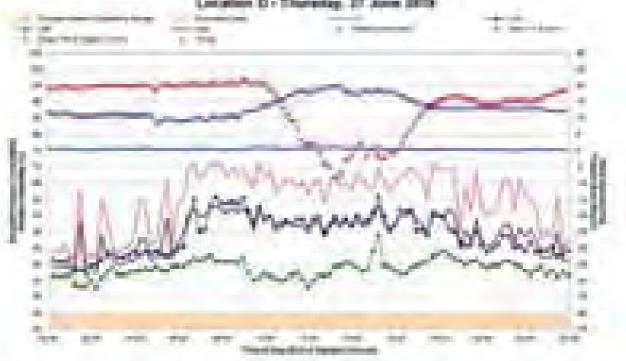
-

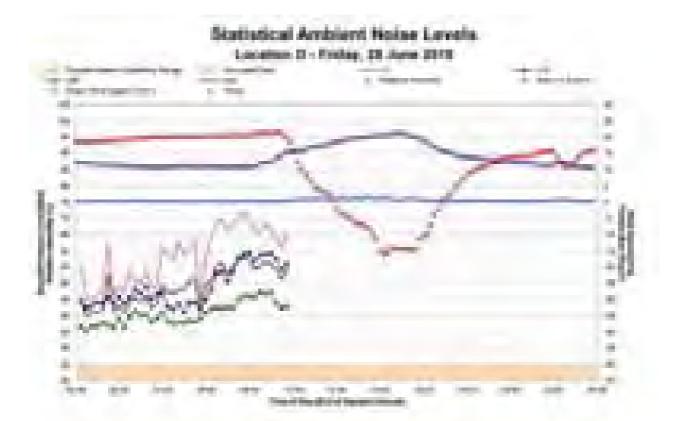

1000

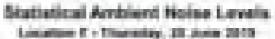

SLR^m

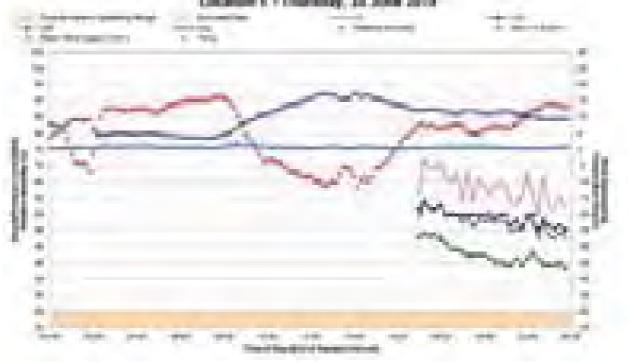

100.00

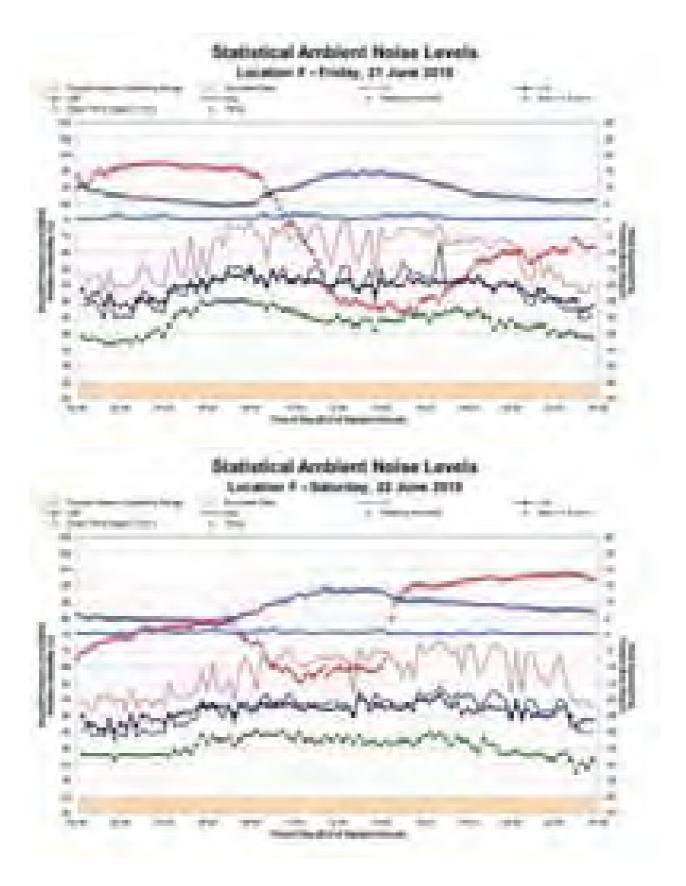
1000

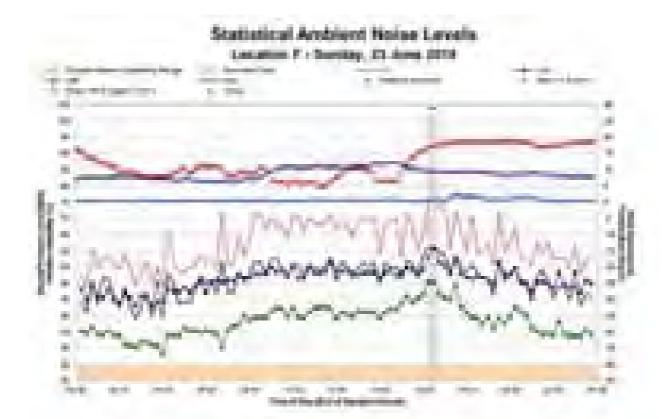

10.00

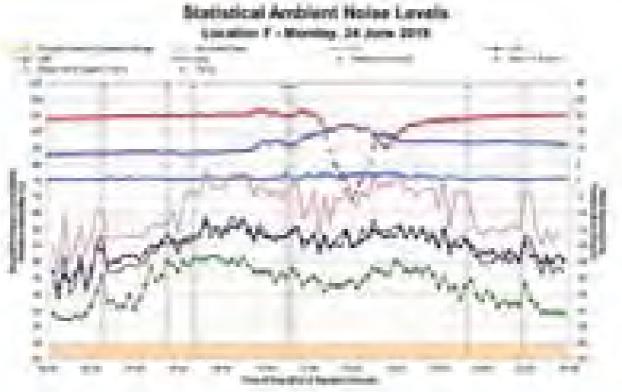


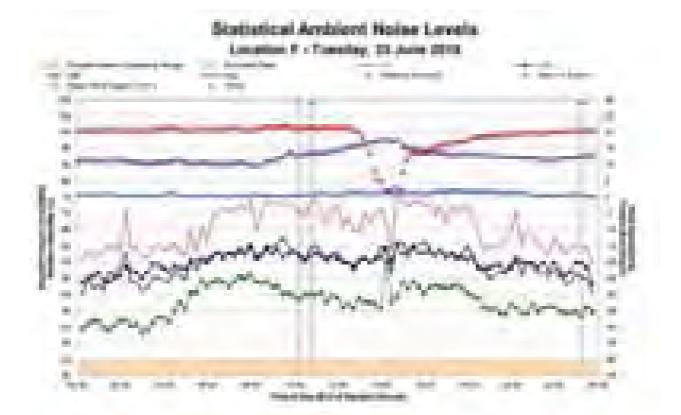


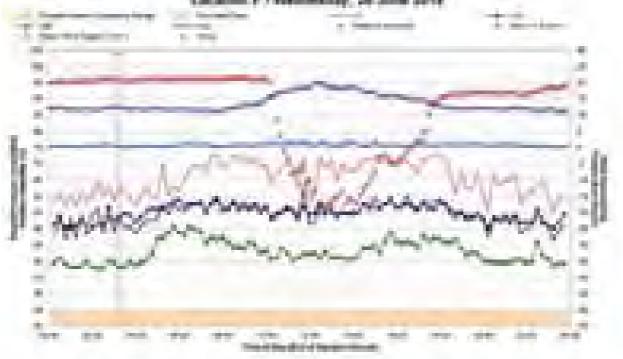


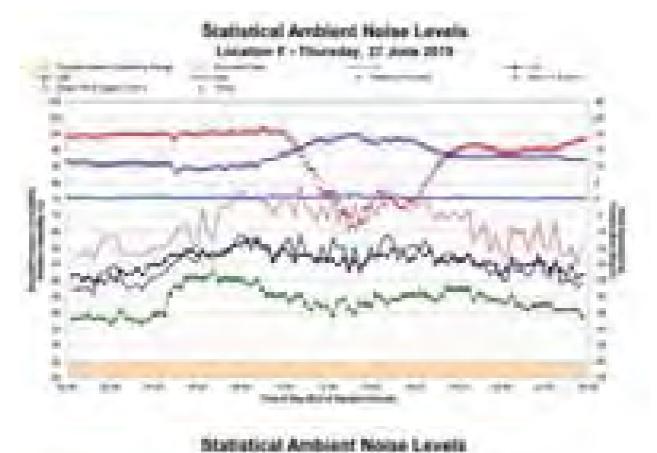


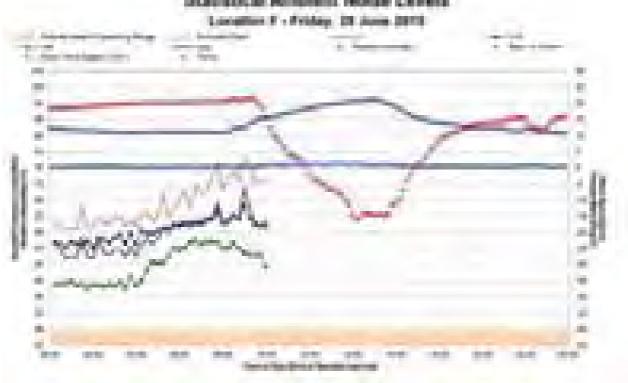


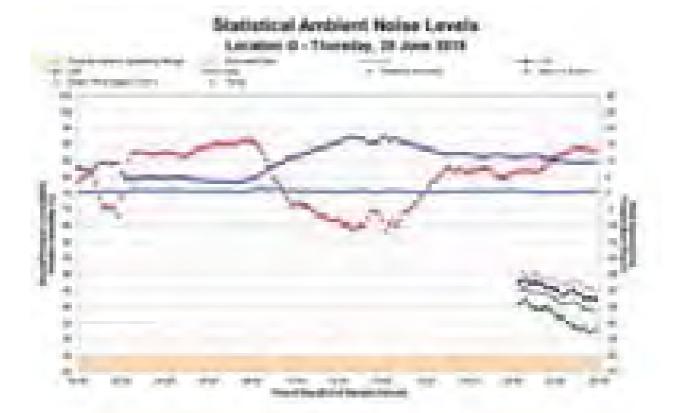


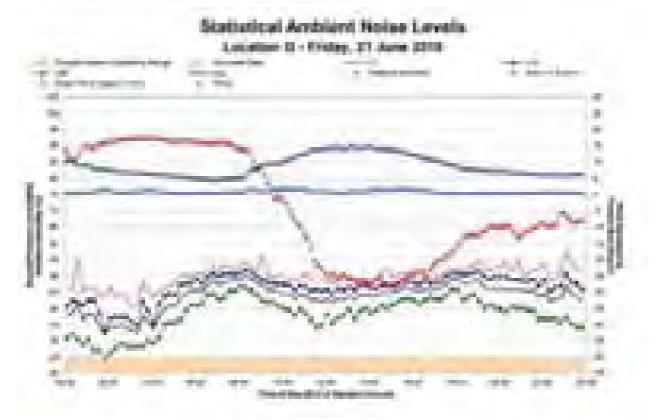


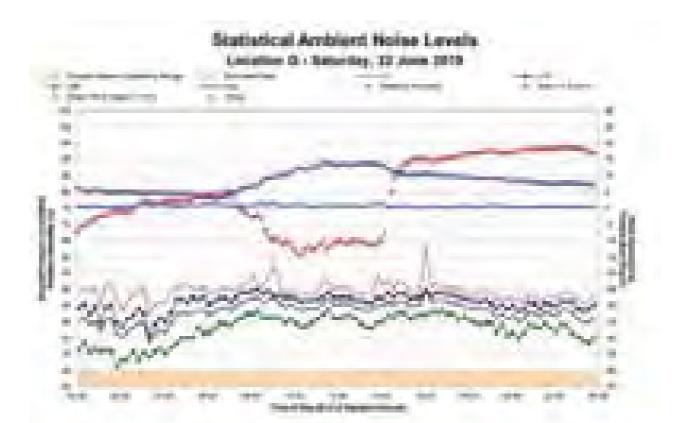


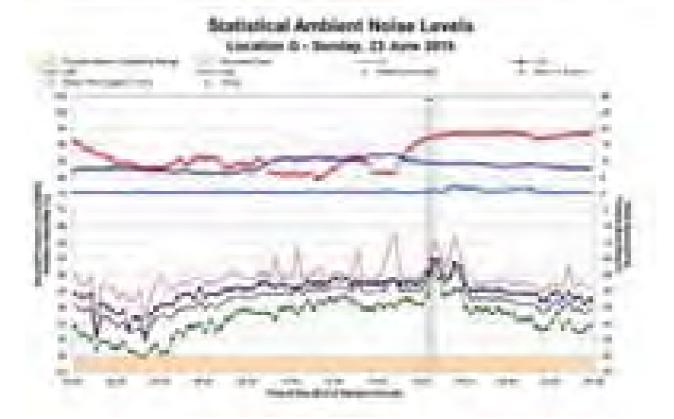


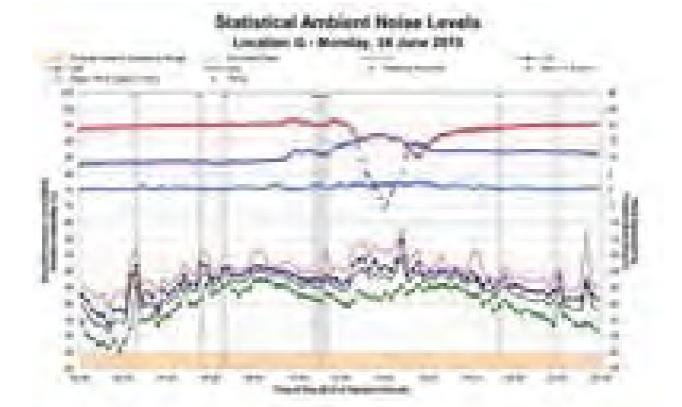


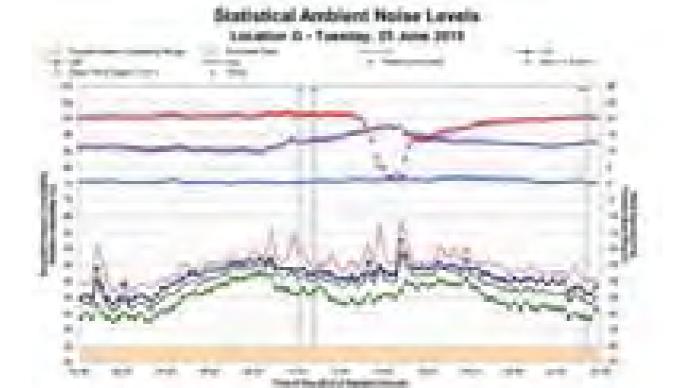


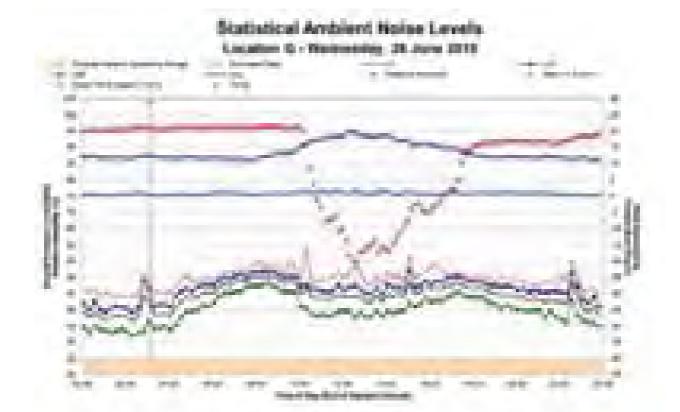


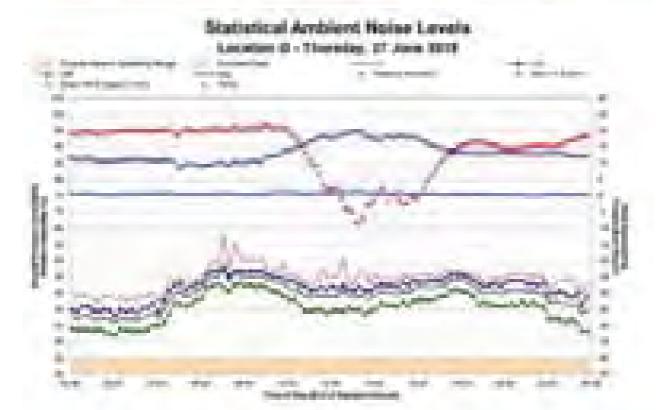




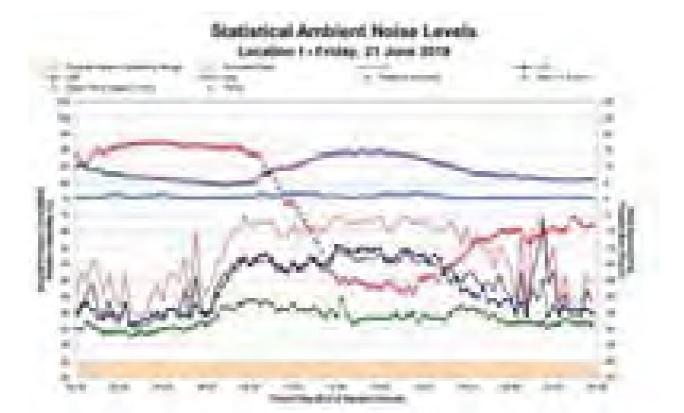


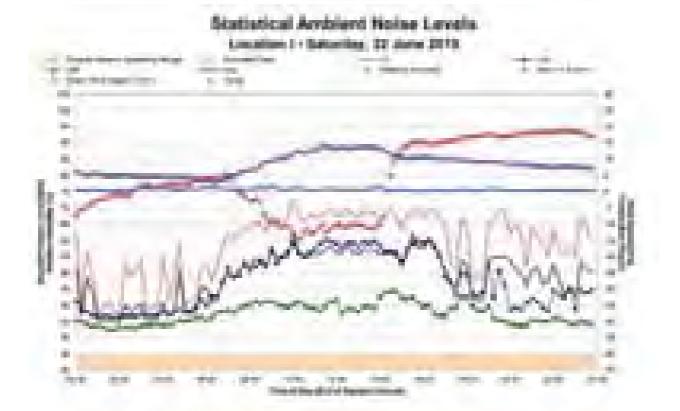


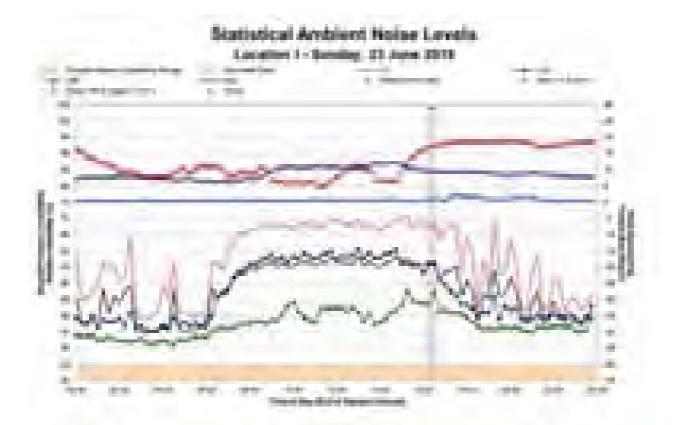


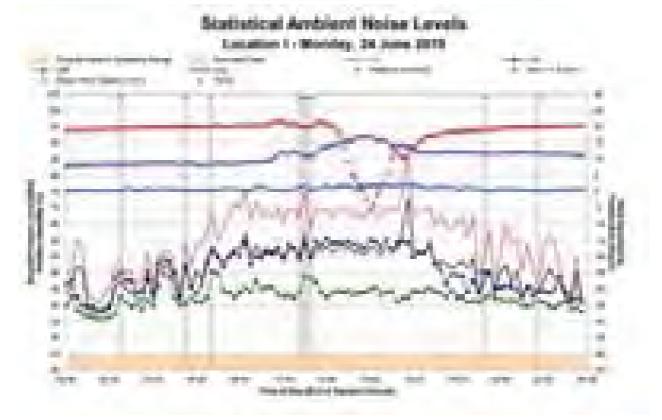


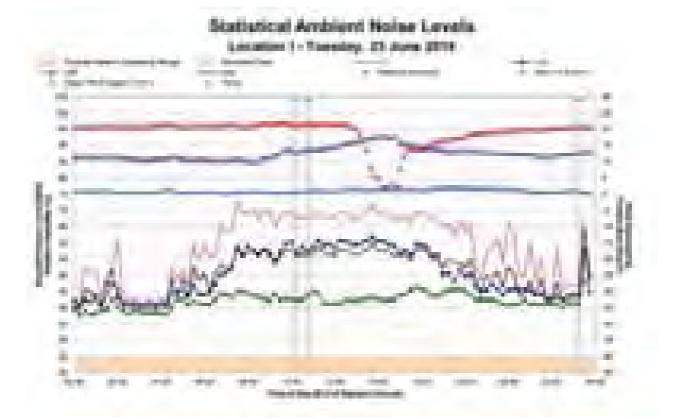


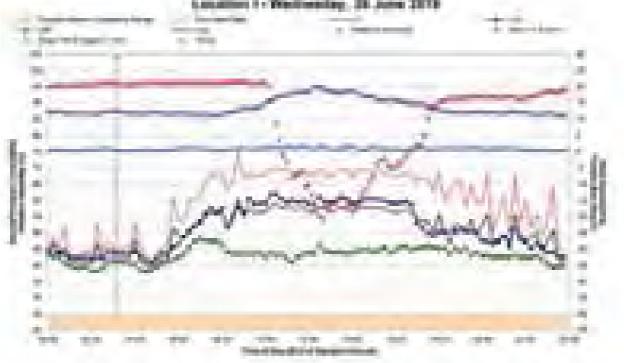


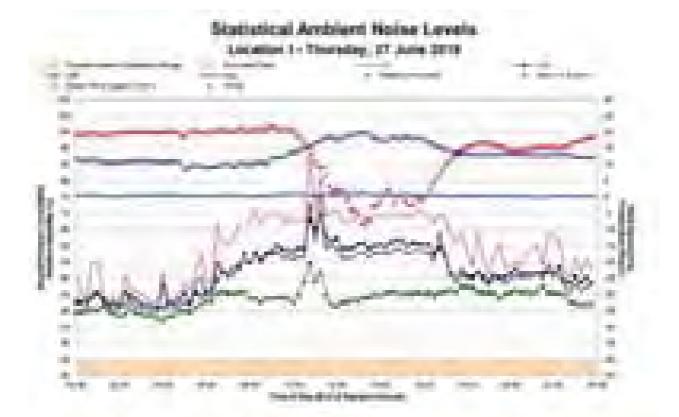


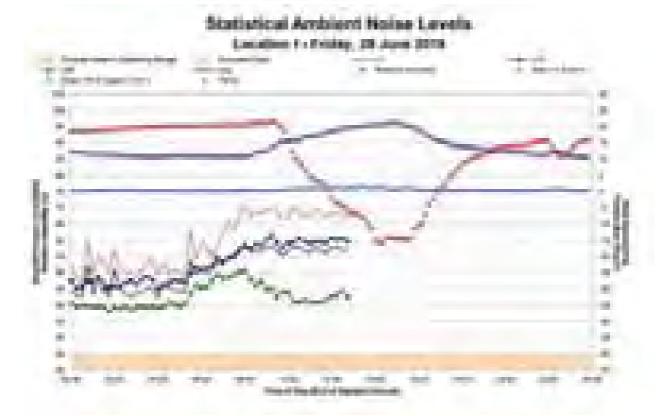


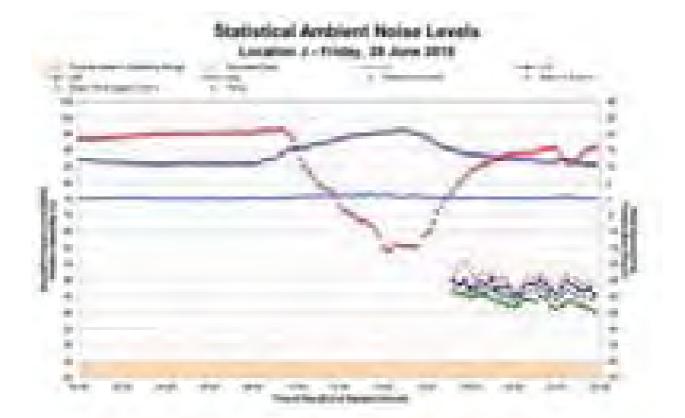


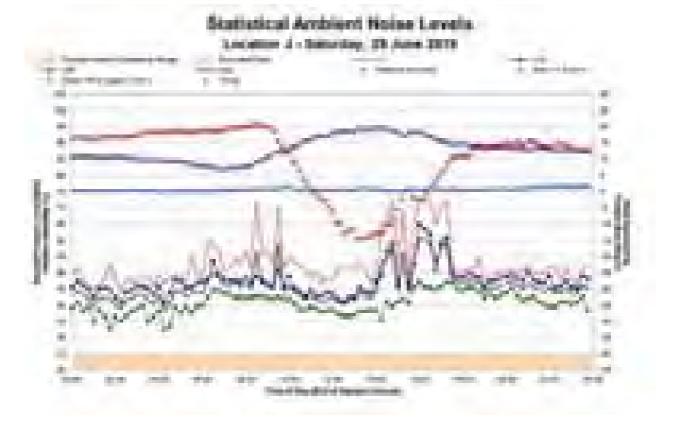


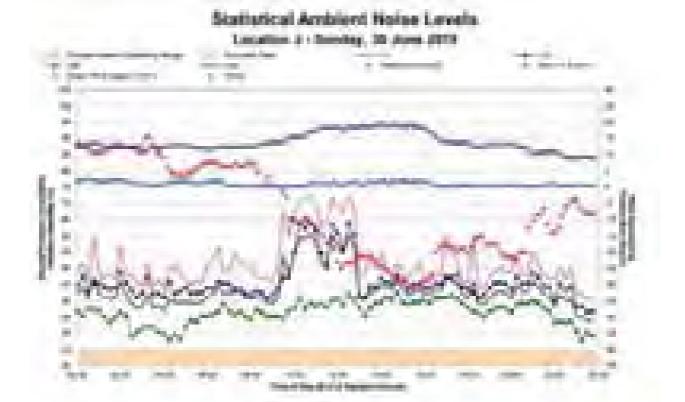


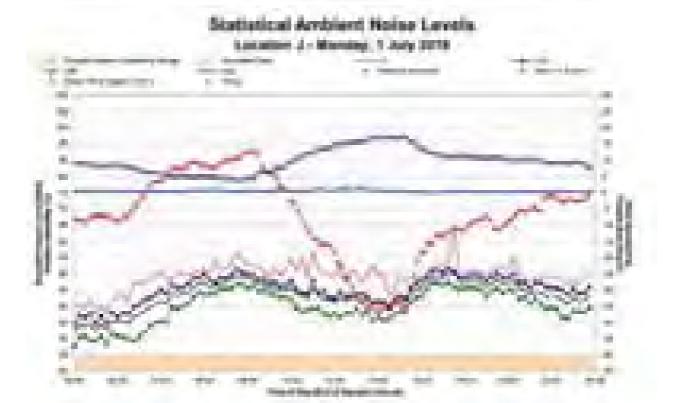


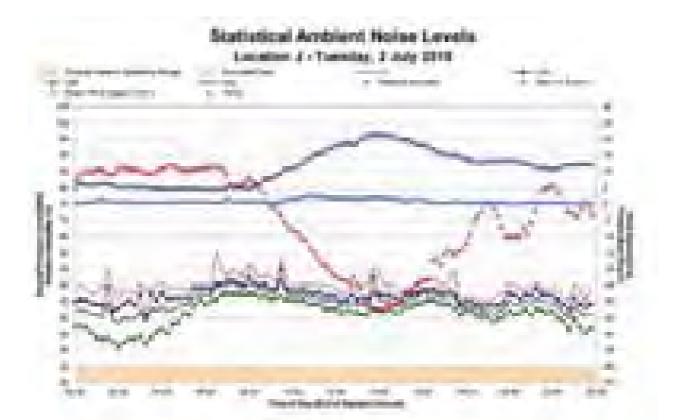


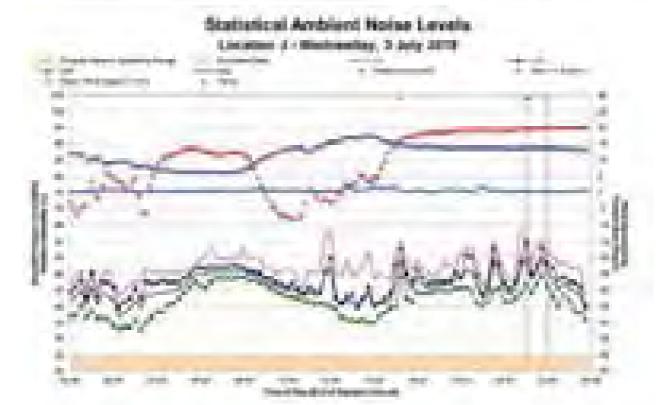


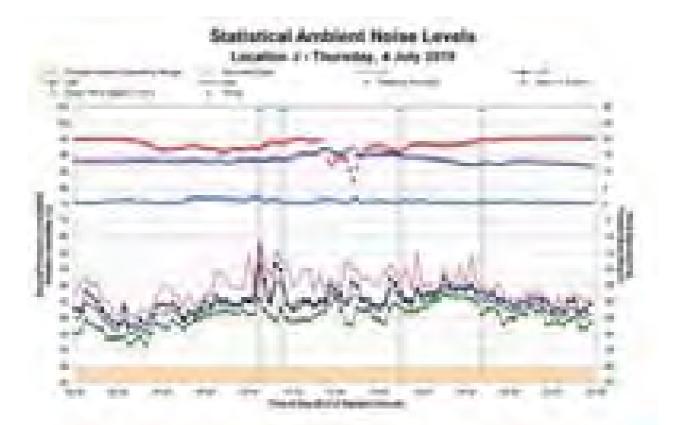


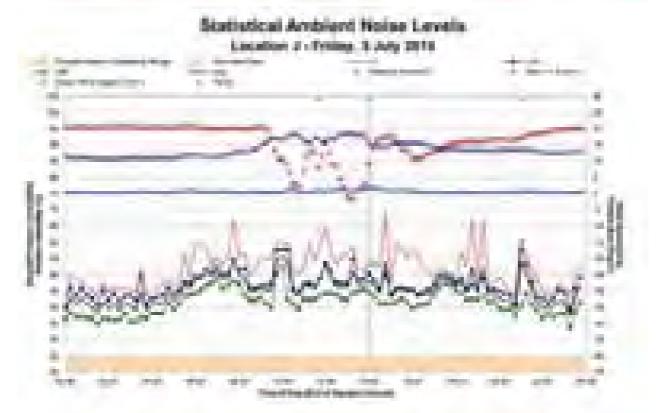


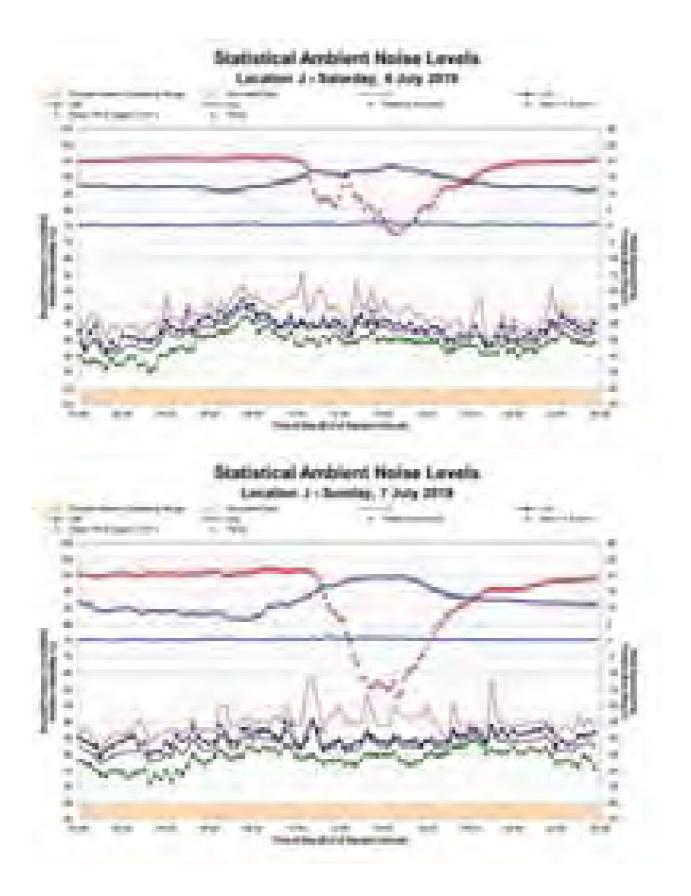


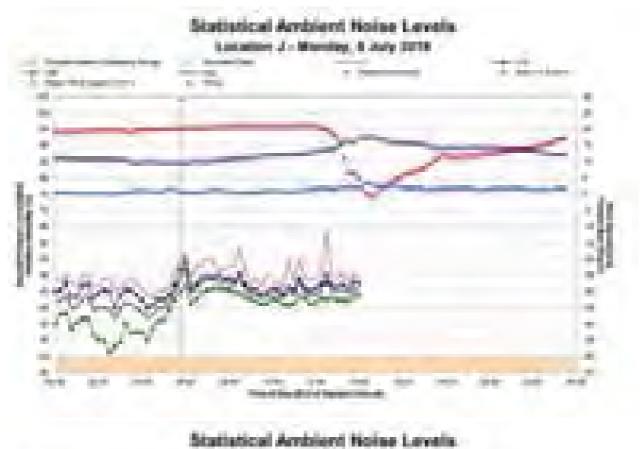


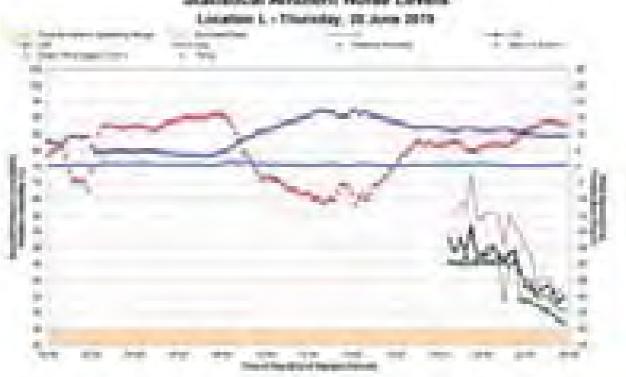


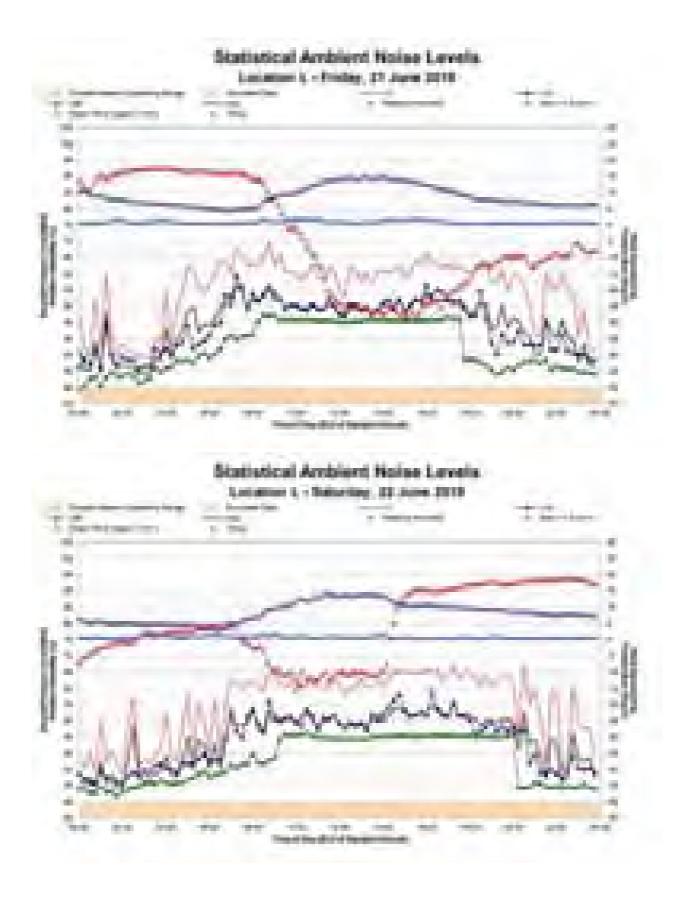


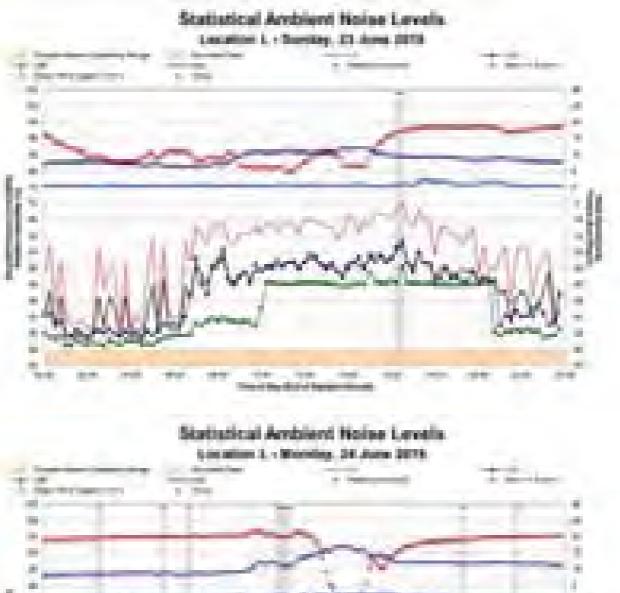


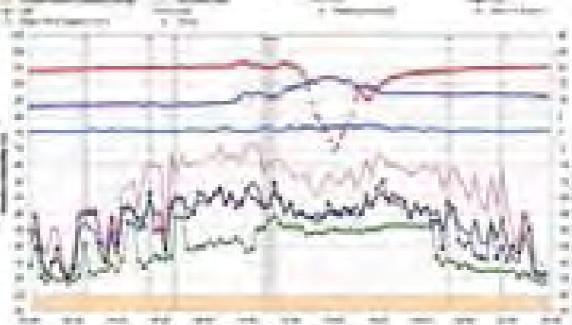


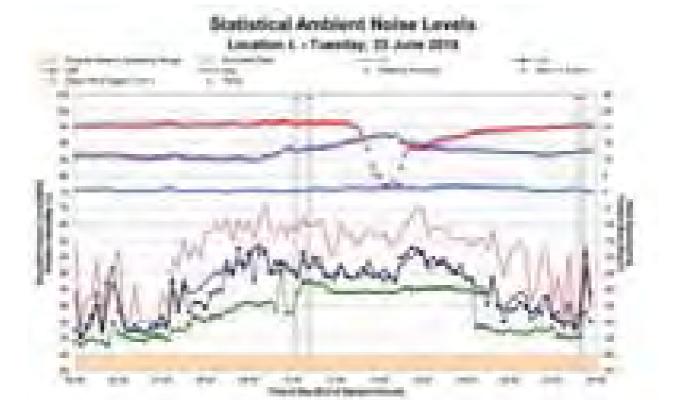


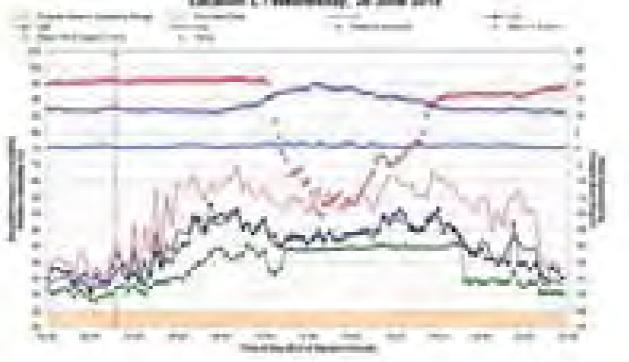


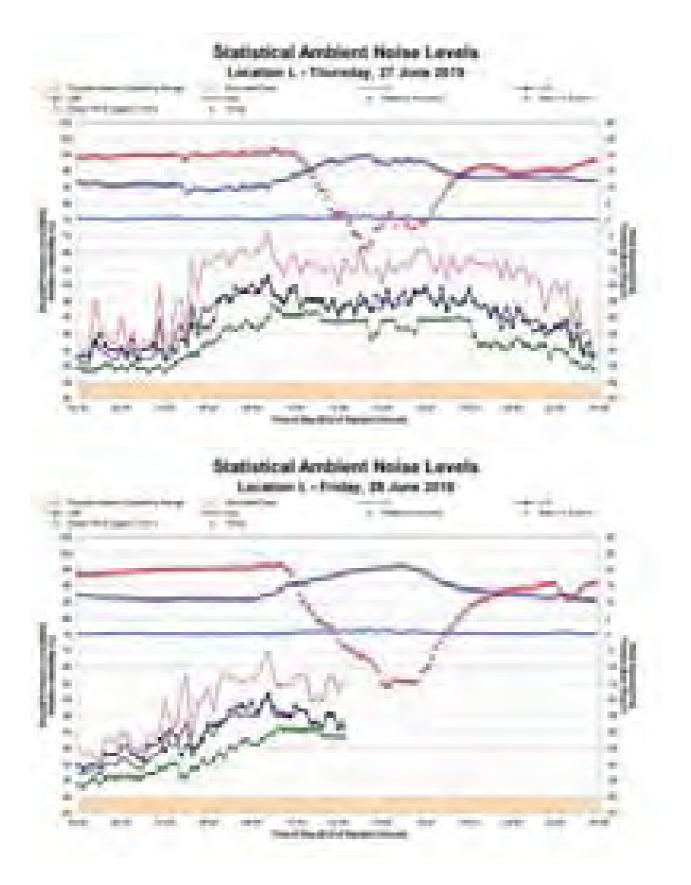












10 May 10 May 2010

Statistical Ambient Noise Levels Location 1. (Webwester, 78 June 2013

ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

МАСКАУ

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

ROCKHAMPTON

rockhampton@slrconsulting.com M: +61 407 810 417

AUCKLAND

68 Beach Road Auckland 1010 New Zealand T: +64 27 441 7849

CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

2 Lincoln Street Lane Cove NSW 2066 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

DARWIN

5 Foelsche Street Darwin NT 0800 Australia T: +61 8 8998 0100 F: +61 2 9427 8200

NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

TAMWORTH

PO Box 11034 Tamworth NSW 2340 Australia M: +61 408 474 248 F: +61 2 9427 8200

NEW PLYMOUTH

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand T: +64 0800 757 695

GOLD COAST

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001

DONALDSON AND ABEL COAL MINES

Quarterly Noise Monitoring Quarter Ending September 2019

Prepared for:

Donaldson Coal Pty Ltd PO Box 675 Green Hills 2320

SLR

SLR Ref: Q75 630.01053-R01 Version No: -v1.0 January 2020

PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: newcastleau@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Donaldson Coal Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
Q75 630.01053-R01-v1.0	24 January 2020	Martin Davenport	Jordan Murray	Martin Davenport

CONTENTS

1	INTRODUCTION	5
1.1	Background	5
1.2	Objectives of this Report	5
1.3	Acoustic Terminology	5
2	DEVELOPMENT CONSENT PROJECT APPROVAL	5
2.1	Donaldson Coal Mine Development Consent Conditions	6
2.2	Abel Coal Mine – Project Approval	7
3	NOISE MONITORING METHODOLOGY	. 13
3.1	General Requirements	13
3.2	Monitoring Locations	. 13
3.3	Unattended Continuous Noise Monitoring	14
3.4	Operator Attended Noise Monitoring	14
4	OPERATOR ATTENDED NOISE MONITORING	. 14
4.1	Results of Operator Attended Noise Monitoring	14
4.2	Operator Attended Noise Monitoring Summary	. 20
4.2.1	Donaldson Mine	20
4.2.2	Abel Coal Mine	20
4.3	Compliance Assessment and Discussion of Results	. 20
4.3.1	Operations	20
4.3.2	Sleep Disturbance	21
5	UNATTENDED CONTINUOUS NOISE MONITORING	. 22
5.1	Results of Unattended Continuous Noise Monitoring	. 22
5.2	Long term Unattended Continuous Monitoring Summary for Donaldson Mine and	
	Abel Coal Mine	
5.2.1	Ambient LA90 Noise Levels	
5.2.1.1	Baseline	
5.2.1.2 5.2.1.3	Previous Quarter	
5.2.2	Coinciding Period Last Year	
5.2.2	Baseline	
5.2.2.1	Previous Quarter	
5.2.2.3	Coinciding Period Last Year	
5.3	Rail Noise Monitoring	

CONTENTS

	_	
1	С.	
	n	
	-	

CONCLU

CLUSION	

DOCUMENT REFERENCES

TABLES

Table 1	Manitoring Locations	12
	Monitoring Locations	
Table 2	Location D, Black Hill Public School, Black Hill	15
Table 3	Location F, Lot 684 Black Hill Road, Black Hill	16
Table 4	Location G, Buchanan Road, Buchanan	17
Table 5	Location I, Magnetic Drive, Ashtonfield	18
Table 6	Location J, Parish Drive, Thornton	19
1	Table 7 Location L, 65 Tipperary Dr, Ashtonfield	20
Table 8	Compliance Noise Assessment – Operations	21
Table 9	Compliance Noise Assessment – Sleep Disturbance	
Table 10	Noise Logger and Noise Monitoring Locations	22
Table 11	Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)	23
Table 12	LA90 Results Comparison – Baseline	27
Table 13	LA90 Results Comparison – Previous Quarter	28
Table 14	LA90 Results Comparison – Coinciding Period Last Year	29
Table 15	LA10 Results Comparison – Baseline	
Table 16	LA10 Results Comparison – Previous Quarter	34
Table 17	LA10 Result Comparison – Coinciding Period Last Year	35

FIGURES

Long term Daytime LA90 Noise Levels	.24
Long term Evening LA90 Noise Levels	.25
Long term Night-time LA90 Noise Levels	.26
Long term Daytime LA10 Noise Levels	.30
Long term Evening LA10 Noise Levels	.31
Long term Night LA10 Noise Levels	.32
	Long term Evening LA90 Noise Levels Long term Night-time LA90 Noise Levels Long term Daytime LA10 Noise Levels Long term Evening LA10 Noise Levels

APPENDICES

- Appendix A Acoustic Terminology
- Appendix B Noise Monitoring Locations
- Appendix C Calibration Certificates
- Appendix D Statistical Ambient Noise Levels

1 Introduction

1.1 Background

Donaldson Coal Pty Ltd has commissioned SLR Consulting Australia Pty Ltd (SLR) to conduct quarterly noise monitoring surveys for the Donaldson Coal Mine and Abel Coal Mine during the September 2019 quarter in accordance with the *Donaldson Coal Mine and Abel Underground Coal Mine - Noise Management Plan Care and Maintenance* (the NMP) dated 3 June 2019.

1.2 Objectives of this Report

The objectives of the noise monitoring survey for this operating quarter were as follows:

- Measure the ambient noise levels at six focus receptor locations (potentially worst affected) surrounding Donaldson Coal Mine and Abel Coal Mine.
- Qualify all sources of noise within each of the attended surveys, including estimated contribution or maximum level of individual noise sources.
- Assess the noise emissions of Donaldson Coal Mine and Abel Coal Mine with respect to the limits contained in the Development Consent.

1.3 Acoustic Terminology

The following report uses specialist acoustic terminology. An explanation of common terms is provided in **Appendix A**.

2 Development Consent Project Approval

Development consent was obtained by Donaldson Coal Pty Ltd for the Donaldson Mine in October 1999 following a Commission of Inquiry. Development Consent number N97/00147 was issued by the Minister for Urban Affairs pursuant to Section 101 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

Project Approval (Application No. 05_0136) granted by the Minister of Planning was obtained by Donaldson Coal Pty Ltd for Abel Coal Mine in 2007.

2.1 Donaldson Coal Mine Development Consent Conditions

The Development Consent nominates hours of operation and mine noise emission goals in the Sections entitled "Operation of Development, Condition No. 3(1) and 3(2)", and "Noise and Vibrational Noise Limits: Condition No. 15" as follows:

3.(1) Subject to (2) the approved hours of operation are as follows:

Works	Period	Hours
Construction, including construction of any bunds	Monday to Friday Saturday	7 am to 6 pm 8 am to 1 pm
Mining operations, including mining, haulage of waste to dumps and coal processing	Monday to Friday Saturday, Sunday	24 hours per day 7 am to 6 pm
Road Transportation and stockpiling of coal	7 days per week	24 hours per day
Rail loading of coal	7 days per week	7 am to 10 pm
Maintenance of mobile and fixed plant	7 days per week	24 hours per day
Blasting, not involving closure of John Renshaw Drive	Monday to Saturday	7 am to 5 pm
Blasting, involving closure of John Renshaw Drive	Monday to Saturday	10 am to 2 pm

Notes: Restrictions on Public Holidays are the same as Sundays

(2) The Applicant shall submit a report to the Director-General's satisfaction demonstrating the noise limits in Condition 15 can be met while rail loading of coal is occurring during the period from 6 pm to 10 pm. If that report does not demonstrate that the noise limits can be met to the Director-General's satisfaction, then the hours of operation for rail loading of coal shall be restricted to 7 am to 6 pm."

15. Unless subject to a negotiated agreement in accordance with Condition 23, the Applicant shall ensure that the noise emission from construction or mining operations, when measured or computed at the boundary of any dwelling not owned by the applicant (or within 30 metres of the dwelling, if the boundary is more than 30 metres from the dwelling), shall not exceed the following noise limits:

Location	LA10(15minute) Noise Limits (dBA)	
	Daytime	Night-time
Beresfield area (residential)	45	35
Steggles Poultry Farm	50	40
Ebenezer Park Area	46	41
Black Hill Area	40	38
Buchanan and Louth Park Area	38	36
Ashtonfield Area	41	35
Thornton Area	48	40

Note: Daytime is 7 am to 10 pm Monday-Saturday, and 8 am to 10 pm Sundays and Public Holidays. Night-time is 10 pm to 7 am Monday-Saturday, and 10 pm to 8 am Sundays and Public Holidays.

The noise limits apply for prevailing meteorological conditions (winds up to 3 m/s), except under conditions of temperature inversions."

Other Conditions of Consent relevant to noise are as follows:

- 18. The applicant shall survey and investigate noise reduction measures from plant and equipment and set targets for noise reduction in each Annual Environmental Management Report (AEMR), taking into consideration valid noise complaints received in the previous year. The Report shall also include remedial measures.
- 19. The Applicant shall revise the Noise Management Plan as necessary and provide an updated Plan five years after commencement of mining to the Director-General, the independent noise expert (Condition 48), EPA, Councils and the Community Consultative Committee.

2.2 Abel Coal Mine – Project Approval

Approved Operations

The following operations are approved under the Abel Coal Mine Project Approval:

- Extraction of up to 6.1 Mtpa of Run of Mine (ROM) coal from the Abel Underground Coal Mine.
- Transport coal to the existing Bloomfield Coal Handling and Preparation Plant by private haul roads, or by coal conveyor, or by a combination of both methods.
- Operate the Bloomfield Coal Handling Processing Plant (CHPP) to process coal extracted from the Abel Coal Mine and the Bloomfield and Donaldson Coal Mines.
- Transportation of product coal from the Bloomfield site by rail via the Bloomfield rail loading facility.

The Project Approval was modified in June 2010 (05_0136 MOD 1) allowing construction and operation of a downcast ventilation fan. In May 2011 the Project Approval was modified again (05_0136 MOD 2) to allow the construction and operation of an upcast ventilation fan (and associated facilities). In December 2013 the Project Approval was further modified (05_0136 MOD3) to account for the increase in coal extracted including the upgrade of the Bloomfield CHPP.

Consent Conditions

The relevant conditions relating to noise from the Abel Coal Mine approval are reproduced below.

Schedule 4

NOISE

Operational Noise Criteria

1. The Proponent shall ensure that the noise generated by the Project does not exceed the criteria in Table 4 at any residence on privately-owned land.

Table 4: Operational Noise Criteria dB(A)

Location	Receiver Area	Day	Evening	Night	
		LAeq(15minute)	LAeq(15minute)	LAeq(15minute)	LA1(1minute)
Location I	Lord Howe Drive, Ashtonfield	36	36	36	45
Location K	Catholic Diocese Land	37	37	37	45
Location L	Kilshanny Avenue, Ashtonfield	40	40	40	47
All other Locations	All other privately owned Residences	35	35	35	45

Notes:

- To interpret the locations referred to in Table 4, see plan in Appendix 3.
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy. Appendix 4 sets out the meteorological conditions under which these criteria apply, and the requirements for evaluating compliance with these criteria.

These noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Construction Noise Criteria

1. The proponent shall ensure that the noise generated during the construction of the downcast ventilation shaft as described in EA (MOD3) does not exceed the criteria in Table 5.

Table 5: Construction Noise Criteria dB(A)

Location	Receiver	Day	
Location	Receiver	LAeq(15minute)	
Location R	281 Lings Road, Buttai	50	
Location S	189 Lings Road, Buttai	43	

Notes:

- The criteria in Table 5 apply only whilst the downcast ventilation shaft is being constructed, and for a maximum of 12 weeks from the commencement of construction.
- To interpret the locations referred to in Table 5, see plan in Appendix 3 (attached to this report as Appendix A).
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy.

However, these noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Rail Noise Criteria

1. The proponent shall ensure that the noise from rail movements on the Bloomfield Rail Spur does not exceed the limits in Table 6 at any residence on privately owned land.

Table 6: Rail Spur noise criteria dB (A)

Location	Day Evening Nigh		Night
	LAeq(period)		
All privately-owned land	55	45	40

Cumulative Noise Criteria

1. The proponent shall implement all reasonable and feasible measures to ensure that the noise generated by the project combined with noise generated by other mines does not exceed the criteria in Table 7 at any residence on privately-owned land.

Table 7: Cumulative noise criteria dB (A)

Location	Day	Evening	Night
Location	n LAeq(period)		
All privately-owned land	55	45	40

Notes: Cumulative noise is to be measured in accordance with the relevant requirements, and exemptions (including meteorological conditions), of the NSW Industrial Noise Policy. Appendix 4 sets out the metrological conditions under which these criteria apply and the requirements for evaluating compliance with these criteria.

Operating Conditions

- 1. The proponent shall:
 - a. Implement best management practise to minimise the construction, operational, road and rail noise of the project;
 - b. Operate an on-site noise management system to ensure compliance with the relevant conditions of this approval;
 - c. Minimise the noise impacts of the project during meteorological conditions under which the noise limits in this consent do not apply (see Appendix 4);
 - d. Only receive and/or dispatch locomotives and rolling stock either on or from the site that are approved to operate on the NSW rail network in accordance with the noise limits in ARTC's EPL (No. 3142);
 - e. Carry out regular monitoring to determine whether the project is complying with the noise criteria and other relevant conditions of approval, to the satisfaction of the Director-General.

Noise Management Plan

- 2. The proponent shall prepare and implement a Noise Management Plan for the project to the satisfaction of the Director-General. This plan must:
 - a. Be prepared in consultation with the EPA, and be submitted to the Director-General for approval within 6 months of the date of approval of MOD 3;
 - b. Describe the measures that would be implemented to ensure compliance with the noise criteria and operating conditions in this approval; Describe the proposed noise management system in detail; and
 - c. Include a monitoring program that:
 - Uses attended monitoring to evaluate the compliance of the project against the noise criteria in this approval;
 - Evaluates and reports on:
 - The effectiveness of the on-site noise management system; and
 - Compliance against the noise operating conditions; and

Defines what constitutes a noise incident, and includes protocol for identifying and notifying the Department and relevant stakeholders of any noise incidents. Appendix 4

Noise Compliance Assessment

Applicable Meteorological Conditions

- 1. The noise criteria in Tables 4 and 7 are to apply under all metrological conditions except the following:
 - a. During periods of rain or hail.
 - b. Average wind speed at microphone height exceeds 5 m/s;
 - c. Wind speeds greater than 3 m/s measured at 10m above ground level; or
 - d. Temperature inversion conditions greater than 3°C/100m.

Determination of metrological conditions

2. Except for wind speed at microphone height, the data to be used for determining metrological conditions shall be that recorded by the meteorological station located on the site.

Compliance monitoring

- 3. Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- 4. Unless otherwise agreed with the director-general, this monitoring is to be carried out in accordance with the relevant requirements for reviewing performance set out in the NSW Industrial Noise Policy (as amended from time to time), in particular the requirements relating to:
 - a. Monitoring locations for the collection of representative noise data;
 - b. Metrological conditions during which collection of noise data is not appropriate;
 - c. Equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - d. Modification to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.

Appendix 5

Statement of Commitments

3. Noise

3.1 Construction Activities

The following noise control measures will be implemented prior to commencement of construction of the Abel Underground Mine or the upgrade of the Bloomfield CHPP.

- 1. Maintain all machinery and equipment in working order;
 - a. No construction activities at the Abel pit top will take place on Sundays or Public Holidays;
 - b. Where possible locate noisy site equipment behind structures that act as barriers or at the greatest distance from noise sensitive areas; and
 - c. Orientate equipment so that noise emissions are directed away from noise sensitive areas.

3.2 Noise Control Measures

- a. The following noise control measures will be implemented prior to the mining of coal from the Abel underground Mine:
 - *i.* Orientation of the ventilation fans away from residential receivers and angle the output parallel to the ground.
 - *ii.* The sound power level of the front end loader to be used near the portal should not exceed 113 dBA and will be fitted with a noise sensitive reversing alarm.
- b. The following noise control measures will be implemented prior to the Bloomfield CHPP receiving any ROM coal from Able Underground Mine;

i. Noise mitigation works including partial enclosure and noise screening of drives and conveyors of the Bloomfield CHPP to screen residences to the north of the site.

3.2 Monitoring

The Company will implement a Noise Monitoring Program for the Abel Underground Mine and the Bloomfield CHPP, to the satisfaction of the Director-General. The Noise Monitoring Program shall include a combination of real-time and supplementary attended monitoring measures, and a noise monitoring protocol for evaluating compliance with the noise environmental assessment. This plan will be integrated with the monitoring plans for the Tasman, Donaldson and Bloomfield Mines to provide a single integrated Noise Monitoring Program for all 4 mines.

3.4 Continuous Improvement

The Company shall:

a. Report on these investigations and implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director General.

The operator of the Bloomfield CHPP shall:

- b. Investigate ways to reduce the noise generated by the Bloomfield CHPP, including maximum noise levels which may result in sleep disturbance;
- c. Implement all reasonable and feasible best practice noise mitigation measures on the site; and
- d. Report on these investigations and the implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director-General.

3 Noise Monitoring Methodology

3.1 General Requirements

The operational noise monitoring program was conducted with reference to Development Consent N97/00147 (Donaldson Coal Mine), Project Approval 05_0136 (Abel Coal Mine), the NMP and AS 1055-2018 Acoustics - Description and Measurement of Environmental Noise.

All acoustic instrumentation employed throughout the monitoring program has been designed to comply with the requirements of AS IEC 61672.1 – 2004 *Electroacoustics—Sound level meters – Specifications*, AS IEC 61672.2-2004, AS IEC 61672.3-2004 and carried current NATA or manufacturer calibration certificates. Certificates for acoustic instrumentation used during the September 2019 quarter is provided in **Appendix B**.

Instrument calibration was conducted before and after each measurement, with the variation in calibrated levels not exceeding ±0.5 dBA.

3.2 Monitoring Locations

Baseline and preceding operational quarterly surveys have been conducted at 11 locations surrounding the Donaldson Mine and Abel Coal Mine sites. With the experience of these previous surveys, it was decided to concentrate noise monitoring at six focus locations that represent the potentially most noise affected areas from Donaldson Mine and Abel Coal Mine. The details of the monitoring locations are contained within **Table 1**.

It is relevant to note that Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Furthermore, Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite during the September 2019 noise monitoring period.

Table 1 Monitoring Locations

Noise Monitoring Location	Description
D	Black Hill School, Black Hill
F	Lot 684 Black Hill Road, Black Hill
G	156 Buchannan Road, Buchannan
1	Magnetic Drive, Ashtonfield
J	Parish Drive, Thornton
L	65 Tipperary Dr, Ashtonfield

A map giving the approximate location of the noise monitoring sites is contained within **Appendix C**.

3.3 Unattended Continuous Noise Monitoring

An environmental noise logger was deployed for a minimum of a seven day period between Tuesday 24 September 2019 and Tuesday 1 October 2019 at each of the six (6) nominated locations given in Table 1.

All unattended monitoring equipment was programmed to continuously record statistical noise level indices in 15 minute intervals including the LAmax, LA1, LA10, LA90, LA99, LAmin and LAeq. The statistical noise exceedance levels (LAN) are the levels exceeded for N% of the 15 minute interval. The LA90 represents the level exceeded for 90% of the interval period and is referred to as the average minimum or background noise level. The LA10 is the level exceeded for 10% of the time and is usually referred to as the average maximum noise level. The LAeq is the equivalent continuous sound pressure level and represents the steady sound level which is equal in energy to the fluctuating level over the interval period. The LAmax is the maximum noise level recorded over the interval.

3.4 Operator Attended Noise Monitoring

Operator attended surveys were conducted at each of the six monitoring locations during the daytime, evening and night-time periods, to verify the unattended logging results and to determine the character and contribution of ambient noise sources.

4 **Operator Attended Noise Monitoring**

4.1 Results of Operator Attended Noise Monitoring

Operator attended noise measurements were conducted during the daytime period on Tuesday 24 September 2019 and the evening and night-time on Monday 30 September 2019. Operator attended noise surveys were conducted using a Brüel & Kjær Type 2270 (serial number 2679354) and Brüel & Kjær Type 2250L integrating sound level meter (serial number 3003389).

Ambient noise levels given in the tables include all noise sources such as traffic, insects, birds, and mine operations as well as any other industrial operations.

The tables provide the following information:

- Monitoring location.
- Date and start time.
- Wind velocity (m/s) and Temperature (°C) at the measurement location.
- Typical maximum (LAmax) and contributed noise levels.

Mine contributions listed in the tables are from the Abel Coal Mine and are stated only when a contribution could be quantified.

Table 2 Location D, Black Hill Public School, Black Hill

Period	Date/			⁻ Noise De BA re 20 μ			Description of Noise Emission, Typical	
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
Day	24/09/2019 13:48	71	62	53	36	51	School playground 47-52 Road traffic 49-71	
Day	21°C 1.3 m/s WNW	Estima		Mine Noi Inaudible	Birds 36-62 Abel Mine Inaudible			
Evening	30/09/2019 18:55 14°C 0.3 m/s SSE	76	57	45	41	50	Insects/frogs 42-50 Road traffic 40-76	
Lvening		Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	
Night	30/09/2019 22:33	75	63	44	44 41 50		Insects/frogs 40-43 Road traffic 38-75	
	15°C 0.3 m/s SSE	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	

Table 3 Location F, Lot 684 Black Hill Road, Black Hill

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical			
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
Dav	24/09/2019 14:11	88	72	59	45	62	Road traffic 44-88 Birdsong 39-52	
Day	21°C 1.2 m/s W	Estima		Mine Noi Inaudible	Birdsong 39-52 Abel Mine Inaudible			
Evening	30/09/2019 19:15 14°C 0.7 m/s SSE	74	60	52	43	50	Aeroplane 61 Frogs/insects 39-48	
Evening		Estima		Mine Noi Inaudible	Road traffic 40-74 Abel Mine Inaudible			
Night	30/09/2019 22:54	64	57	48	41	46	Frogs/insects 40-46	
	15°C 0.2 m/s SSE	Estimated Abel Mine Noise Contribution Inaudible					Road traffic 41-64 Abel Mine Inaudible	

Table 4 Location G, Buchanan Road, Buchanan

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical			
	Start time/ Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
Day	24/09/2019 15:31	68	57	46	39	45	Road traffic 37-49 Birds 43-68	
Duy	21°C 1.2 m/s W	Estima		Mine Noi Inaudible	Abel Mine Inaudible			
Fuening	30/09/2019 20:20	60	50	46	37	43	Road traffic 35-57 Insects 32-36	
Evening	15°C 0.4 m/s SSE	Estimated Abel Mine Noise Contribution Inaudible					Other industry 32-43 Abel Mine Inaudible	
Night	01/10/2019 00:00	47	46	40	33	37	Road traffic 35-47 Insects 25-30	
	14°C 0.5 m/s SSE	Estimated Abel Mine Noise Contribution Inaudible					Other industry 28-43 Abel Mine Inaudible	

Table 5 Location I, Magnetic Drive, Ashtonfield

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical		
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	24/09/2019 12:52	63	55	51	37	42	Road traffic 51-63 Birds 35-44
Day	21°C 0.5 m/s SSE	Estima		Mine Noi Inaudible	Abel Mine Inaudible		
Evening	30/09/2019 21:11 15°C 0.4 m/s SSE	67	52	47	42	46	Insects 42-47 Road Traffic 63-67
Evening		Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible
Night	01/10/2019 00:49	52	43	39	32	36	Insects 30-52
	14°C 0.5 m/s SSE	Estima		Mine Noi Inaudible	Distant road traffic 30-40 Abel Mine Inaudible		

Table 6Location J, Parish Drive, Thornton

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical		
	Start time/Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)
	24/09/2019 13:51	61	49	41	35	39	Road traffic 34-41 Birds 40-61
Day	21°C 0.8 m/s WNW	Estima		Mine Noi Inaudible		bution	Abel Mine Inaudible
Fuening	30/09/2019 21:47 15°C 0.4 m/s SSE	50	40	37	34	36	Road traffic 34-50
Evening		Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible
Night	30/09/2019 22:04	60	42	40	34	37	Road traffic 34-60
	15°C 0.3 m/s SSE	Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible

1 Table 7 Location L, 65 Tipperary Dr, Ashtonfield

Period	Date/			Noise De A re 20 μ	Description of Noise Emission, Typical			
	Start time/ Weather	LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)	
Day	24/09/2019 12:25	70	59	47	33	46	Road traffic 50-70 Birds 31-46 Wind in trees 30-33	
	20°C 1.3 m/s WSW	Estima		Mine Noi Inaudible		bution	Domestic noise 40-53 Abel Mine Inaudible	
Evening	30/09/2019 20:48 15°C 0.4 m/s SSE	67	47	36	33	42	Insects 25 Traffic 36-67	
Evening		Estimated Abel Mine Noise Contribution Inaudible					Abel Mine Inaudible	
	01/10/2019 00:27	47	38	32	26	30	Insects 23-25	
Night	14°C 0.5 m/s SSE	Estimated Bloomfield Colliery Noise Contribution Inaudible					Traffic 25-47 Abel Mine Inaudible	

4.2 **Operator Attended Noise Monitoring Summary**

4.2.1 Donaldson Mine

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

4.2.2 Abel Coal Mine

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

The Bloomfield CHPP and stockpile area was inaudible during all operator attended noise surveys. Noise generated by local and distant traffic was a significant contributor to ambient noise levels at all monitored locations as well as 'natural' noises such as birds, insects.

4.3 Compliance Assessment and Discussion of Results

4.3.1 **Operations**

Results of the operational compliance assessment are given in Table 8.

Location	Estimated Contributio	Abel LAeq(15 on dBA	minute)	Consent	sent Conditions		Compliance		
	Day	Eve	Night	Day	Eve	Night	Day	Eve	Night
D – Black Hill School, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
F – Black Hill Road, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
G – Buchanan Road, Buchanan	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
I – Magnetic Drive, Ashtonfield	Inaudible	Inaudible	Inaudible	36	36	36	Yes	Yes	Yes
J – Parish Drive, Thornton	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
L – 65 Tipperary Dr, Ashtonfield	Inaudible	Inaudible	Inaudible	40	40	40	Yes	Yes	Yes

Table 8 Compliance Noise Assessment – Operations

Results presented in **Table 8** indicate that compliance with the relevant consent conditions was achieved at all noise monitoring locations during all periods.

4.3.2 Sleep Disturbance

Results of the sleep disturbance compliance assessment are given in Table 9.

Table 9 Compliance Noise Assessment – Sleep Disturbance

Location	Estimated Bloomfield LA1(1minute) Contribution dBA	Consent Conditions LA1(1minute) dBA	Compliance
D – Black Hill School, Black Hill	Inaudible	45	Yes
F – Black Hill Road, Black Hill	Inaudible	45	Yes
G – Buchanan Road, Buchanan	Inaudible	45	Yes
I – Magnetic Drive, Ashtonfield	Inaudible	45	Yes
J – Parish Drive, Thornton	Inaudible	45	Yes
L – 65 Tipperary Dr, Ashtonfield	Inaudible	47	Yes

Results presented in **Table 9** indicate that compliance with the sleep disturbance consent conditions was achieved at all noise monitoring locations during the night-time noise surveys.

5 Unattended Continuous Noise Monitoring

5.1 Results of Unattended Continuous Noise Monitoring

Unattended continuous noise monitoring was conducted between Tuesday 24 September 2019 and Tuesday 1 October 2019 at each of the six monitoring locations given in **Table 10**.

Table 10	Noise Logger and Noise Monitoring Locations
----------	---

Location	Noise Logger Serial Number	Date of Logging
D – Black Hill School, Black Hill	ARL EL-316 16-207-044	24 September 2019 - 1 October 2019
F – Black Hill Road, Black Hill	ARL EL-316 16-203-508	24 September 2019 - 1 October 2019
G – Buchanan Road, Buchanan	ARL EL-316 16-207-050	24 September 2019 - 1 October 2019
I – Magnetic Drive, Ashtonfield	SVAN 957 20665	24 September 2019 - 1 October 2019
L – 65 Tipperary Dr, Ashtonfield	SVAN 957 21423	24 September 2019 - 1 October 2019
J – Parish Drive, Thornton ¹	ARL EL-316 16-103-494	24 September 2019 - 1 October 2019

The unattended ambient noise logger data from each monitoring location are presented graphically on a daily basis and are attached as **Appendix C**. A summary of the results of the unattended continuous noise monitoring is given in **Table 11**.

The ambient noise level data quantifies the overall noise level at a given location independent of its source or character.

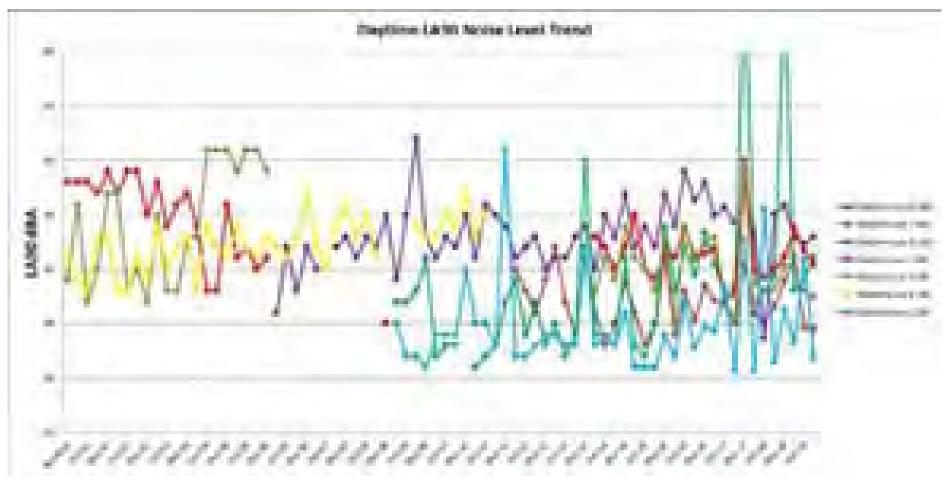
The measured ambient noise levels were divided into three periods representing day, evening and night as designated in the NSW Noise Policy for Industry (NPfI).

Precautions were taken to minimise influences from extraneous noise sources (eg optimum placement of the loggers away from creeks, trees, houses, etc), however, not all these sources or their effects can be eliminated. This is particularly the case during the warmer times of year when noise from insects, frogs, birds and other animals can become quite prevalent.

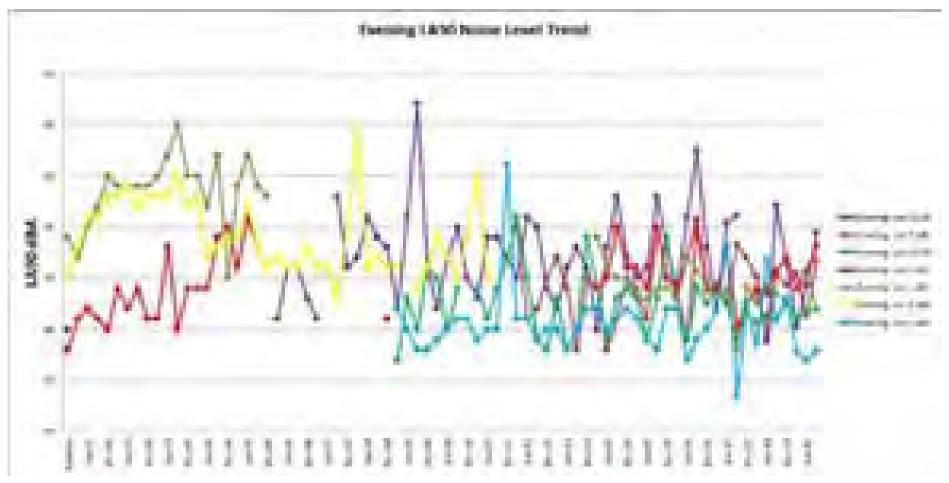
Weather data for the subject area during the noise monitoring period was provided by Bloomfield Colliery. Noise data during periods of any rainfall and/or wind speeds in excess of 5 m/s were discarded in accordance with NPfI weather affected data exclusion methodology.

Location	Period	Primary No	oise Descripto	or (dBA re 20	μΡΑ)
		LA1	LA10	LA90	LAeq
2	Day	66	53	35	54
D Black Hill School, Black Hill	Evening	58	48	42	50
	Night	51	43	31	48
_	Day	71	56	43	58
F Lot 684 Black Hill Road, Black Hill	Evening	65	54	44	55
	Night	60	52	36	53
_	Day	54	50	41	48
G 156 Buchanan Road, Buchanan	Evening	48	46	37	44
190 Buchanan Koad, Buchanan	Night	47	43	30	44
	Day	66	56	40	56
I 49 Magnetic Drive, Ashtonfield	Evening	62	57	43	55
45 Wagnetic Drive, Ashtonneta	Night	56	47	30	51
	Day	60	49	32	51
L 65 Tipperary Dr, Ashtonfield	Evening	57	41	33	46
os ripperary Dr, Asittoimeid	Night	44	33	20	45
	Day	50	46	37	45
J 220 Parish Drive, Thornton	Evening	46	43	37	42
	Night	45	41	30	42

Table 11 Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)


5.2 Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine

5.2.1 Ambient LA90 Noise Levels


The long term ambient LA90 noise levels collected from each monitoring location are presented graphically in **Figure 1**, **Figure 2** and **Figure 3** for the daytime, evening and night-time periods respectively.

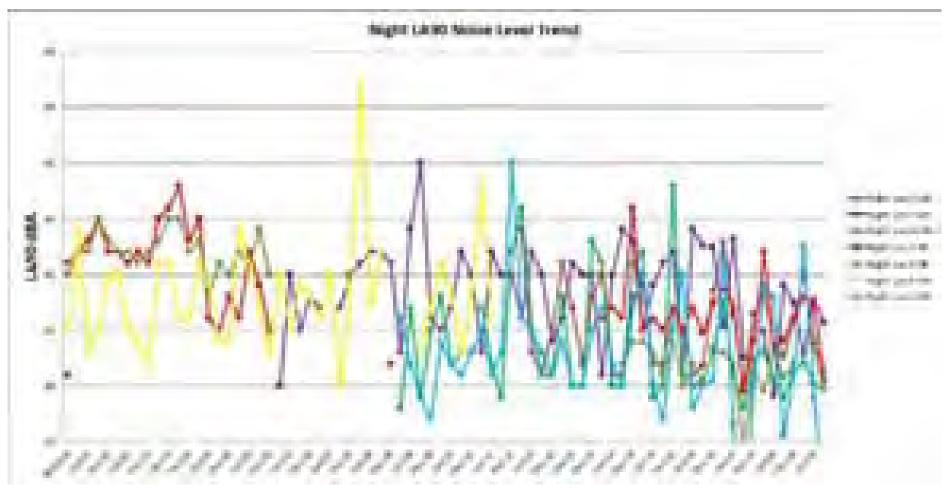

Figure 1 Long term Daytime LA90 Noise Levels

Figure 2 Long term Evening LA90 Noise Levels

Figure 3 Long term Night-time LA90 Noise Levels

5.2.1.1 Baseline

The summary of results in **Table 12** shows the ambient LA90 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring process (ie. prior to commencement of mining operation at Donaldson).

Table 12	LA90 Results	Comparison –	Baseline
		companison	Duschine

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ³
	Penou	Baseline	September 2019	Difference dB
	Day	N/A ²	35	N/A ²
D Black Hill School, Black Hill	Evening	N/A ²	42	N/A ²
	Night	N/A ²	31	N/A ²
F	Day	39	43	4
Lot 684 Black Hill Road,	Evening	35	44	9
Black Hill	Night	31	36	5
G	Day	N/A ²	41	N/A ²
156 Buchanan Road,	Evening	N/A ²	37	N/A ²
Buchanan	Night	N/A ²	30	N/A ²
1	Day	48	41	-8
49 Magnetic Drive,	Evening	33	43	10
Ashtonfield	Night	41	31	-11
L	Day	N/A ²	32	N/A ²
65 Tipperary Drive,	Evening	N/A ²	33	N/A ²
Ashtonfield	Night	N/A ²	20	N/A ²
	Day	39	37	-2
J 220 Parish Drive, Thornton	Evening	44	37	-7
220 Parish Drive, mornton	Night	40	30	-10

Note 1: Periods are as detailed the NPfI and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.1.2 Previous Quarter

Table 13 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured in the previous monitoring period.

Table 13	LA90 Results C	omparison –	Previous Quarter

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²
Monitoring Location		June 2019	September 2019	Difference dB-
2	Day	35	35	0
D Black Hill School, Black Hill	Evening	36	42	6
	Night	34	31	-3
F	Day	42	43	1
Lot 684 Black Hill Road,	Evening	39	44	5
Black Hill	Night	38	36	-2
G	Day	39	41	2
156 Buchanan Road,	Evening	37	37	0
Buchanan	Night	30	30	-1
1	Day	42	41	-1
49 Magnetic Drive,	Evening	41	43	3
Ashtonfield	Night	37	31	-7
L	Day	41	32	-9
65 Tipperary Drive,	Evening	32	33	1
Ashtonfield	Night	29	20	-9
	Day	38	37	-1
J 220 Parish Drive, Thornton	Evening	40	37	-3
	Night	33	30	-4

Note 1: 1. Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

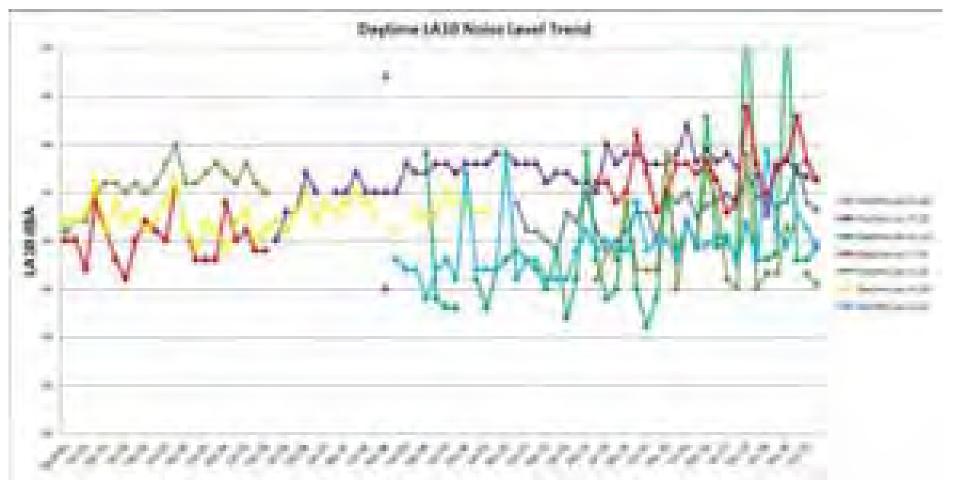
Note 2: Rounded to the nearest whole dB.

5.2.1.3 Coinciding Period Last Year

Table 14 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Table 14	LA90 Results	Comparison ·	- Coinciding	Period Last Year
----------	--------------	---------------------	--------------	------------------

Monitoring Location	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²
Monitoring Location		September 2018	September 2019	Difference db
2	Day	37	35	-2
D Black Hill School, Black Hill	Evening	40	42	1
Black Hill School, Black Hill	Night	33	31	-1
F	Day	45	43	-2
Lot 684 Black Hill Road,	Evening	47	44	-3
Black Hill	Night	39	36	-3
G	Day	39	41	2
156 Buchanan Road,	Evening	36	37	1
Buchanan	Night	29	30	1
I	Day	40	41	1
49 Magnetic Drive,	Evening	41	43	3
Ashtonfield	Night	34	31	-4
L	Day	31	32	1
65 Tipperary Drive,	Evening	36	33	-3
Ashtonfield	Night	26	20	-5
	Day	38	37	-1
J 220 Parish Drive, Thornton	Evening	38	37	-1
	Night	31	30	-1


Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

5.2.2 Ambient LA10 Noise Comparison

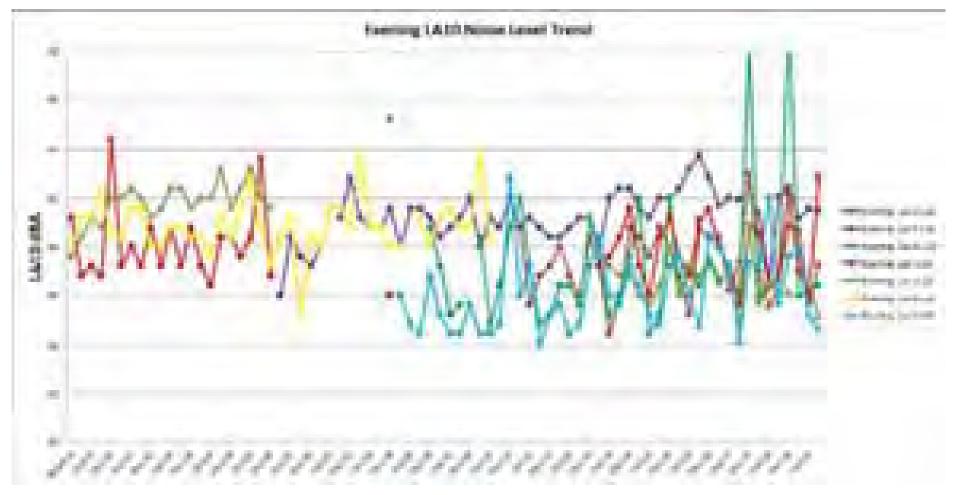

The long term ambient LA10 noise levels collected from each monitoring location are presented graphically in **Figure 4**, **Figure 5** and **Figure 6** for the daytime, evening and night-time respectively.

Figure 4 Long term Daytime LA10 Noise Levels

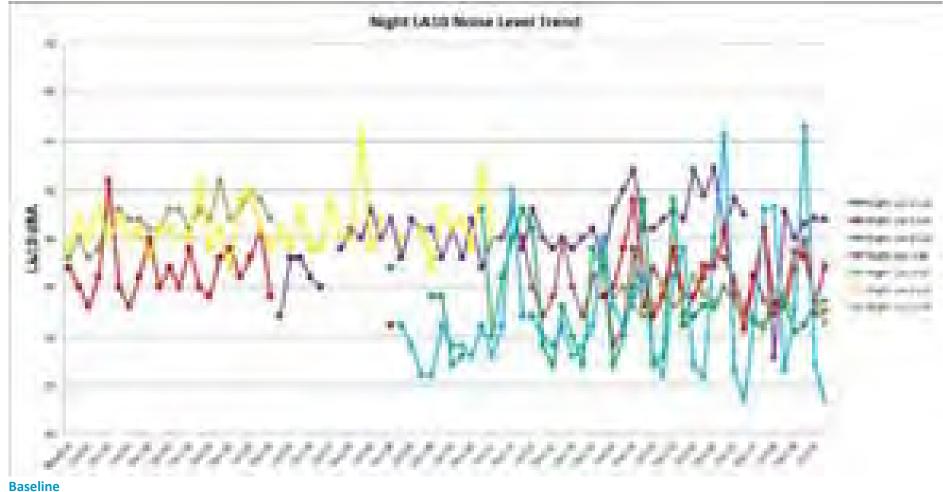


Figure 5 Long term Evening LA10 Noise Levels

Table 15 presents the ambient LA10 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring period.

 Table 15
 LA10 Results Comparison – Baseline

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ³
	Pendu	Baseline	September 2019	
	Day	N/A ²	53	N/A
D Black Hill School, Black Hill	Evening	N/A ²	48	N/A
Black Hill School, Black Hill	Night	N/A ²	43	N/A
F	Day	51	56	5
Lot 684 Black Hill Road,	Evening	49	54	5
Black Hill	Night	48	52	4
G	Day	N/A ²	50	N/A
156 Buchanan Road,	Evening	N/A ²	46	N/A
Buchanan	Night	N/A ²	44	N/A
1	Day	50	56	6
49 Magnetic Drive,	Evening	53	57	4
Ashtonfield	Night	47	47	0
L	Day	N/A ²	49	N/A
65 Tipperary Drive,	Evening	N/A ²	42	N/A
Ashtonfield	Night	N/A ²	33	N/A
	Day	51	46	-6
J 220 Parish Drive, Thornton	Evening	49	43	-6
220 Parisir Drive, mornton	Night	48	41	-7

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.2.2 Previous Quarter

Table 16 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the previous monitoring period.

Table 16	LA10 Results Co	mparison –	Previous	Ouarter
	EATO RESOURS CO			quarter

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ²
Monitoring Location		June 2019	September 2019	Difference dB-
2	Day	54	53	-1
D Black Hill School, Black Hill	Evening	44	48	4
Black Hill School, Black Hill	Night	42	43	0
F	Day	57	56	0
Lot 684 Black Hill Road,	Evening	54	54	0
Black Hill	Night	52	52	0
G	Day	48	50	1
156 Buchanan Road,	Evening	46	46	0
Buchanan	Night	43	44	0
1	Day	58	56	-2
49 Magnetic Drive,	Evening	45	57	12
Ashtonfield	Night	44	47	4
L	Day	51	49	-2
65 Tipperary Drive,	Evening	43	42	-1
Ashtonfield	Night	37	33	-4
	Day	47	46	-1
J 220 Parish Drive, Thornton	Evening	46	43	-4
	Night	44	41	-3

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

5.2.2.3 Coinciding Period Last Year

Table 17 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Monitoring Location	Period ¹	Long term Night-time LA10 Noise Levels		Difference dB ²	
	Periou	September 2018	September 2019	Dimerence dB-	
2	Day	54	53	-1	
D Black Hill School, Black Hill	Evening	46	48	2	
Black Hill School, Black Hill	Night	43	43	0	
F	Day	58	56	-2	
Lot 684 Black Hill Road,	Evening	55	54	-2	
Black Hill	Night	53	52	-1	
G	Day	49	50	1	
156 Buchanan Road,	Evening	46	46	0	
Buchanan	Night	43	44	0	
I	Day	57	56	-1	
49 Magnetic Drive,	Evening	47	57	10	
Ashtonfield	Night	44	47	3	
L	Day	51	49	-2	
65 Tipperary Dr,	Evening	44	42	-3	
Ashtonfield	Night	37	33	-3	
	Day	47	46	-1	
J 220 Parish Drive, Thornton	Evening	46	43	-3	
	Night	44	41	-3	

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

5.3 Rail Noise Monitoring

In order to determine compliance with the rail noise criteria, a noise logger was positioned at Location J, however no train movements occurred during the monitoring period.

6 Conclusion

SLR was engaged by Donaldson Coal Pty Ltd to conduct quarterly noise monitoring surveys for Donaldson Coal Mine and Abel Coal Mine in accordance with the NMP, dated 3 June 2019.

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

Operator-attended and unattended noise measurements were conducted for the September 2019 quarter at six focus locations surrounding the mine.

Abel portal operations were not observed to be audible at any locations during the monitoring period. Contributed noise levels from Abel Mine did not exceed noise emission goals (including night-time sleep arousal criteria) and compliance with the Abel Mine *Project Approval* was indicated at all locations.

A comparison of ambient LA10 and LA90 noise levels recorded during the current monitoring period (September 2019), the baseline monitoring period, the last monitoring period (June 2019), and the coinciding monitoring period from last year (September 2018) has been conducted.

No rail movements occurred on the Bloomfield Rail Spur during the noise monitoring period.

Acoustic Terminology

1. Sound Level or Noise Level

The terms 'sound' and 'noise' are almost interchangeable, except that 'noise' often refers to unwanted sound.

Sound (or noise) consists of minute fluctuations in atmospheric pressure. The human ear responds to changes in sound pressure over a very wide range with the loudest sound pressure to which the human ear can respond being ten million times greater than the softest. The decibel (abbreviated as dB) scale reduces this ratio to a more manageable size by the use of logarithms.

The symbols SPL, L or LP are commonly used to represent Sound Pressure Level. The symbol LA represents A-weighted Sound Pressure Level. The standard reference unit for Sound Pressure Levels expressed in decibels is 2 x 10^{-5} Pa.

2. 'A' Weighted Sound Pressure Level

The overall level of a sound is usually expressed in terms of dBA, which is measured using a sound level meter with an 'A-weighting' filter. This is an electronic filter having a frequency response corresponding approximately to that of human hearing.

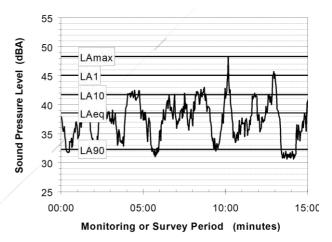
People's hearing is most sensitive to sounds at mid frequencies (500 Hz to 4,000 Hz), and less sensitive at lower and higher frequencies. Different sources having the same dBA level generally sound about equally loud.

A change of 1 dB or 2 dB in the level of a sound is difficult for most people to detect, whilst a 3 dB to 5 dB change corresponds to a small but noticeable change in loudness. A 10 dB change corresponds to an approximate doubling or halving in loudness. The table below lists examples of typical noise levels.

Sound Pressure Level (dBA)	Typical Source	Subjective Evaluation	
130	Threshold of pain	Intolerable	
120	Heavy rock concert	Extremely	
110	Grinding on steel	noisy	
100	Loud car horn at 3 m	Very noisy	
90	Construction site with pneumatic hammering		
80	Kerbside of busy street	Loud	
70	Loud radio or television		
60	Department store	Moderate to	
50	General Office	quiet	
40	Inside private office	Quiet to	
30	Inside bedroom	very quiet	
20	Recording studio	Almost silent	

Other weightings (eg B, C and D) are less commonly used than A-weighting. Sound Levels measured without any weighting are referred to as 'linear', and the units are expressed as dB(lin) or dB.

3. Sound Power Level


The Sound Power of a source is the rate at which it emits acoustic energy. As with Sound Pressure Levels, Sound Power Levels are expressed in decibel units (dB or dBA), but may be identified by the symbols SWL or LW, or by the reference unit 10^{-12} W.

The relationship between Sound Power and Sound Pressure is similar to the effect of an electric radiator, which is characterised by a power rating but has an effect on the surrounding environment that can be measured in terms of a different parameter, temperature.

4. Statistical Noise Levels

Sounds that vary in level over time, such as road traffic noise and most community noise, are commonly described in terms of the statistical exceedance levels LAN, where LAN is the Aweighted sound pressure level exceeded for N% of a given measurement period. For example, the LA1 is the noise level exceeded for 1% of the time, LA10 the noise exceeded for 10% of the time, and so on.

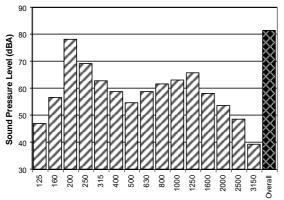
The following figure presents a hypothetical 15 minute noise survey, illustrating various common statistical indices of interest.

Of particular relevance, are:

- LA1 The noise level exceeded for 1% of the 15 minute interval.
- LA10 The noise level exceeded for 10% of the 15 minute interval. This is commonly referred to as the average maximum noise level.
- LA90 The noise level exceeded for 90% of the sample period. This noise level is described as the average minimum background sound level (in the absence of the source under consideration), or simply the background level.
- LAeq The A-weighted equivalent noise level (basically, the average noise level). It is defined as the steady sound level that contains the same amount of acoustical energy as the corresponding time-varying sound.

5. Frequency Analysis

Frequency analysis is the process used to examine the tones (or frequency components) which make up the overall noise or vibration signal.


The units for frequency are Hertz (Hz), which represent the number of cycles per second.

Frequency analysis can be in:

- Octave bands (where the centre frequency and width of each band is double the previous band)
- 1/3 octave bands (three bands in each octave band)
- Narrow band (where the spectrum is divided into 400 or more bands of equal width)

The following figure shows a 1/3 octave band frequency analysis where the noise is dominated by the 200 Hz band. Note that the indicated level of each individual band is less than the overall level, which is the logarithmic sum of the bands.

6. Annoying Noise (Special Audible Characteristics)

A louder noise will generally be more annoying to nearby receivers than a quieter one. However, noise is often also found to be more annoying and result in larger impacts where the following characteristics are apparent:

- Tonality tonal noise contains one or more prominent tones (ie differences in distinct frequency components between adjoining octave or 1/3 octave bands), and is normally regarded as more annoying than 'broad band' noise.
- Impulsiveness an impulsive noise is characterised by one or more short sharp peaks in the time domain, such as occurs during hammering.
- Intermittency intermittent noise varies in level with the change in level being clearly audible. An example would include mechanical plant cycling on and off.
- Low Frequency Noise low frequency noise contains significant energy in the lower frequency bands, which are typically taken to be in the 10 to 160 Hz region.

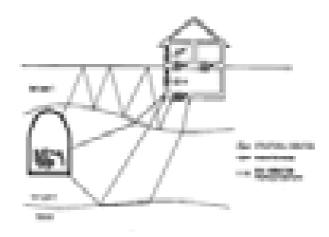
7. Vibration

Vibration may be defined as cyclic or transient motion. This motion can be measured in terms of its displacement, velocity or acceleration. Most assessments of human response to vibration or the risk of damage to buildings use measurements of vibration velocity. These may be expressed in terms of 'peak' velocity or 'rms' velocity.

The former is the maximum instantaneous velocity, without any averaging, and is sometimes referred to as 'peak particle velocity', or PPV. The latter incorporates 'root mean squared' averaging over some defined time period.

Vibration measurements may be carried out in a single axis or alternatively as triaxial measurements (ie vertical, longitudinal and transverse). The common units for velocity are millimetres per second (mm/s). As with noise, decibel units can also be used, in which case the reference level should always be stated. A vibration level V, expressed in mm/s can be converted to decibels by the formula 20 log (V/Vo), where Vo is the reference level (10^{-9} m/s). Care is required in this regard, as other reference levels may be used.

8. Human Perception of Vibration


People are able to 'feel' vibration at levels lower than those required to cause even superficial damage to the most susceptible classes of building (even though they may not be disturbed by the motion). An individual's perception of motion or response to vibration depends very strongly on previous experience and expectations, and on other connotations associated with the perceived source of the vibration. For example, the vibration that a person responds to as 'normal' in a car, bus or train is considerably higher than what is perceived as 'normal' in a shop, office or dwelling.

9. Ground-borne Noise, Structure-borne Noise and Regenerated Noise

Noise that propagates through a structure as vibration and is radiated by vibrating wall and floor surfaces is termed 'structure-borne noise', 'ground-borne noise' or 'regenerated noise'. This noise originates as vibration and propagates between the source and receiver through the ground and/or building structural elements, rather than through the air.

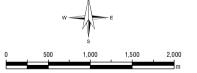
Typical sources of ground-borne or structure-borne noise include tunnelling works, underground railways, excavation plant (eg rockbreakers), and building services plant (eg fans, compressors and generators).

The following figure presents an example of the various paths by which vibration and ground-borne noise may be transmitted between a source and receiver for construction activities occurring within a tunnel.

The term 'regenerated noise' is also used in other instances where energy is converted to noise away from the primary source. One example would be a fan blowing air through a discharge grill. The fan is the energy source and primary noise source. Additional noise may be created by the aerodynamic effect of the discharge grill in the airstream. This secondary noise is referred to as regenerated noise.

APPENDIX B

Noise Monitoring Locations



Project No .:	630.01053.01200
Date:	11/01/2018
Drawn by:	NT
Scale:	1:45,000
Sheet Size:	A4
Projection:	GDA 1994 MGA Zone 56

LEGEND

Noise Monitoring Locations

Donaldson Coal

Noise Monitoring

Noise Monitoring Locations

APPENDIX B

Calibration Certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 25532 & FILT 5408

Equipment Description: Sound Level Meter

Manufacturer:	B&K			
Model No:	2270	Serial No:	2679354	
Microphone Type:	4189	Serial No:	2695417	
Preamplifier Type:	ZC0032	Serial No:	12254	
Filter Type:	1/3 Octave	Serial No:	2679354	
Comments:	All tests passed for class 1. (See over for details)			
Owner:	SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Co <mark>ve, NSW 2066</mark>			
Ambient Pressure:	998 hPa ±1.5 hPa			

Temperature:23°C ±2° C Relative Humidity: 26% ±5%

Date of Calibration: 09/09/2019 **Issue Date:** 09/09/2019 **Acu-Vib Test Procedure:** AVP10 (SLM) & AVP06 (Filters)

CHECKED BY: 1

Authorised Signature:

Jack Z

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Acoustic and Vibration Measurements Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 25532 & FILT 5408

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 09/09/2019 Issue Date: 09/09/2019 Checked by: 1:43

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web sile: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT10

CERTIFICATE NO: 25534

EQUIPMENT TESTED:	1/2" Microphone	
Manufacturer: Type No: Owner:	B & K 4197 Serial No: 3077697 (Part SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066	2)
Tests Performed:	Acoustic Microphone Frequency Response with Inverse A Weighting	

CONDITION OF TEST:

Ambient Pressure:997hPa ±1.5 hPaRelative Humidity: 24% ±5%Temperature:23°C ±2° CDate of Calibration:09/09/2019Issue Date09/09/2019Acu-Vib Test Procedure:AVP05 (Microphone Acoustic Frequency Response).

CHECKED BY: 18 AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

> Page 1 of 2 Calibration Certificate AVCERT01 Rev.1.2 05.02.18

Acoustic Tests, Microphone response

Job No:	13678		Test No: 255334	
Microphone ty	ype: B&K 4197	7	Serial No,: 3077697 (Part 2)	
Preamplifier t	ype: 2683		Serial No. : 2792513	
SLM body (if	appropriate):	SVAN 912 AE	Serial No: 4396	
Ambient Temperature: 23C ±2° C, Relative Humidity: 997 RH ±5% RH,				

Ambient Pressure: 24 hPa ±1.5 hPa

				TIOC	
Frequency	Deviation	Type 2 Tol.	Type 1 Tol.	U95	P/F
Hz	re 1 kHz			dB	
31.5 Hz	0.11dB	± 3.0 dB	± 1.5 dB dB	0.12	Р
63 Hz	-0.01dB	± 2.0 dB	± 1.5 dB dB	0.10	Р
05112	-0.010D	± 2.0 UD		0.10	1
				0.00	
125 Hz	-0.08dB	\pm 1.5 dB	\pm 1.0 dB dB	0.09	Р
250 Hz	-0.15dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
500 Hz	-0.14dB	± 1.5 dB	± 1.0 dB dB	0.09	P
300 HZ	-0.14ub	± 1.5 dB		0.09	Г
1 kHz Ref	0.00dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
2 kHz	0.05dB	± 2.0 dB	± 1.0 dB dB	0.07	P
	0100				_
4 1.11	0.25 JD			0.13	Р
4 kHz	-0.25dB	± 3.0 dB	\pm 1.0 dB dB	0.13	P
8 kHz	-0.21dB	± 5.0 dB	+1.5;-3.0 dB	0.13	Р
12.5 kHz	-0.10dB	$+5.0; -\infty dB$	+3.0;-6.0 dB	0.19	Р
	0110uD	,		0.19	•
164.11	0 (1 10	αt		0.20	
16 kHz	0.61dB	+ 5.0; - ∞ dB	+ 3.0; - ∞ dB	0.30	Р

Tolerances from AS1259-1990 part 1, (IEC 60651).

Notes:

Signed (Testing Officer)

Checked by:

Acoustic test WS 1 results

Issue date: 26th September 2017

Date:09/09/2019

Date:09/09/2019

CERTIFICATE NO: 25533

EQUIPMENT TESTED:	1/2" Microphone
Manufacturer: Type No: Owner:	B & K 4197 Serial No: 3077697 (Part 1) SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066
Tests Performed:	Acoustic Microphone Frequency Response with Inverse A Weighting

CONDITION OF TEST:

Ambient Pressure:997hPa ±1.5 hPaRelative Humidity: 24% ±5%Temperature:23°C ±2° CDate of Calibration:09/09/2019Issue Date09/09/2019Acu-Vib Test Procedure:AVP05 (Microphone Acoustic Frequency
Response)Image: Calibratic Cali

CHECKED BY: 183 AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

> Page 1 of 2 Calibration Certificate AVCERT01 Rev.1.2 05.02.18

Acoustic Tests, Microphone response

Job No:13678Test No: 25533Microphone type:B&K 4197Serial No,: 3077697 (Part 1)Preamplifier type:2683Serial No. : 2792513SLM body (if appropriate):SVAN 912 AESerial No: 4396Ambient Temperature:23C $\pm 2^{\circ}$ C, Relative Humidity:997 RH $\pm 5\%$ RH,

Ambient Pressure: 24 hPa ±1.5 hPa

Frequency	Deviation	Type 2 Tol.	Type 1 Tol.	U95	P/F
Hz	re 1 kHz	1990 2 101.		dB	1/1
31.5 Hz	0.11dB	± 3.0 dB	± 1.5 dB dB	0.12	Р
63 Hz	-0.11dB	± 2.0 dB	± 1.5 dB dB	0.10	Р
125 Hz	-0.18dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
250 Hz	-0.25dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
500 Hz	-0.24dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
1 kHz Ref	0.00dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
2 kHz	0.05dB	± 2.0 dB	± 1.0 dB dB	0.07	Р
4 kHz	-0.25dB	± 3.0 dB	+ 1.0 dB dB	0.13	Р
8 kHz	-0.31dB	± 5.0 dB	+1.5;-3.0 dB	0.13	Р
12.5 kHz	-0.20dB	+ 5.0; - ∞ dB	+3.0;-6.0 dB	0.19	Р
16 kHz	0.51dB	+ 5.0; - ∞ dB	+ 3.0; - ∞ dB	0.30	Р

Tolerances from AS1259-1990 part 1, (IEC 60651).

Notes:

Signed (Testing Officer)

Checked by:

Acoustic test WS 1 results

Issue date: 26th September 2017

Date:09/09/2019

Date:09/09/2019

Certificate Of Calibration

CERTIFICATE NO.: SLM 23293 & FILT 4792

Equipment Description: Sound & Vibration Analyser

Manufacturer:	B&K		
Model No:	2250	Serial No:	3003389
Microphone Type:	4950	Serial No:	2913816
Preamplifier Type:	ZC0032	Serial No:	20519
Filter Type:	1/3 Octave	Serial No:	3003389
Comments:	All tests pass	ed for class 1	l.
	(See over for	details)	
Owner:	SLR Consulti	ng Australia I	Pty Ltd
	Level 2, 2 Lin	coln Street	
	Lane Cove, N	ISW 2066	
Ambient Pressure:	990 hPa ±1	.5 hPa	
Temperature:	25 °C ±2°	C Relative H	ımidity: 29% ±5%
Date of Calibration: Acu-Vib Test Procedure	06/08/2018 e: AVP10 (SLM	Issue Dat 1) & AVP06 (1	

CHECKED BY:

AUTHORISED SIGNATURE:

Jack 7

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards,

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 23293 & FILT 4792

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	1 7	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 06/08/2018 Issue Date: 07/08/2018

Checked by:

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT10

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 42109

Equipment Description: Noise Logger

Manufacturer:	ARL		
Model No:	EL-316	Serial No:	16-207-050
Microphone Type:	UC-53A	Serial No:	318219
Preamplifier Type:	NA	Serial No:	NA
Comments:	All tests pass (See over for	51	
Owner:	SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066		
Ambient Pressure:	1019 hPa±′	1.5 hPa	
Temperature:	23 °C ±2°	C Relative H	umidity: 53 % ±5%
Date of Calibration: Acu-Vib Test Procedu CHECKED BY:	27/06/2019 •e: AVP05 (SLM Authorised (,	e: 27/06/2019

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

 HEAD OFFICE

 Unit 14, 22 Hudson Ave.
 Castle Hill NSW 2154

 Tel: (02) 96808133
 Fax: (02)96808233

 Mobile: 0413 809806
 web site: www.acu-vib.com.au

Page 1 of 2 AVCERT05b Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 42109

The performance characteristics listed below were tested. The tests are based on the relevant clauses of A.S. 1259.1 and A.S. 1259.2 - 1990

1.	RMS Performance	clause 10.4.5
2.	Time Weighting Response, F&S	clause 10.4.2
3.	Time Weighting I	clause 10.4.3 NA
4.	Time Weighting P	clause 10.4.4 NA
5.	Input Attenuator Accuracy	clause 10,3,3
6,	Detector & Differential Linearity	clause 10.4.1
7.	Weighting Networks & Linearity	clause 10.2.3
8.	Overload Indication	clause 10.3.2
9.	AC Output & Weighted Noise Level	clause 11. (c). (ii) 10.3.4
10	. Time Averaging	clause 9.3.2
11	. Absolute Sensitivity	clause 10.2.2

Note: Absolute Sensitivity as found was 95.8 dB and adjusted to 94.0 dB Uncertainty: ±0.13dB (at 95% c.l.) k=2

Date of Calibration: 27/06/2019 Issue Date: 27/06/2019 Checked by:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to

Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Tel: (02) 96808133 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT05b

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 42108

Equipment Description: Noise Logger

Manufacturer:	ARL		
Model No:	EL-316	Serial No:	16-207-044
Microphone Type:	UC-53A	Serial No:	321979
Preamplifier Type:	NA	Serial No:	NA
Comments:	All tests pass (See over for	51	
Owner:	SLR Consult Level 2, 2 Lir Lane Cove, I	ncoln Street	Pty Ltd
Ambient Pressure:	1019 hPa±	1.5 hPa	
Temperature:	23 °C ±2°	C Relative H	umidity: 53 % ±5%
Date of Calibration: Acu-Vib Test Procedur CHECKED BY:	27/06/2019 e: AVP05 (SLM Authorised	-	te: 27/06/2019

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

> Page 1 of 2 AVCERT05b Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 42108

The performance characteristics listed below were tested. The tests are based on the relevant clauses of A.S. 1259.1 and A.S. 1259.2 - 1990

1.	RMS Performance	clause 10.4.5
2.	Time Weighting Response, F&S	clause 10.4.2
3.	Time Weighting I	clause 10.4.3 NA
4.	Time Weighting P	clause 10.4.4 NA
5.	Input Attenuator Accuracy	clause 10.3.3
6.	Detector & Differential Linearity	clause 10.4.1
7.	Weighting Networks & Linearity	clause 10.2.3
8.	Overload Indication	clause 10.3.2
9.	AC Output & Weighted Noise Level	clause 11. (c). (ii) 10.3.4
10	. Time Averaging	clause 9.3.2
11	. Absolute Sensitivity	clause 10.2.2
5. 6. 7. 8. 9. 10	Input Attenuator Accuracy Detector & Differential Linearity Weighting Networks & Linearity Overload Indication AC Output & Weighted Noise Level Time Averaging	clause 10.3.3 clause 10.4.1 clause 10.2.3 clause 10.3.2 clause 11. (c). (ii) 10.3.4 clause 9.3.2

Note: Absolute Sensitivity as found was 88.1 dB and adjusted to 94.0 dB Uncertainty: ± 0.13 dB (at 95% c.l.) k=2

Date of Calibration: 27/06/2019 Checked by:

Issue Date: 27/06/2019

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT05b

Let 7 Building 2 For Mills Rd For Hills N W AU TRALIA A.B.N 3 9 WWW.ac 10

Calibrat on Certificat-

Calibration Number C18514

C'llent De al	SLE i madring 1986 - 2, 2 Guota De Kastropé 19 - Marco III 12
upment lete inde	ALLEINS
Instroment Serial Number :	16 207 3
Microphone hered Sunder	3170***
Pr	124,1
n nie pt	erie Contlan II-
Amblent Temperature :	21.740
Relative Humidity :	\$3 8
Barometele Pressure ;	հար ծն <u>ի</u> լու
Californian Tanta Inner Lucks Inc.	Kannandaran Kanadar yang sang sang

Calibration for a non-s Lucky Liev		Report Issue Date : 1-1 Jun 201	
Approved Si	gnatory :	ala - s	son Williams
finnereristie Fester	756	Cla má Chai te-tic f-d	Result
In the formations	1.00	should be a none etc.	
har list a visiting	Poss	112-1.2. Fina weighting chores retraine F and S	Pres

10 1 I No A ighting	Prove	1194.2. Fing weighting choose terians F and S	$P_{i=2}$
10.5 · · · · · · · · · · · · · · · · · · ·	Post	10.4.3 firm we dine care wristed	Par
hus han a di lesel a 👘 empol	H	NULLS R.M. ip plomi n	$Pr \rightarrow$
8.9 D. cetter-inductor function	Pass	9.3.7. How miny	Peran
8.10; Differential fasel functify	Preca	A 3.5 (Doc - Diath action	£

		(11) 000 00 M.	
42 6 1		Fuying the human	
. 3 11 4 × 140	# 3 - 14	$f' = i_{f}$ $r_{1i_{f}}$	1.00
1 skitz	. Jarla	R ore, Hamale	1.1.10
trikit	19 119 10	Recomment Provident	, 14 H 6
the most to the			
11511-11. 11	0.12.14		

All monthumber and decidence in the Complexity of Stanley and Print of 2

the cound I to a number of the constraint on an transformer I want on the second state of the second state

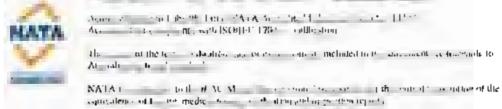
	for exploration of a labor strength of with the all of the off
ATA	Assume Revenue for Phylicity (SYX According for the construction of the formation According to the SYX Construction and the formation of the system of the
V .	The sensitive the set of difference of the profilent terms in the second set are been a Marken in the second state of
	SATA structure difference on internet of all provided other engineering of the second operation of the second

Parie I

Public Puilding : 473 Pane at H and Public Pills NSW AUTRATIA Ph: +63 most martial www.accountierassanch.com.mr

Level Meter As remained the and 20th Damage

Calibrat on Certificat-


Calibration Namber Classifi

	ent D	514	C to constitu		
			is i non-tille Aver		
			Wilharti Yrc 11??		
		1003			
ga ment l'	19 ¹¹ - 1010 ¹ - 1	. NR	1 12 310		
Instrum	ient Sirial Umber	. 16-	(0,3 - 30b)		
Miccopiy	one Secial Number	1 312	1.50		
	fice Serial Number		0.2		
	i nuga	pneme	C pushrious		
Am	blent fontporations	a 11	5 C		
	Relative Humbling	: 42	Ph .		
13	arometric Pressore		Ikea		
Calibration Technician ;	Lingt - In was		St one u. Check:	i wie ii armun	1
	11 bus 2019		Report I a Date	14 har 18	
Childrantin opte :	1.1.7013 71		section of the same	1.1.1.016 1.05	
4	pluosed Signatory	• B	Column .		Cen Williams
and bar er fr	untral I	.ent l	Ciar e ana , haract	h eð	ulu
10.7 ' Al-plans physitical		L'ann	the second se	1 1 1	110
10.1 F menes W little		Page	Mali fings d - ed	aracle to F and S	
ft.2.2. Overload infocations		14.0	10.4 × Time: weighting ch	n e de C	Parts
D.3 & Accur - flexel tanen se	intend	Cass	12 R M. perkenning	¢ .	Pres
C De storsind near tinearity		Post	9 1 1 00		Press
10: Dif atal (1 linearity		Pass	2.2 Ov dintication		Pros
	L.11.	tone - 0	al st		
NG0 - 10		Lanse	n with's		
1 . 11 kll- (11.1 s.d.					
1 - 7					
A P IN A			Provincitity ("technich	• () (r) • •	
 A the second pro- center of the	<i>b</i>				
All MALLA	landles an distort in the	No. of	an terdankar fi	car of 2	
the mount le ' 21 other tee has			Trephicolent for the	948 W 5 - 27 - 0 - 1	841, 214998
		1 2 2 1 12 1			

Anna a chickene ben "ArA to the 11" of the

to the term of a alignment of the control methoded to the according to the standards to

Accession in the second score is a collection of the score is a second score in the score in

41:-

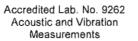
At tale to the tale

PAGPARALE

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 25138 & FILT 5298

Equipment Description: Sound & Vibration Analyser


Manufacturer:	Svantek			
Model No:	Svan-957	Serial No:	20665	
Microphone Type:	7052E	Serial No:	50614	
Preamplifier Type:	SV12L	Serial No:	18987	
Filter Type:	1/1 Octave	Serial No:	20665	
Comments:	All tests pass	ed for class 1		
	(See over for	details)		
Owner:	SLR Consulting Australia Pty Ltd			
	Level 2, 2 Lin	coln Street		
	Lane Cove, N	ISW 2066		
Ambient Pressure:	999 hPa ±1	I.5 hPa		
Temperature:	25 °C ±2°	C Relative H	amidity: 32% ±5%	
Date of Calibration: Acu-Vib Test Procedure	12/07/2019 e: AVP10 (SLN	Issue Dat (I) & AVP06 (I		

CHECKED BY: MB AUTHORISED SIGNATURE:

Jack Kie

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

ELECTRONICS HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806

web site: www.acu-vib.com.au Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 25138 & FILT 5298

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Pass
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 12/07/2019 Checked by: 1/KB

9 Issue Date:

15/07/2019

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

Page 2 of 2 End of Calibration Certificate AVCERT10

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 25127 & FILT 5297

Equipment Description: Sound & Vibration Analyser

Manufacturer:	Svantek		
Model No:	Svan-957	Serial No:	21423
Microphone Type:	7052H	Serial No:	74013
Preamplifier Type:	SV12L	Serial No:	22284
Filter Type:	1/3 Octave	Serial No:	21423
Comments:	All tests passed for class 1. (See over for details)		
Owner:	SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066		
Ambient Pressure:	996 hPa ±1	.5 hPa	
Temperature:	24 °C ±2°	C Relative H	1 midity: 32% ±5%
Date of Calibration: Acu-Vib Test Procedur	11/07/2019 e: AVP10 (SLN	Issue Date (1) & AVP06 (1	e: 11/07/2019 -ilters)

CHECKED BY:

AUTHORISED SIGNATURE:

Jack Ko

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

> Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 25127 & FILT 5297

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	Pass
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

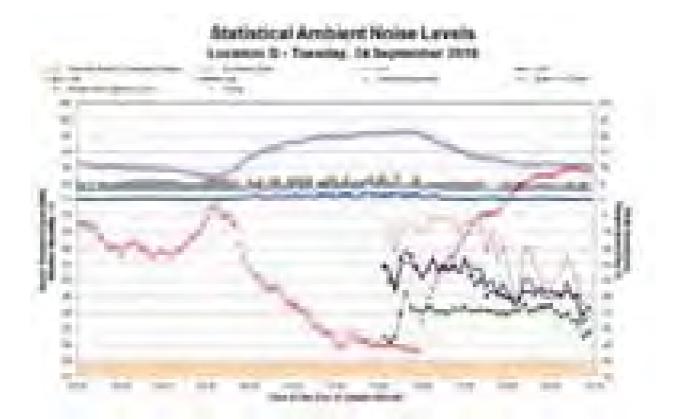
1. Relative attenuation

clause 5.3

Date of Calibration: 11/07/2019 Issue Date: 11/07/2019 Checked by:

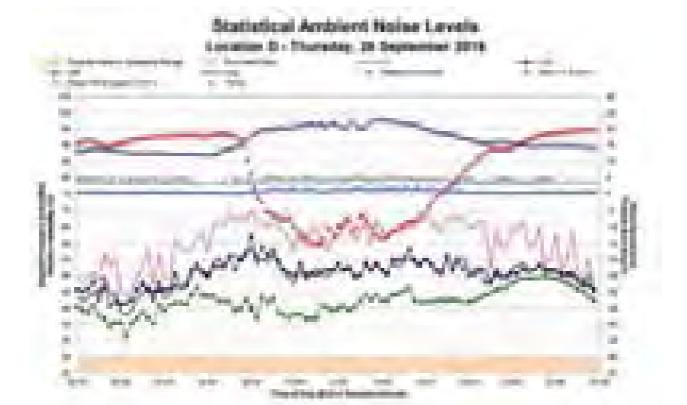
Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

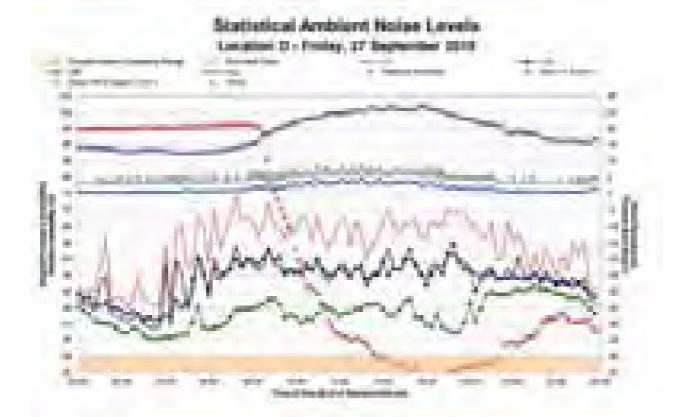
Accredited Lab. No. 9262 Acoustic and Vibration Measurements

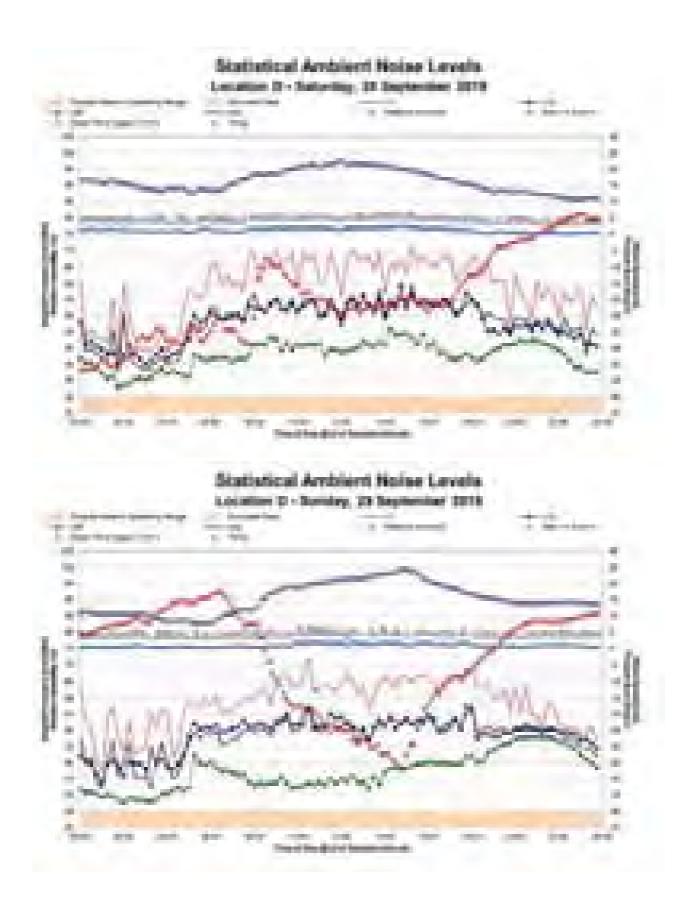

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

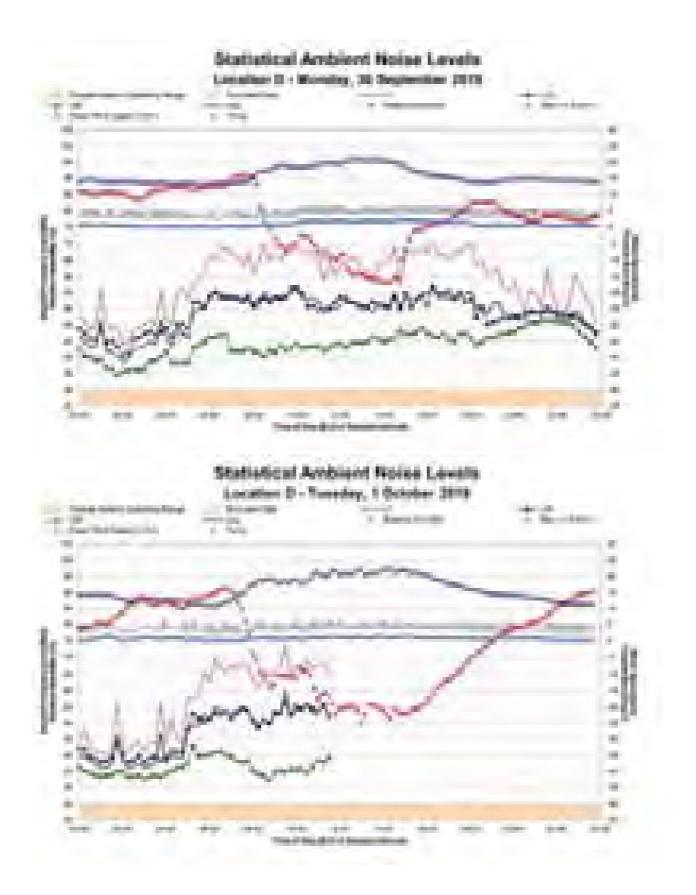
Page 2 of 2 End of Calibration Certificate AVCERT10

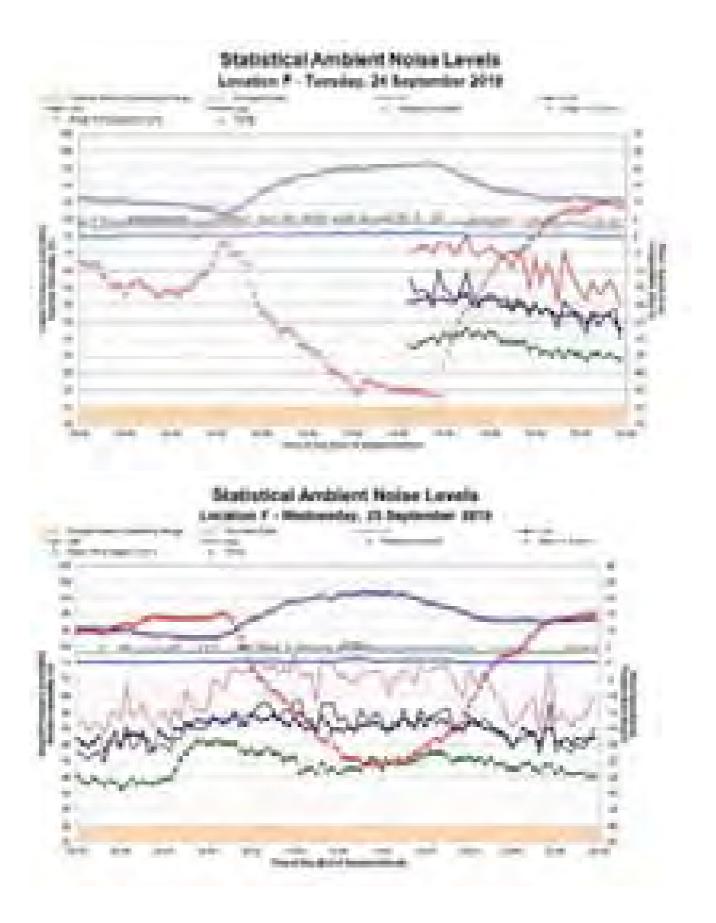
APPENDIX D

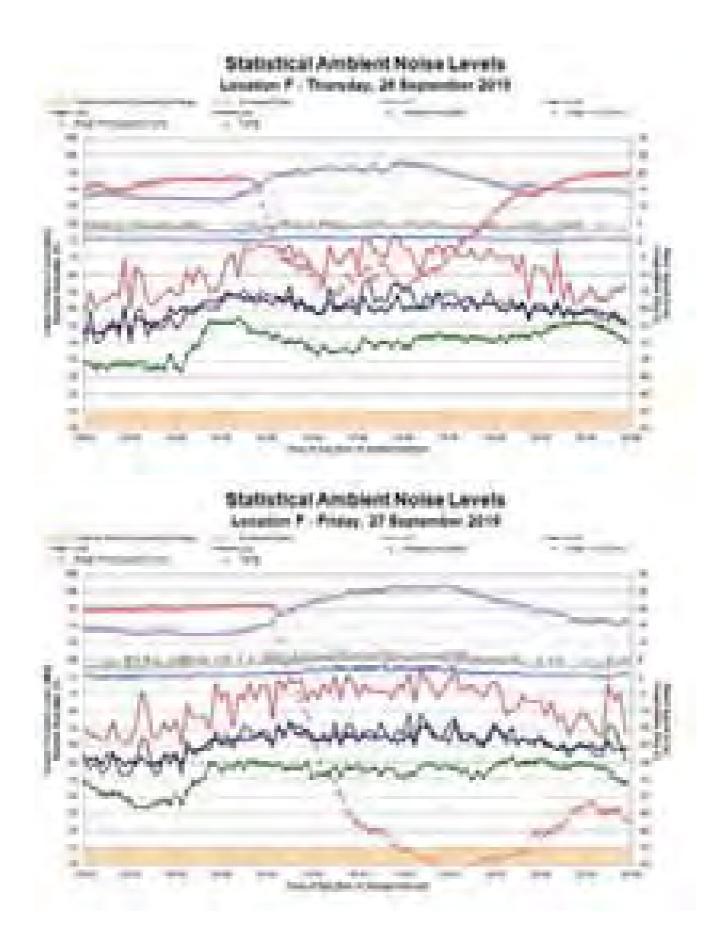

Statistical Ambient Noise Levels

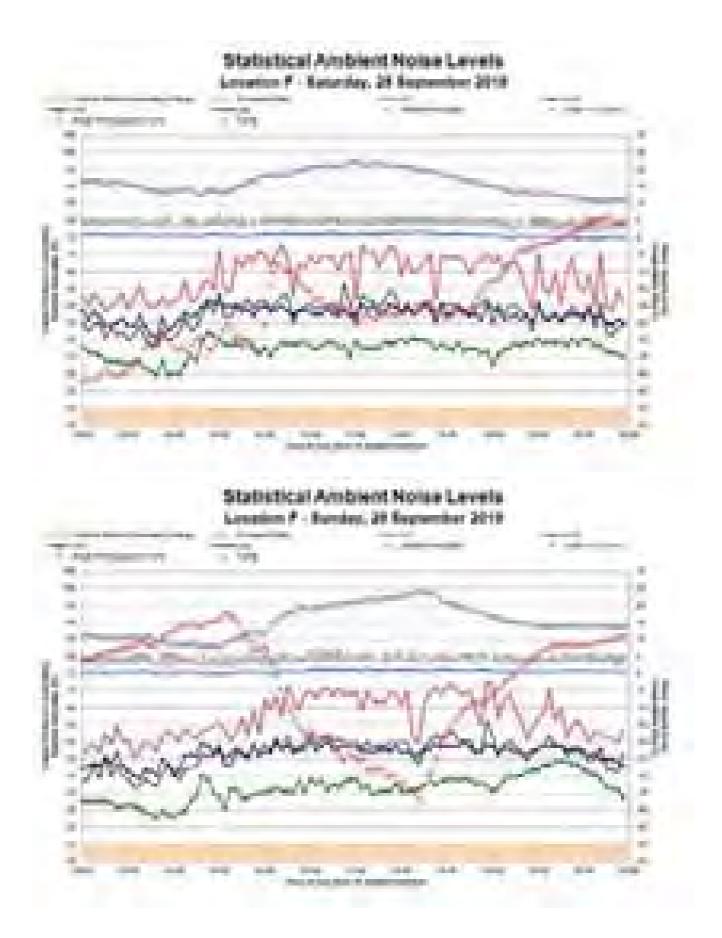


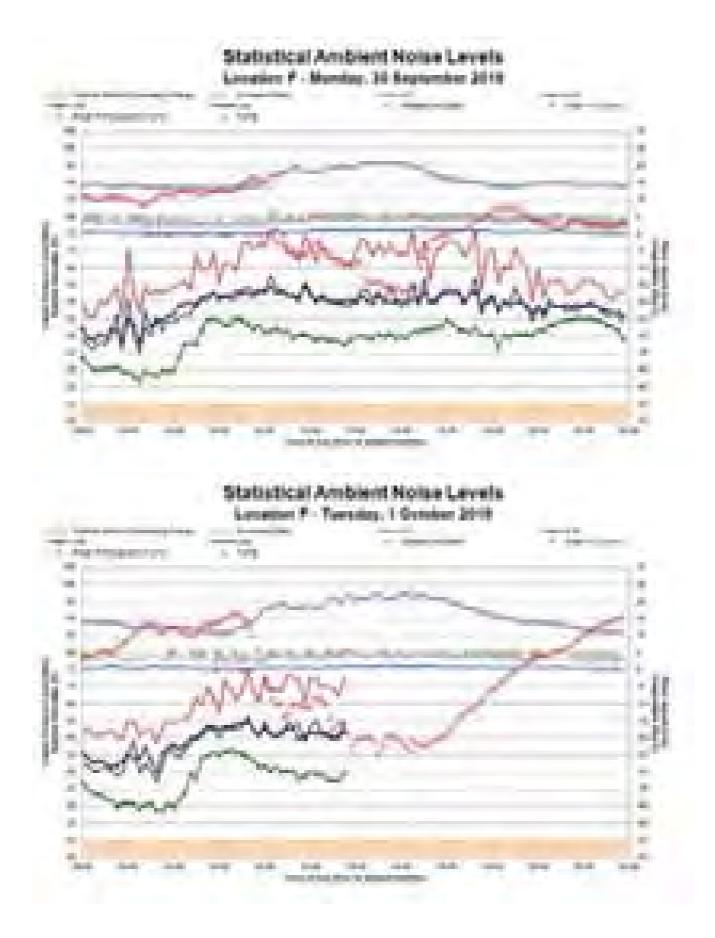


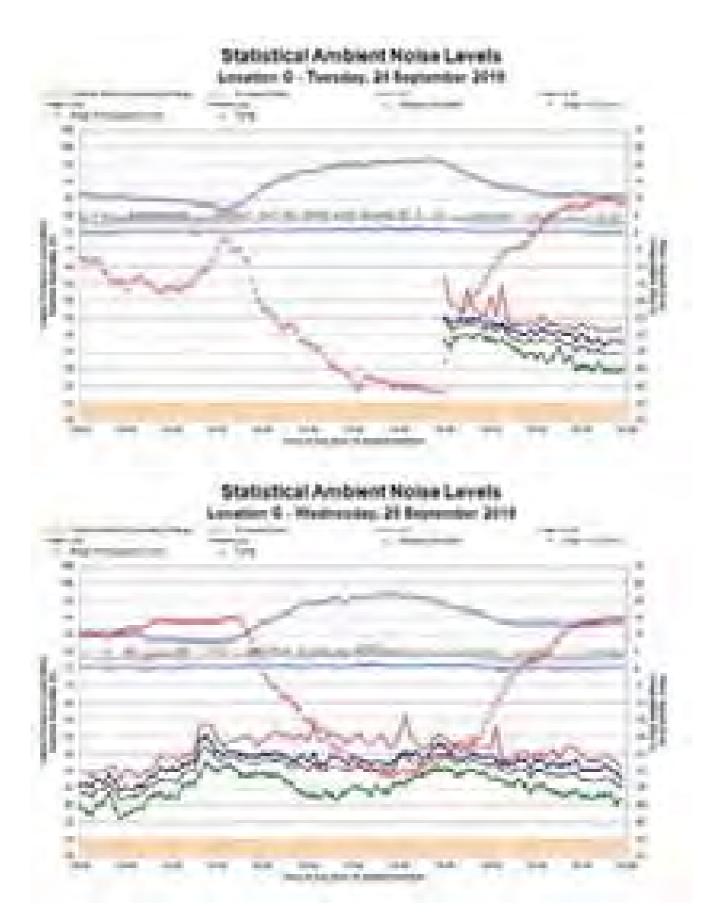


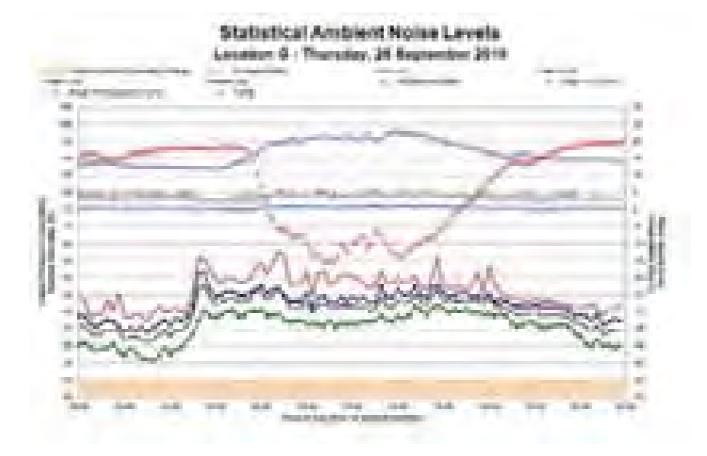


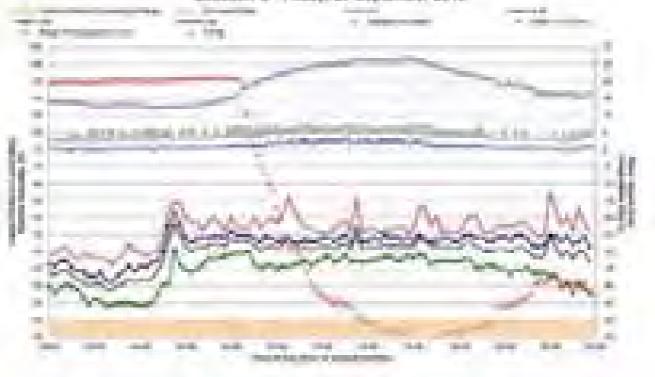


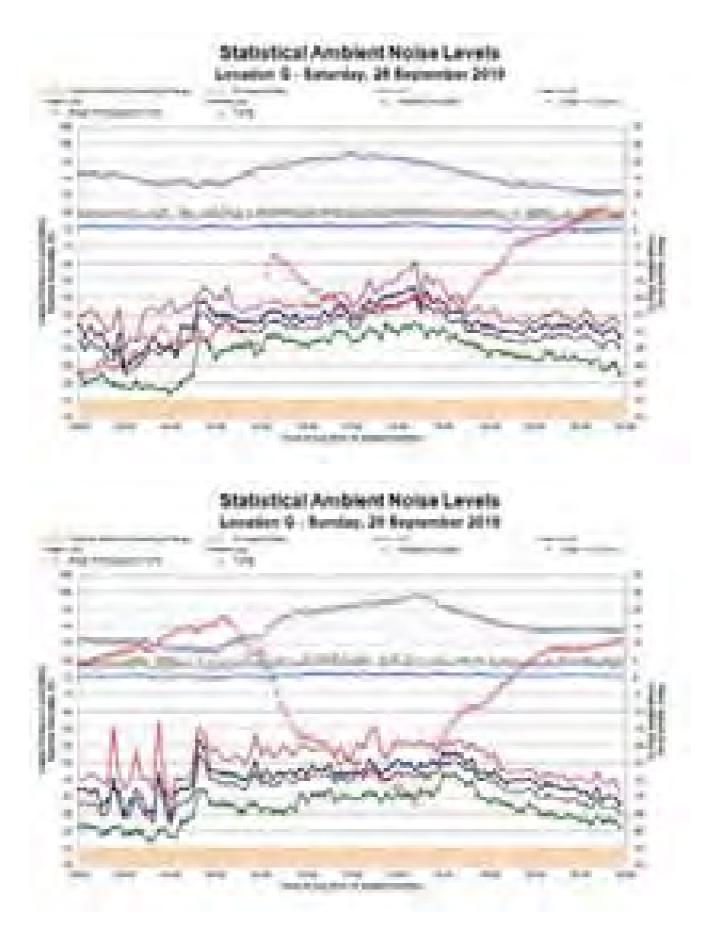

SLR[®]

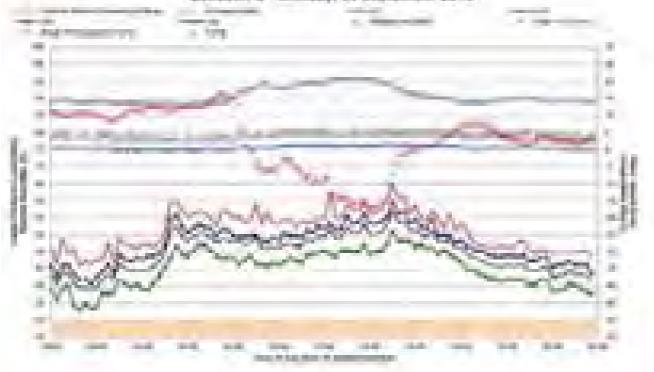


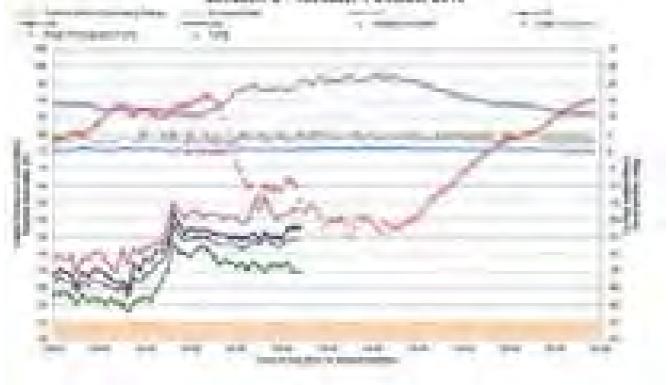


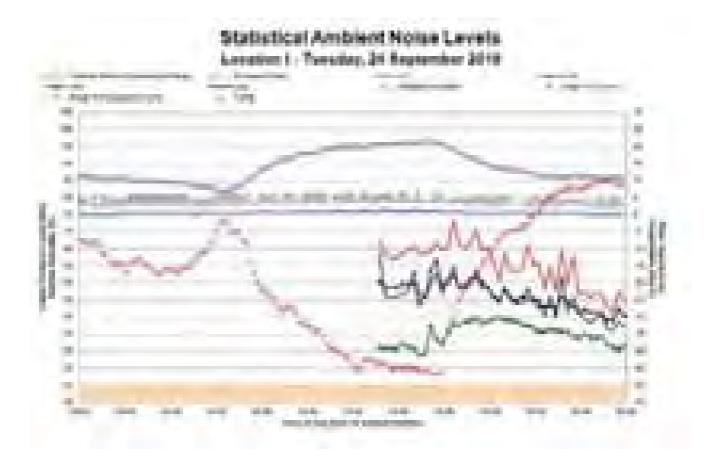




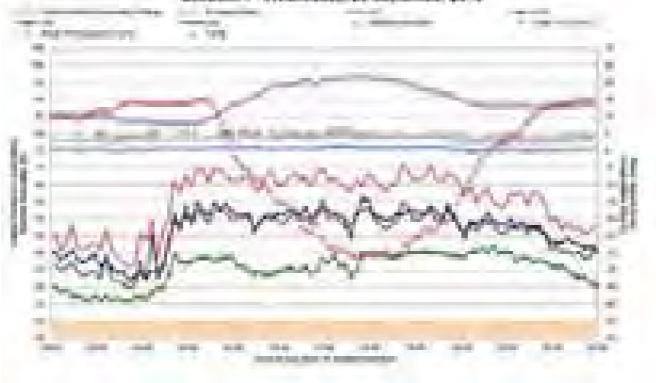


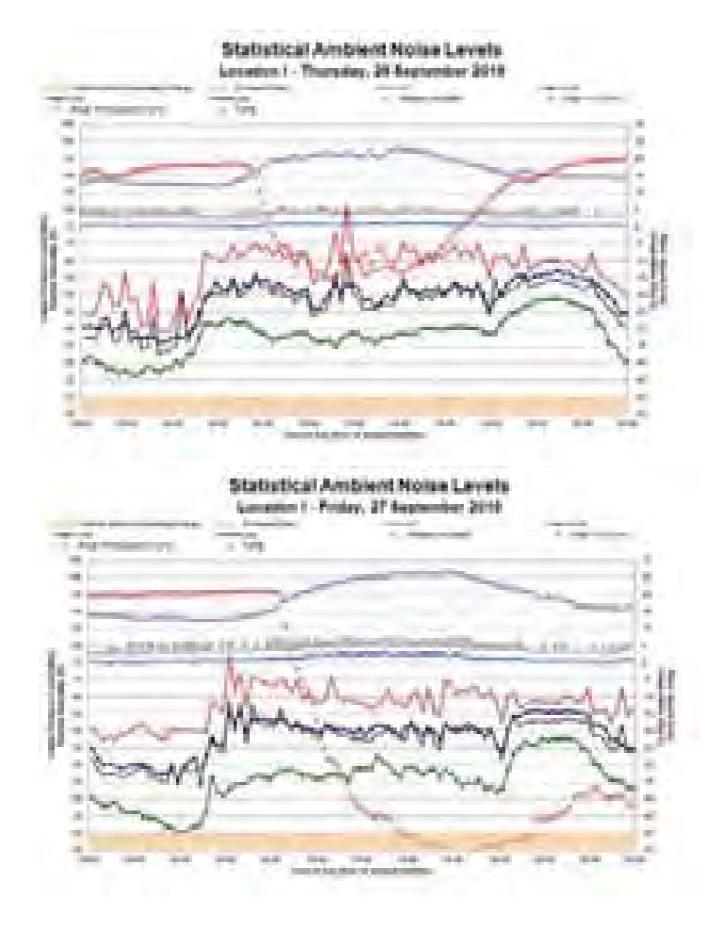


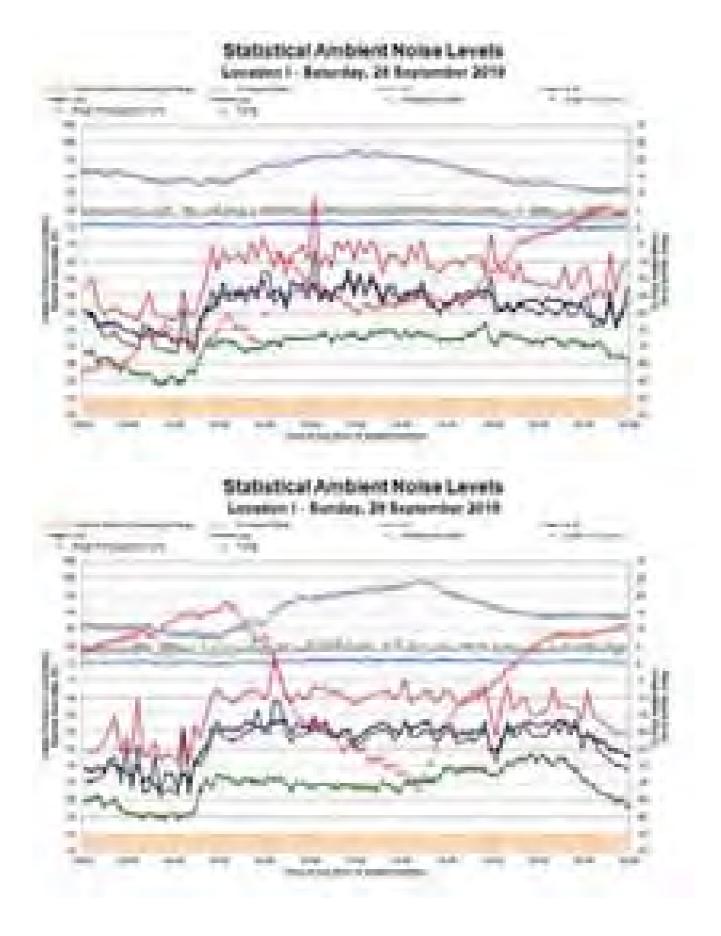


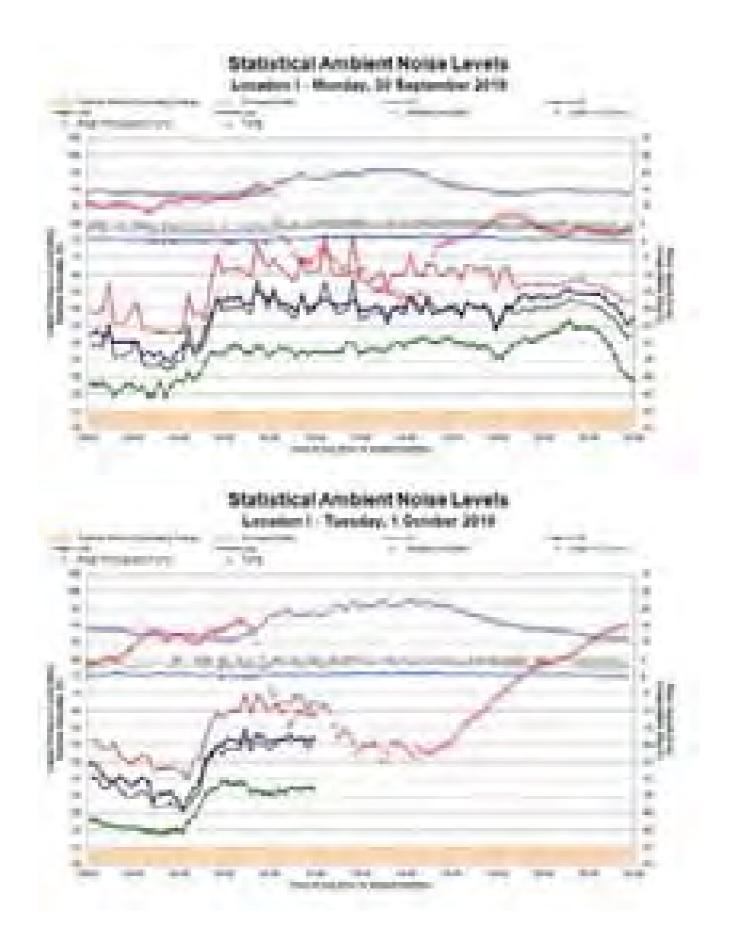


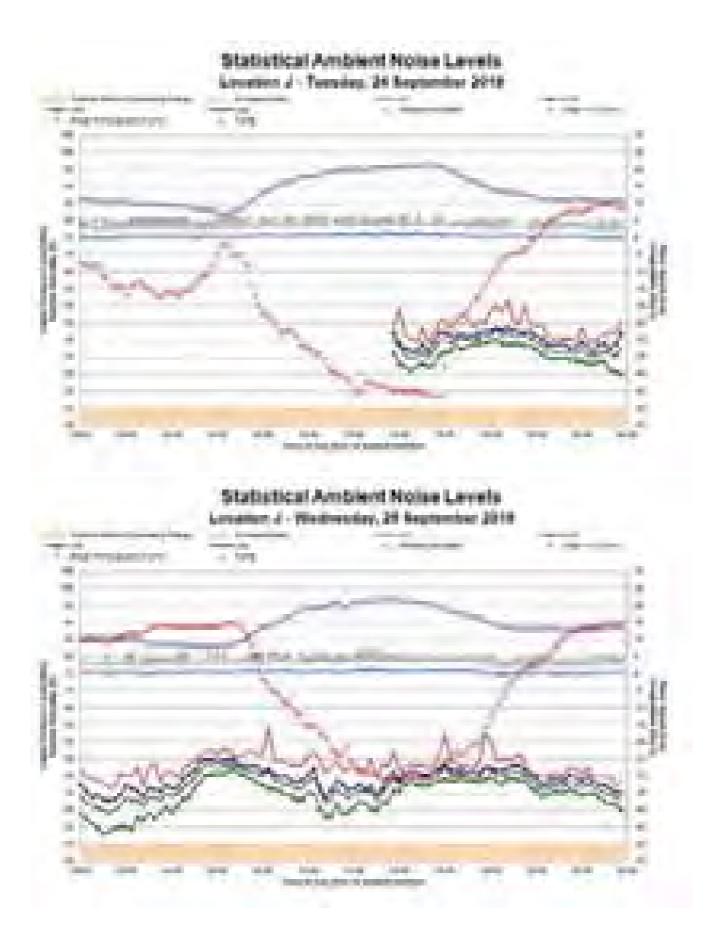
Statistical Ambient Noise Levels Location 6 Member, 30 Registrator 2018

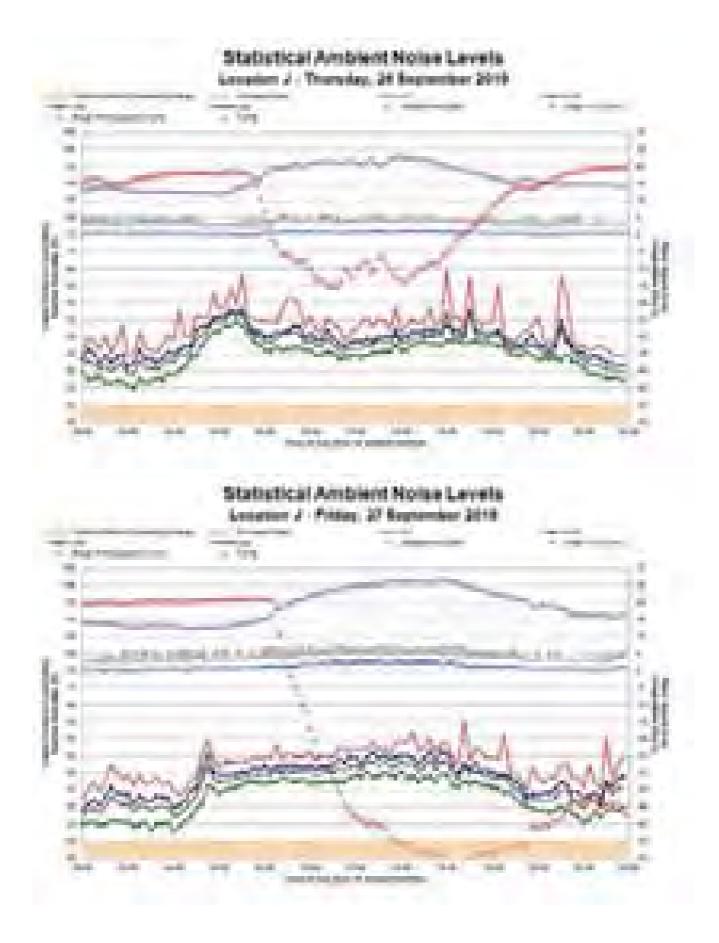


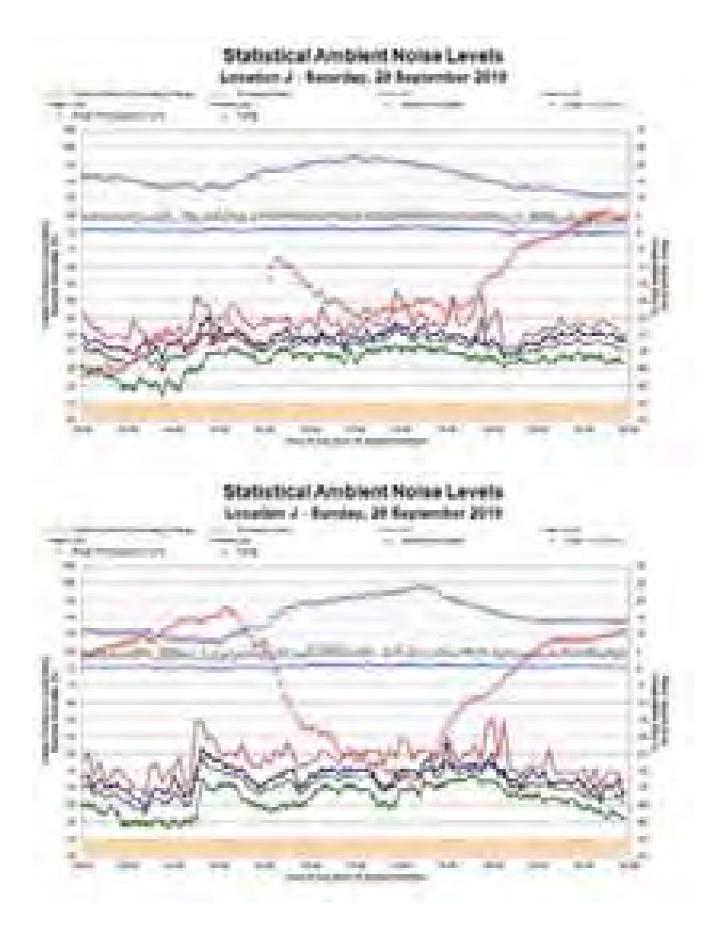

Statistical Ambient Noise Levels Levels 1 Contex 2019

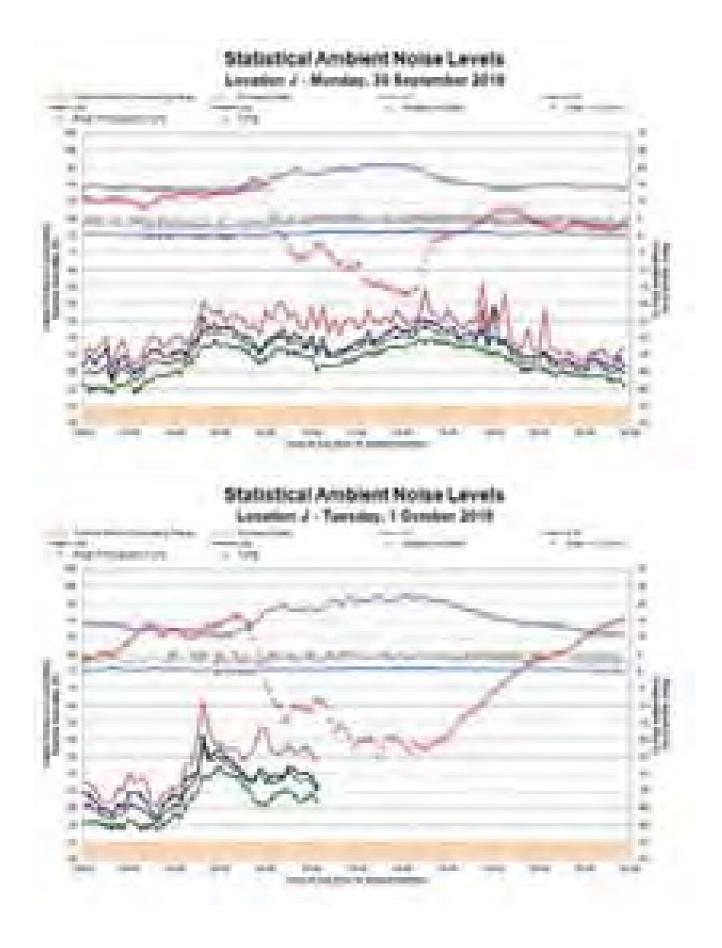


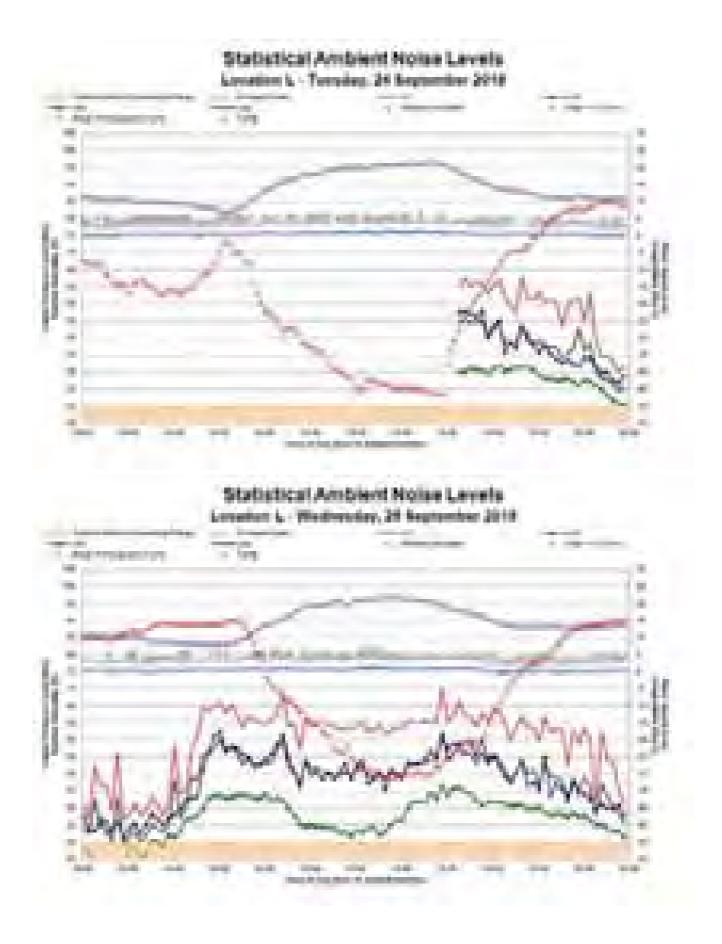


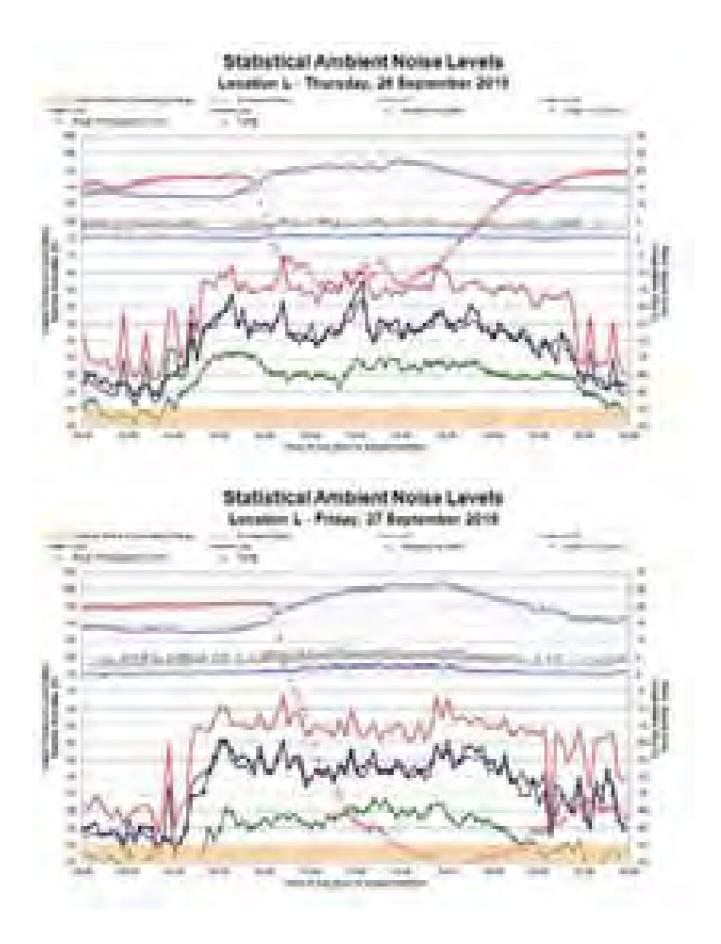

Statistical Ambient Noise Levels Laterim 1 - Protection, 21 Secondary 2010

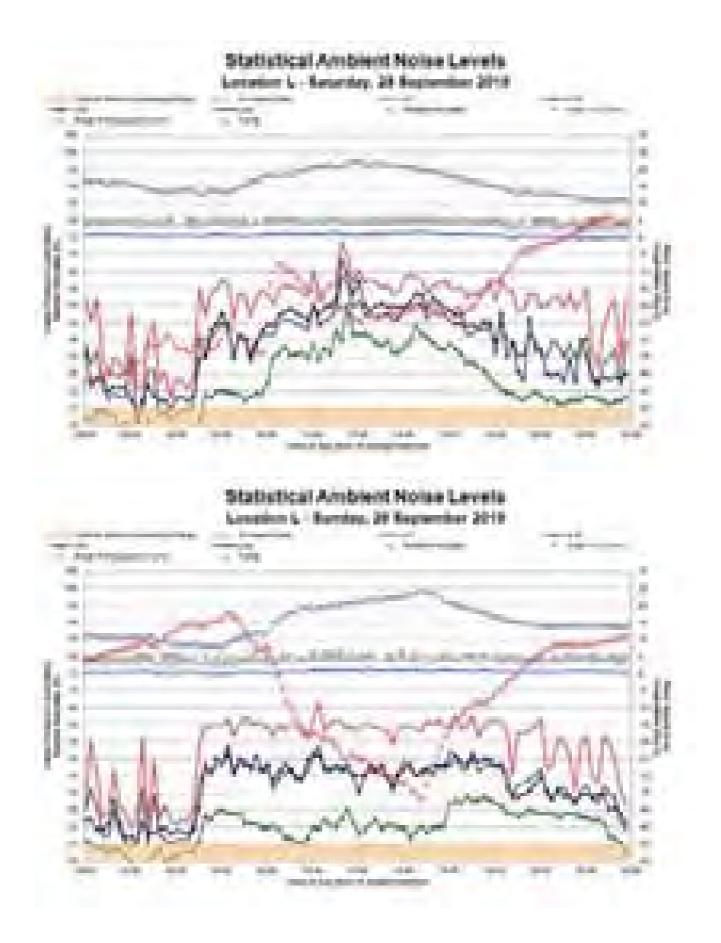












8

-

-

ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

МАСКАУ

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

ROCKHAMPTON

rockhampton@slrconsulting.com M: +61 407 810 417

AUCKLAND

68 Beach Road Auckland 1010 New Zealand T: +64 27 441 7849

CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

2 Lincoln Street Lane Cove NSW 2066 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

DARWIN

5 Foelsche Street Darwin NT 0800 Australia T: +61 8 8998 0100 F: +61 2 9427 8200

NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

TAMWORTH

PO Box 11034 Tamworth NSW 2340 Australia M: +61 408 474 248 F: +61 2 9427 8200

NEW PLYMOUTH

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand T: +64 0800 757 695

GOLD COAST

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001

DONALDSON AND ABEL COAL MINES

Quarterly Noise Monitoring Quarter Ending December 2019

> Prepared for: Donaldson Coal Pty Ltd PO Box 675 Green Hills 2320

SLR Ref: Q75 630.01053-R01 Version No: -v1.0 February 2020

SLR

PREPARED BY

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 10 Kings Road New Lambton NSW 2305 Australia (PO Box 447 New Lambton NSW 2305 Australia) T: +61 2 4037 3200 E: newcastleau@slrconsulting.com www.slrconsulting.com

BASIS OF REPORT

This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with Donaldson Coal Pty Ltd (the Client). Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of the Client. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
Q75 630.01053-R01-v1.0	24 February 2020	Martin Davenport	Jordan Murray	Martin Davenport

CONTENTS

1	INTRODUCTION	5
1.1	Background	5
1.2	Objectives of this Report	5
1.3	Acoustic Terminology	5
2	DEVELOPMENT CONSENT PROJECT APPROVAL	5
2.1	Donaldson Coal Mine Development Consent Conditions	6
2.2	Abel Coal Mine – Project Approval	7
3	NOISE MONITORING METHODOLOGY	13
3.1	General Requirements	13
3.2	Monitoring Locations	13
3.3	Unattended Continuous Noise Monitoring	14
3.4	Operator Attended Noise Monitoring	14
4	OPERATOR ATTENDED NOISE MONITORING	14
4.1	Results of Operator Attended Noise Monitoring	14
4.2	Operator Attended Noise Monitoring Summary	20
4.2.1	Donaldson Mine	20
4.2.2	Abel Coal Mine	20
4.3	Compliance Assessment and Discussion of Results	20
4.3.1	Operations	20
4.3.2	Sleep Disturbance	21
5	UNATTENDED CONTINUOUS NOISE MONITORING	22
5.1	Results of Unattended Continuous Noise Monitoring	22
5.2	Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine	
5.2.1	Ambient LA90 Noise Levels	
5.2.1.1	Baseline	
5.2.1.2	Previous Quarter	
5.2.1.3	Coinciding Period Last Year	29
5.2.2	Ambient LA10 Noise Comparison	29
5.2.2.1	Baseline	32
5.2.2.2	Previous Quarter	34
5.2.2.3	Coinciding Period Last Year	35
5.3	Rail Noise Monitoring	35

CONTENTS

5	CONCLUSION	35

DOCUMENT REFERENCES

TABLES

Table 1	Monitoring Locations	13
Table 2	Location D, Black Hill Public School, Black Hill	15
Table 3	Location F, Lot 684 Black Hill Road, Black Hill	16
Table 4	Location G, Buchanan Road, Buchanan	17
Table 5	Location I, Magnetic Drive, Ashtonfield	18
Table 6	Location J, Parish Drive, Thornton	
1	Table 7 Location L, 65 Tipperary Dr, Ashtonfield	20
Table 8	Compliance Noise Assessment – Operations	21
Table 9	Compliance Noise Assessment – Sleep Disturbance	
Table 10	Noise Logger and Noise Monitoring Locations	22
Table 11	Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)	23
Table 12	LA90 Results Comparison – Baseline	27
Table 13	LA90 Results Comparison – Previous Quarter	28
Table 14	LA90 Results Comparison – Coinciding Period Last Year	29
Table 15	LA10 Results Comparison – Baseline	33
Table 16	LA10 Results Comparison – Previous Quarter	34
Table 17	LA10 Result Comparison – Coinciding Period Last Year	35

FIGURES

Figure 1	Long term Daytime LA90 Noise Levels	24
Figure 2	Long term Evening LA90 Noise Levels	25
	Long term Night-time LA90 Noise Levels	
Figure 4	Long term Daytime LA10 Noise Levels	30
Figure 5	Long term Evening LA10 Noise Levels	31
	Long term Night LA10 Noise Levels	

APPENDICES

- Appendix A Acoustic Terminology
- Appendix B Noise Monitoring Locations
- Appendix C Calibration Certificates
- Appendix D Statistical Ambient Noise Levels

1 Introduction

1.1 Background

Donaldson Coal Pty Ltd has commissioned SLR Consulting Australia Pty Ltd (SLR) to conduct quarterly noise monitoring surveys for the Donaldson Coal Mine and Abel Coal Mine during the December 2019 quarter in accordance with the Donaldson Coal Mine and Abel Underground Coal Mine - Noise Management Plan Care and Maintenance (the NMP) dated 3 June 2019.

1.2 Objectives of this Report

The objectives of the noise monitoring survey for this operating quarter were as follows:

- Measure the ambient noise levels at six focus receptor locations (potentially worst affected) surrounding Donaldson Coal Mine and Abel Coal Mine.
- Qualify all sources of noise within each of the attended surveys, including estimated contribution or maximum level of individual noise sources.
- Assess the noise emissions of Donaldson Coal Mine and Abel Coal Mine with respect to the limits contained in the Development Consent.

1.3 Acoustic Terminology

The following report uses specialist acoustic terminology. An explanation of common terms is provided in Appendix A.

2 Development Consent Project Approval

Development consent was obtained by Donaldson Coal Pty Ltd for the Donaldson Mine in October 1999 following a Commission of Inquiry. Development Consent number N97/00147 was issued by the Minister for Urban Affairs pursuant to Section 101 of the Environmental Planning and Assessment Act 1979 (EP&A Act).

Project Approval (Application No. 05_0136) granted by the Minister of Planning was obtained by Donaldson Coal Pty Ltd for Abel Coal Mine in 2007.

2.1 Donaldson Coal Mine Development Consent Conditions

The Development Consent nominates hours of operation and mine noise emission goals in the Sections entitled "Operation of Development, Condition No. 3(1) and 3(2)", and "Noise and Vibrational Noise Limits: Condition No. 15" as follows:

3.(1) Subject to (2) the approved hours of operation are as follows:

Works	Period	Hours
Construction, including construction of any bunds	Monday to Friday Saturday	7 am to 6 pm 8 am to 1 pm
Mining operations, including mining, haulage of waste to dumps and coal processing	Monday to Friday Saturday, Sunday	24 hours per day 7 am to 6 pm
Road Transportation and stockpiling of coal	7 days per week	24 hours per day
Rail loading of coal	7 days per week	7 am to 10 pm
Maintenance of mobile and fixed plant	7 days per week	24 hours per day
Blasting, not involving closure of John Renshaw Drive	Monday to Saturday	7 am to 5 pm
Blasting, involving closure of John Renshaw Drive	Monday to Saturday	10 am to 2 pm

Notes: Restrictions on Public Holidays are the same as Sundays

(2) The Applicant shall submit a report to the Director-General's satisfaction demonstrating the noise limits in Condition 15 can be met while rail loading of coal is occurring during the period from 6 pm to 10 pm. If that report does not demonstrate that the noise limits can be met to the Director-General's satisfaction, then the hours of operation for rail loading of coal shall be restricted to 7 am to 6 pm."

15. Unless subject to a negotiated agreement in accordance with Condition 23, the Applicant shall ensure that the noise emission from construction or mining operations, when measured or computed at the boundary of any dwelling not owned by the applicant (or within 30 metres of the dwelling, if the boundary is more than 30 metres from the dwelling), shall not exceed the following noise limits:

Location	LA10(15minute) Noise Limits (dBA)	
	Daytime	Night-time
Beresfield area (residential)	45	35
Steggles Poultry Farm	50	40
Ebenezer Park Area	46	41
Black Hill Area	40	38
Buchanan and Louth Park Area	38	36
Ashtonfield Area	41	35
Thornton Area	48	40

Note: Daytime is 7 am to 10 pm Monday-Saturday, and 8 am to 10 pm Sundays and Public Holidays. Night-time is 10 pm to 7 am Monday-Saturday, and 10 pm to 8 am Sundays and Public Holidays.

The noise limits apply for prevailing meteorological conditions (winds up to 3 m/s), except under conditions of temperature inversions."

Other Conditions of Consent relevant to noise are as follows:

- 18. The applicant shall survey and investigate noise reduction measures from plant and equipment and set targets for noise reduction in each Annual Environmental Management Report (AEMR), taking into consideration valid noise complaints received in the previous year. The Report shall also include remedial measures.
- 19. The Applicant shall revise the Noise Management Plan as necessary and provide an updated Plan five years after commencement of mining to the Director-General, the independent noise expert (Condition 48), EPA, Councils and the Community Consultative Committee.

2.2 Abel Coal Mine – Project Approval

Approved Operations

The following operations are approved under the Abel Coal Mine Project Approval:

- Extraction of up to 6.1 Mtpa of Run of Mine (ROM) coal from the Abel Underground Coal Mine.
- Transport coal to the existing Bloomfield Coal Handling and Preparation Plant by private haul roads, or by coal conveyor, or by a combination of both methods.
- Operate the Bloomfield Coal Handling Processing Plant (CHPP) to process coal extracted from the Abel Coal Mine and the Bloomfield and Donaldson Coal Mines.
- Transportation of product coal from the Bloomfield site by rail via the Bloomfield rail loading facility.

The Project Approval was modified in June 2010 (05_0136 MOD 1) allowing construction and operation of a downcast ventilation fan. In May 2011 the Project Approval was modified again (05_0136 MOD 2) to allow the construction and operation of an upcast ventilation fan (and associated facilities). In December 2013 the Project Approval was further modified (05_0136 MOD3) to account for the increase in coal extracted including the upgrade of the Bloomfield CHPP.

Consent Conditions

The relevant conditions relating to noise from the Abel Coal Mine approval are reproduced below.

Schedule 4

NOISE

Operational Noise Criteria

1. The Proponent shall ensure that the noise generated by the Project does not exceed the criteria in Table 4 at any residence on privately-owned land.

Table 4: Operational Noise Criteria dB(A)

Location	Receiver Area	Day	Evening	Night	
		LAeq(15minute)	LAeq(15minute)	LAeq(15minute)	LA1(1minute)
Location I	Lord Howe Drive, Ashtonfield	36	36	36	45
Location K	Catholic Diocese Land	37	37	37	45
Location L	Kilshanny Avenue, Ashtonfield	40	40	40	47
All other Locations	All other privately owned Residences	35	35	35	45

Notes:

- To interpret the locations referred to in Table 4, see plan in Appendix 3.
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy. Appendix 4 sets out the meteorological conditions under which these criteria apply, and the requirements for evaluating compliance with these criteria.

These noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Construction Noise Criteria

1. The proponent shall ensure that the noise generated during the construction of the downcast ventilation shaft as described in EA (MOD3) does not exceed the criteria in Table 5.

Table 5: Construction Noise Criteria dB(A)

Location	Deseiver	Day
Location	Receiver	LAeq(15minute)
Location R	281 Lings Road, Buttai	50
Location S	189 Lings Road, Buttai	43

Notes:

- The criteria in Table 5 apply only whilst the downcast ventilation shaft is being constructed, and for a maximum of 12 weeks from the commencement of construction.
- To interpret the locations referred to in Table 5, see plan in Appendix 3 (attached to this report as Appendix A).
- Noise generated by the project is to be measured in accordance with the relevant requirements, and exemptions (including certain meteorological conditions), of the NSW Industrial Noise Policy.

However, these noise criteria do not apply if the Proponent has an Agreement with the relevant landowner to generate higher noise levels, and the proponent has advised the Department in writing of the terms of this agreement.

Rail Noise Criteria

1. The proponent shall ensure that the noise from rail movements on the Bloomfield Rail Spur does not exceed the limits in Table 6 at any residence on privately owned land.

Table 6: Rail Spur noise criteria dB (A)

Location	Day	Evening	Night	
		LAeq(period)		
All privately-owned la	nd 55	45	40	

Cumulative Noise Criteria

1. The proponent shall implement all reasonable and feasible measures to ensure that the noise generated by the project combined with noise generated by other mines does not exceed the criteria in Table 7 at any residence on privately-owned land.

Table 7: Cumulative noise criteria dB (A)

Location	Day	Evening	Night
	LAeq(period)		
All privately-owned land	55	45	40

Notes: Cumulative noise is to be measured in accordance with the relevant requirements, and exemptions (including meteorological conditions), of the NSW Industrial Noise Policy. Appendix 4 sets out the metrological conditions under which these criteria apply and the requirements for evaluating compliance with these criteria.

Operating Conditions

- 1. The proponent shall:
 - a. Implement best management practise to minimise the construction, operational, road and rail noise of the project;
 - b. Operate an on-site noise management system to ensure compliance with the relevant conditions of this approval;
 - c. Minimise the noise impacts of the project during meteorological conditions under which the noise limits in this consent do not apply (see Appendix 4);
 - d. Only receive and/or dispatch locomotives and rolling stock either on or from the site that are approved to operate on the NSW rail network in accordance with the noise limits in ARTC's EPL (No. 3142);
 - e. Carry out regular monitoring to determine whether the project is complying with the noise criteria and other relevant conditions of approval, to the satisfaction of the Director-General.

Noise Management Plan

- 2. The proponent shall prepare and implement a Noise Management Plan for the project to the satisfaction of the Director-General. This plan must:
 - a. Be prepared in consultation with the EPA, and be submitted to the Director-General for approval within 6 months of the date of approval of MOD 3;
 - b. Describe the measures that would be implemented to ensure compliance with the noise criteria and operating conditions in this approval; Describe the proposed noise management system in detail; and
 - c. Include a monitoring program that:
 - Uses attended monitoring to evaluate the compliance of the project against the noise criteria in this approval;
 - Evaluates and reports on:
 - The effectiveness of the on-site noise management system; and
 - o Compliance against the noise operating conditions; and

Defines what constitutes a noise incident, and includes protocol for identifying and notifying the Department and relevant stakeholders of any noise incidents. Appendix 4

Noise Compliance Assessment

Applicable Meteorological Conditions

- 1. The noise criteria in Tables 4 and 7 are to apply under all metrological conditions except the following:
 - a. During periods of rain or hail.
 - b. Average wind speed at microphone height exceeds 5 m/s;
 - c. Wind speeds greater than 3 m/s measured at 10m above ground level; or
 - d. Temperature inversion conditions greater than 3°C/100m.

Determination of metrological conditions

2. Except for wind speed at microphone height, the data to be used for determining metrological conditions shall be that recorded by the meteorological station located on the site.

Compliance monitoring

- **3.** Attended monitoring is to be used to evaluate compliance with the relevant conditions of this approval.
- 4. Unless otherwise agreed with the director-general, this monitoring is to be carried out in accordance with the relevant requirements for reviewing performance set out in the NSW Industrial Noise Policy (as amended from time to time), in particular the requirements relating to:
 - a. Monitoring locations for the collection of representative noise data;
 - b. Metrological conditions during which collection of noise data is not appropriate;
 - c. Equipment used to collect noise data, and conformity with Australian Standards relevant to such equipment; and
 - d. Modification to noise data collected, including for the exclusion of extraneous noise and/or penalties for modifying factors apart from adjustments for duration.

Appendix 5

Statement of Commitments

3. Noise

3.1 Construction Activities

The following noise control measures will be implemented prior to commencement of construction of the Abel Underground Mine or the upgrade of the Bloomfield CHPP.

- 1. Maintain all machinery and equipment in working order;
 - a. No construction activities at the Abel pit top will take place on Sundays or Public Holidays;
 - b. Where possible locate noisy site equipment behind structures that act as barriers or at the greatest distance from noise sensitive areas; and
 - c. Orientate equipment so that noise emissions are directed away from noise sensitive areas.

3.2 Noise Control Measures

- a. The following noise control measures will be implemented prior to the mining of coal from the Abel underground Mine:
 - i. Orientation of the ventilation fans away from residential receivers and angle the output parallel to the ground.
 - ii. The sound power level of the front end loader to be used near the portal should not exceed 113 dBA and will be fitted with a noise sensitive reversing alarm.
- b. The following noise control measures will be implemented prior to the Bloomfield CHPP receiving any ROM coal from Able Underground Mine;

i. Noise mitigation works including partial enclosure and noise screening of drives and conveyors of the Bloomfield CHPP to screen residences to the north of the site.

3.2 Monitoring

The Company will implement a Noise Monitoring Program for the Abel Underground Mine and the Bloomfield CHPP, to the satisfaction of the Director-General. The Noise Monitoring Program shall include a combination of real-time and supplementary attended monitoring measures, and a noise monitoring protocol for evaluating compliance with the noise environmental assessment. This plan will be integrated with the monitoring plans for the Tasman, Donaldson and Bloomfield Mines to provide a single integrated Noise Monitoring Program for all 4 mines.

3.4 Continuous Improvement

The Company shall:

a. Report on these investigations and implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director General.

The operator of the Bloomfield CHPP shall:

- b. Investigate ways to reduce the noise generated by the Bloomfield CHPP, including maximum noise levels which may result in sleep disturbance;
- c. Implement all reasonable and feasible best practice noise mitigation measures on the site; and
- d. Report on these investigations and the implementation of any new noise mitigation measures on site in the AEMR, to the satisfaction of the Director-General.

3 Noise Monitoring Methodology

3.1 General Requirements

The operational noise monitoring program was conducted with reference to Development Consent N97/00147 (Donaldson Coal Mine), Project Approval 05_0136 (Abel Coal Mine), the NMP and AS 1055-2018 Acoustics - Description and Measurement of Environmental Noise.

All acoustic instrumentation employed throughout the monitoring program has been designed to comply with the requirements of AS IEC 61672.1 – 2004 Electroacoustics—Sound level meters – Specifications, AS IEC 61672.2-2004, AS IEC 61672.3-2004 and carried current NATA or manufacturer calibration certificates. Certificates for acoustic instrumentation used during the December 2019 quarter is provided in Appendix B.

Instrument calibration was conducted before and after each measurement, with the variation in calibrated levels not exceeding ±0.5 dBA.

3.2 Monitoring Locations

Baseline and preceding operational quarterly surveys have been conducted at 11 locations surrounding the Donaldson Mine and Abel Coal Mine sites. With the experience of these previous surveys, it was decided to concentrate noise monitoring at six focus locations that represent the potentially most noise affected areas from Donaldson Mine and Abel Coal Mine. The details of the monitoring locations are contained within Table 1.

It is relevant to note that Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Furthermore, Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite during the December 2019 noise monitoring period.

Table 1 Monitoring Locations

Noise Monitoring Location	Description
D	Black Hill School, Black Hill
F	Lot 684 Black Hill Road, Black Hill
G	156 Buchannan Road, Buchannan
1	Magnetic Drive, Ashtonfield
J	Parish Drive, Thornton
L	65 Tipperary Dr, Ashtonfield

A map giving the approximate location of the noise monitoring sites is contained within Appendix C.

3.3 Unattended Continuous Noise Monitoring

An environmental noise logger was deployed for a minimum of a seven day period between Thursday 12 December 2019 and Friday 20 December 2019 at each of the six (6) nominated locations given in Table 1.

All unattended monitoring equipment was programmed to continuously record statistical noise level indices in 15 minute intervals including the LAmax, LA1, LA10, LA90, LA99, LAmin and LAeq. The statistical noise exceedance levels (LAN) are the levels exceeded for N% of the 15 minute interval. The LA90 represents the level exceeded for 90% of the interval period and is referred to as the average minimum or background noise level. The LA10 is the level exceeded for 10% of the time and is usually referred to as the average maximum noise level. The LAeq is the equivalent continuous sound pressure level and represents the steady sound level which is equal in energy to the fluctuating level over the interval period. The LAmax is the maximum noise level recorded over the interval.

3.4 Operator Attended Noise Monitoring

Operator attended surveys were conducted at each of the six monitoring locations during the daytime, evening and night-time periods, to verify the unattended logging results and to determine the character and contribution of ambient noise sources.

4 Operator Attended Noise Monitoring

4.1 Results of Operator Attended Noise Monitoring

Operator attended noise measurements were commenced on Thursday 19 December 2019 finishing on Friday 20 December 2019. Operator attended noise surveys were conducted using a Brüel & Kjær Type 2270 (serial number 2679354).

Ambient noise levels given in the tables include all noise sources such as traffic, insects, birds, and mine operations as well as any other industrial operations.

The tables provide the following information:

- Monitoring location.
- Date and start time.
- Wind velocity (m/s) and Temperature (°C) at the measurement location.
- Typical maximum (LAmax) and contributed noise levels.

Mine contributions listed in the tables are from the Abel Coal Mine and are stated only when a contribution could be quantified.

Table 2 Location D, Black Hill Public School, Black Hill

Period	Date/ Start time/Weather			^ν Noise De 3A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	20/12/2019 15:10 28°C 2.0 m/s ESE	81	70	53	41	57	Road traffic 49-81 Birds 43-60
		Estima		Mine Noi Inaudible	Wind in trees 41-43 Abel Mine Inaudible		
Evening	19/12/2019 18:40 28°C 6 m/s S	72	65	60	52	57	Wind in trees 52-64
		Estima		Mine No Inaudible	Road traffic 72 Abel Mine Inaudible		
Night	19/12/2019 22:50 23°C 3 m/s S	76	64	47	39	52	Insects/frogs 32-38 Road traffic 35-66
		Estima		Mine No Inaudible	Road traffic 49-81 Birds 43-60 Wind in trees 41-43 Abel Mine Inaudible Wind in trees 52-64 Road traffic 72 Abel Mine Inaudible		

Table 3 Location F, Lot 684 Black Hill Road, Black Hill

Period	Date/ Start time/Weather			Noise De A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	20/12/2019 15:30 28°C 1.8 m/s SE	73	66	55	45	54	Road traffic 45-73 Birdsong 39-49
		Estima		Mine Noi Inaudible	Insects 35 Wind in trees 45-55 Abel Mine Inaudible		
Evening	19/12/2019 19:02 26°C 5 m/s SSE	72	65	60	52	57	Road traffic 72
		Estima		Mine Noi Inaudible	Wind 52-64 Abel Mine Inaudible		
Night	19/12/2019 22:50	66	60	50	35	48	Frogs/insects 40-46 Road traffic 41-66
	22°C 3 m/s S	Estima		Mine Noi Inaudible	Maximum Noise Levels (LAmax – dBA) Road traffic 45-73 Birdsong 39-49 Insects 35 Wind in trees 45-55 Abel Mine Inaudible Road traffic 72 Wind 52-64 Abel Mine Inaudible		

Table 4 Location G, Buchanan Road, Buchanan

Period	Date/ Start time/ Weather			Noise De A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	20/12/2019 16:43 27℃ 2.2 m/s SSE	74	58	54	46	51	Branch 74 Road traffic 42-52
		Estima		Mine Noi Inaudible	Wind in trees 46-54 Abel Mine Inaudible		
Evening	19/12/2019 20:06 24°C 4 m/s S	64	63	58	47	55	Road traffic 40-57
		Estima		Mine Noi Inaudible	Insects 50-64 Abel Mine Inaudible		
Night	19/12/2019 23:56	45	41	39	33	36	Road traffic 35-45 Wind in trees 35
	22°C 1.4 m/s S	Estima		Mine Noi Inaudible	Insects 25-35 Other Industry 25-32 Abel Mine Inaudible		

Table 5 Location I, Magnetic Drive, Ashtonfield

Period	Date/ Start time/Weather			Noise De A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	La90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	20/12/2019 17:30 25℃ 1.8 m/s SSE	72	66	57	43	54	Road traffic 51-68
		Estima	ted Abel	Mine Noi naudible	Birds 60-72 Abel Mine Inaudible		
Evening	19/12/2019 20:56 24°C 4 m/s S	72	62	48	40	50	Insects 32-38 Road Traffic 63-72
		Estima	ted Abel	Mine Noi naudible	Wind in trees 40-45 Abel Mine Inaudible		
Night	20/12/2019 00:47 21°C 1.3 m/s S	56	47	38	33	37	Birdsong 56 Insects 30-52
		Estima		Mine Noi 5minute) < minute) <2	Distant road traffic 30-47 Abel Mine Barely Audible		

Table 6Location J, Parish Drive, Thornton

Period	Date/ Start time/Weather			Noise De A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	LA90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	20/12/2019 17:53 24°C 2 m/s SE	67	55	49	43	47	Road traffic 40-45 Wind in trees 40-54
		Estima		Mine Noi Inaudible	Insects 36 Birds 50-67 Abel Mine Inaudible		
Evening	19/12/2019 21:35 23°C 3 m/s S	50	49	45	36	42	Wind in trees 38-48 Birdsong 50
		Estima		Mine Noi Inaudible	Insects 47 Abel Mine Inaudible		
Night	19/12/2019 22:00 23°C 2.8 m/s S	52	45	42	35	39	Wind in trees 38-48 Birdsong 40-52
		Estima		Mine Noi Inaudible	Insects 39 Abel Mine Inaudible		

1 Table 7 Location L, 65 Tipperary Dr, Ashtonfield

Period	Date/ Start time/ Weather			Noise De A re 20 μ	Description of Noise Emission, Typical		
		LAmax	LA1	LA10	La90	LAeq	Maximum Noise Levels (LAmax – dBA)
Day	20/12/2019 17:09 26C 1.8 m/s SE	73	68	51	38	54	Road traffic 45-73
		Estima		Mine Noi Inaudible	Wind in trees 30-33 Abel Mine Inaudible		
Evening	19/12/2019 20:34 24°C 3.3 m/s S	74	61	52	44	52	Wind in trees 44-52
		Estima		Mine Noi Inaudible	Traffic 70-74 Abel Mine Inaudible		
Night	20/12/2019 00:23 14°C 0.5 m/s SSE	57	45	39	32	37	Insects 28-32 Birdsong 41-57
		Estima	LAeq(Mine Noi 15minute) 3 1minute) 41	Road traffic 35-49 Abel Mine Audible CHPP operations 30-41		

4.2 Operator Attended Noise Monitoring Summary

4.2.1 Donaldson Mine

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

4.2.2 Abel Coal Mine

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

The Bloomfield CHPP and stockpile area was inaudible during all operator attended noise surveys with the exception of Location I and Location L during the night-time period. Noise generated by local and distant traffic was a significant contributor to ambient noise levels at all monitored locations as well as 'natural' noises such as birds, insects.

4.3 Compliance Assessment and Discussion of Results

4.3.1 Operations

Results of the operational compliance assessment are given in Table 8.

Location		Estimated Abel LAeq(15minute) Contribution dBA		Consent Conditions		Compliance			
	Day	Eve	Night	Day	Eve	Night	Day	Eve	Night
D – Black Hill School, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
F – Black Hill Road, Black Hill	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
G – Buchanan Road, Buchanan	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
l – Magnetic Drive, Ashtonfield	Inaudible	Inaudible	Barely Audible <25	36	36	36	Yes	Yes	Yes
J – Parish Drive, Thornton	Inaudible	Inaudible	Inaudible	35	35	35	Yes	Yes	Yes
L – 65 Tipperary Dr, Ashtonfield	Inaudible	Inaudible	33	40	40	40	Yes	Yes	Yes

Table 8Compliance Noise Assessment – Operations

Results presented in Table 8 indicate that compliance with the relevant consent conditions was achieved at all noise monitoring locations during all periods.

4.3.2 Sleep Disturbance

Results of the sleep disturbance compliance assessment are given in Table 9.

Table 9Compliance Noise Assessment – Sleep Disturbance

Location	Estimated Bloomfield LA1(1minute) Contribution dBA	Consent Conditions LA1(1minute) dBA	Compliance
D – Black Hill School, Black Hill	Inaudible	45	Yes
F – Black Hill Road, Black Hill	Inaudible	45	Yes
G – Buchanan Road, Buchanan	Inaudible	45	Yes
I – Magnetic Drive, Ashtonfield	Barely Audible <25	45	Yes
J – Parish Drive, Thornton	Inaudible	45	Yes
L – 65 Tipperary Dr, Ashtonfield	41	47	Yes

Results presented in Table 9 indicate that compliance with the sleep disturbance consent conditions was achieved at all noise monitoring locations during the night-time noise surveys.

Unattended Continuous Noise Monitoring 5

5.1 **Results of Unattended Continuous Noise Monitoring**

Unattended continuous noise monitoring was conducted between Thursday 12 December 2019 and Friday 20 December 2019 at each of the six monitoring locations given in Table 10.

Table 10	Noise Logger and Noise Monitoring Locations	

Location	Noise Logger Serial Number	Date of Logging
D – Black Hill School, Black Hill	ARL EL-316 16-203-525	12 December 2019 - 20 December 2019
F – Black Hill Road, Black Hill	ARL EL-316 16-207-050	12 December 2019 - 20 December 2019
G – Buchanan Road, Buchanan	SVAN 977 69756	12 December 2019 - 20 December 2019
I – Magnetic Drive, Ashtonfield	ARL EL-316 16-103-494	12 December 2019 - 20 December 2019
L – 65 Tipperary Dr, Ashtonfield	ARL EL-316 16-203-508	12 December 2019 -20 December 2019
J – Parish Drive, Thornton ¹	ARL EL-316 16-207-044	12 December 2019 -20 December 2019

The unattended ambient noise logger data from each monitoring location are presented graphically on a daily basis and are attached as Appendix C. A summary of the results of the unattended continuous noise monitoring is given in Table 11. Due to a technical issue no results are available for Location D.

The ambient noise level data quantifies the overall noise level at a given location independent of its source or character.

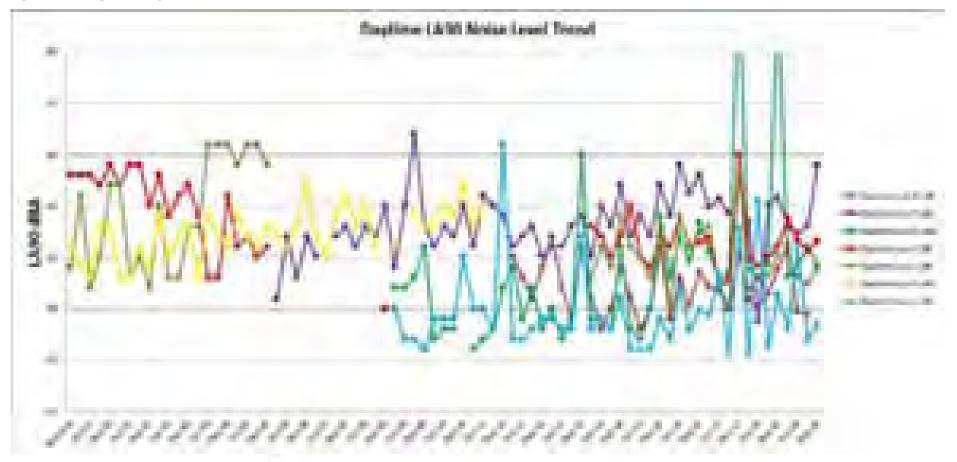
The measured ambient noise levels were divided into three periods representing day, evening and night as designated in the NSW Noise Policy for Industry (NPfl).

Precautions were taken to minimise influences from extraneous noise sources (eq optimum placement of the loggers away from creeks, trees, houses, etc), however, not all these sources or their effects can be eliminated. This is particularly the case during the warmer times of year when noise from insects, frogs, birds and other animals can become quite prevalent.

Weather data for the subject area during the noise monitoring period was provided by Bloomfield Colliery. Noise data during periods of any rainfall and/or wind speeds in excess of 5 m/s were discarded in accordance with NPfI weather affected data exclusion methodology.

Location	Period	Primary	mary Noise Descriptor (dBA re 20 µPA)			
		LA1	LA10	LA90	LAeq	
F	Day	79	63	49	66	
F Lot 684 Black Hill Road, Black Hill	Evening	74	60	43	63	
	Night	65	57	35	59	
	Day	58	52	39	53	
G 156 Buchanan Road, Buchanan	Evening	50	46	35	50	
150 Duchanan Koau, Duchanan	Night	45	41	28	43	
	Day	68	58	42	57	
I 49 Magnetic Drive, Ashtonfield	Evening	64	53	39	53	
Triagnetic Drive, Ashtonneta	Night	48	42	30	49	
	Day	60	49	33	52	
L 65 Tipperary Dr, Ashtonfield	Evening	58	48	33	54	
os ripperary br, Asittonneta	Night	50	45	28	45	
	Day	53	48	39	47	
J 220 Parish Drive, Thornton	Evening	49	44	38	47	
	Night	44	38	29	42	

Table 11 Unattended Continuous Noise Monitoring Ambient Noise Levels (dBA)


5.2 Long term Unattended Continuous Monitoring Summary for Donaldson Mine and Abel Coal Mine

5.2.1 Ambient LA90 Noise Levels

The long term ambient LA90 noise levels collected from each monitoring location are presented graphically in Figure 1, Figure 2 and Figure 3 for the daytime, evening and night-time periods respectively.

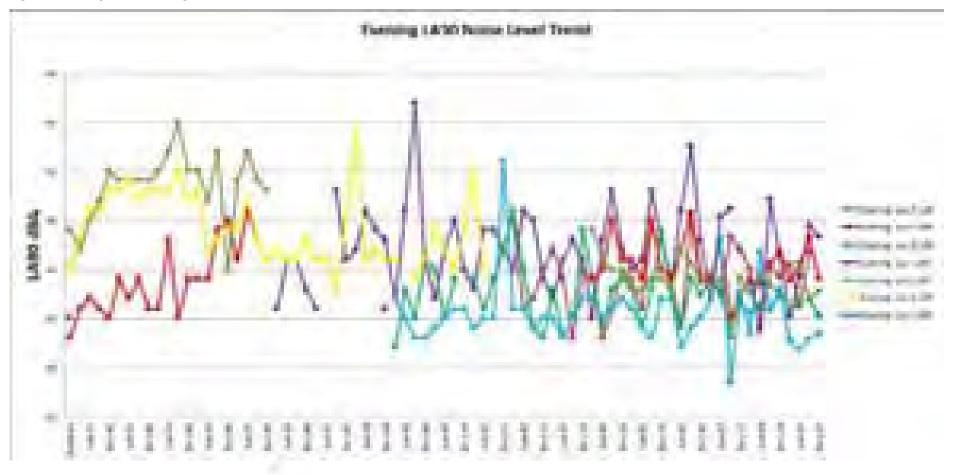


Figure 1 Long term Daytime LA90 Noise Levels

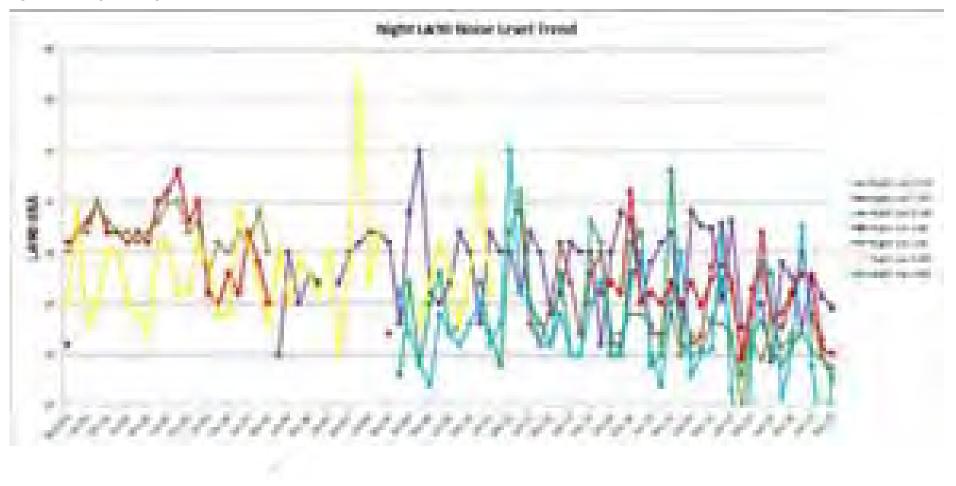


Figure 2 Long term Evening LA90 Noise Levels

Figure 3 Long term Night-time LA90 Noise Levels

5.2.1.1 Baseline

The summary of results in Table 12 shows the ambient LA90 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring process (ie. prior to commencement of mining operation at Donaldson).

Table 12	1 AOD Results	Comparison –	Baseline
	LA90 NOSUITS	companson –	Daschine

Monitoring Logation	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ³
Monitoring Location	Penloa	Baseline	December 2019	Difference db°
2	Day	N/A ²	No result	N/A ²
D Black Hill School, Black Hill	Evening	N/A ²	No result	N/A ²
	Night	N/A ²	No result	N/A ²
F	Day	39	49	10
Lot 684 Black Hill Road,	Evening	35	43	8
Black Hill	Night	31	35	4
G	Day	N/A ²	39	N/A ²
156 Buchanan Road,	Evening	N/A ²	35	N/A ²
Buchanan	Night	N/A ²	28	N/A ²
	Day	48	42	-7
49 Magnetic Drive,	Evening	33	39	6
Ashtonfield	Night	41	30	-11
L	Day	N/A ²	33	N/A ²
65 Tipperary Drive,	Evening	N/A ²	33	N/A ²
Ashtonfield	Night	N/A ²	28	N/A ²
	Day	39	39	0
J 220 Parish Drive, Thornton	Evening	44	38	-6
	Night	40	29	-11

Note 1: Periods are as detailed the NPfl and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.1.2 Previous Quarter

Table 13 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured in the previous monitoring period.

				_
Table 13	LA90 Results Com	parison –	Previous	Ouarter
		parioon	11011000	a dian ton

Monitoring Logotion	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²	
Monitoring Location	r enou	September 2019	December 2019	Difference dB-	
	Day	35	No result	-	
D Black Hill School, Black Hill	Evening	42	No result	-	
	Night	31	No result	-	
F	Day	43	49	6	
Lot 684 Black Hill Road,	Evening	44	43	-1	
Black Hill	Night	36	35	-1	
G	Day	41	39	-2	
156 Buchanan Road,	Evening	37	35	-2	
Buchanan	Night	30	28	-2	
1	Day	41	42	1	
49 Magnetic Drive,	Evening	43	39	-4	
Ashtonfield	Night	31	30	0	
L	Day	32	33	2	
65 Tipperary Drive,	Evening	33	33	1	
Ashtonfield	Night	20	28	8	
	Day	37	39	1	
J 220 Parish Drive, Thornton	Evening	37	38	1	
	Night	30	29	-1	

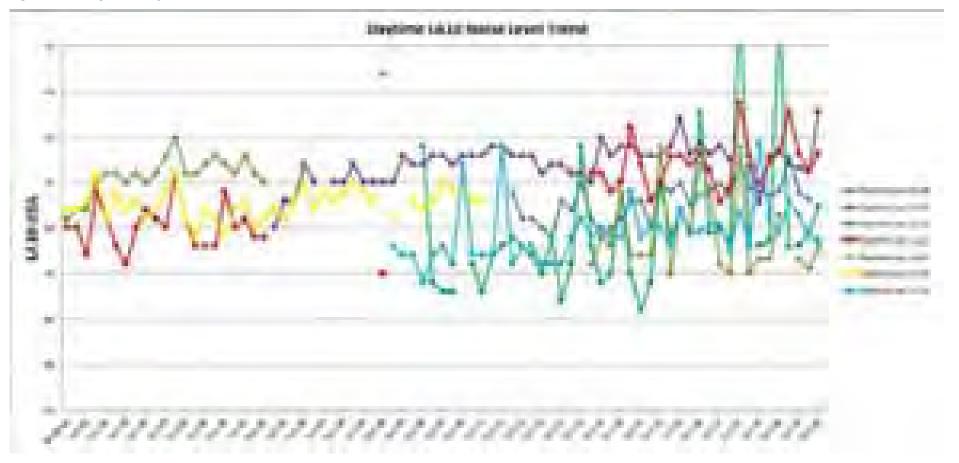
Note 1: 1. Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

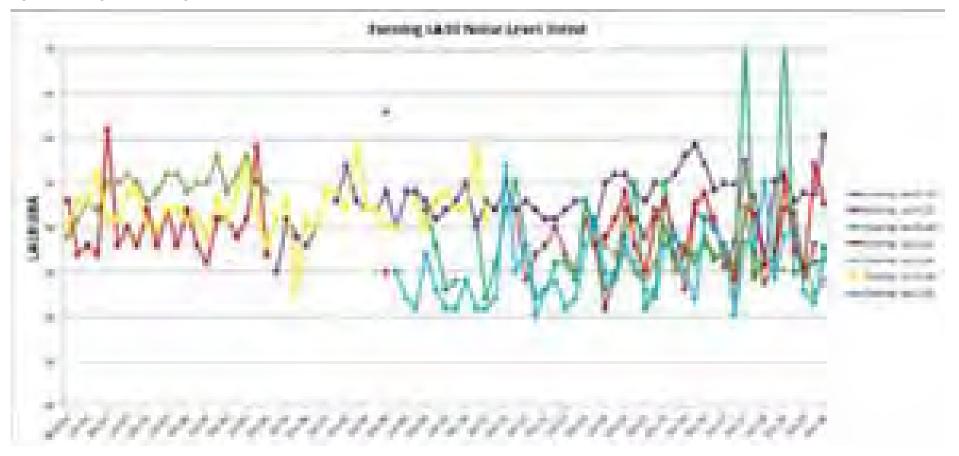
5.2.1.3 Coinciding Period Last Year

Table 14 presents the ambient LA90 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Monitoring Logotion	Period ¹	Long term Night-time LA90 Noise Levels		Difference dB ²	
Monitoring Location	renou	December 2018	December 2019	Difference dB-	
	Day	39	No result	-	
D Black Hill School, Black Hill	Evening	39	No result	-	
	Night	36	No result	-1	
F	Day	46	49	3	
Lot 684 Black Hill Road,	Evening	42	43	2	
Black Hill	Night	38	35	-3	
G	Day	66	39	-27	
156 Buchanan Road,	Evening	38	35	-3	
Buchanan	Night	31	28	-4	
1	Day	41	42	0	
49 Magnetic Drive,	Evening	42	39	-3	
Ashtonfield	Night	36	30	-6	
L	Day	36	33	-3	
65 Tipperary Drive,	Evening	38	33	-4	
Ashtonfield	Night	31	28	-3	
	Day	40	39	-2	
J 220 Parish Drive, Thornton	Evening	38	38	0	
	Night	32	29	-3	


Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.


5.2.2 Ambient La10 Noise Comparison

The long term ambient LA10 noise levels collected from each monitoring location are presented graphically in Figure 4, Figure 5 and Figure 6 for the daytime, evening and night-time respectively.

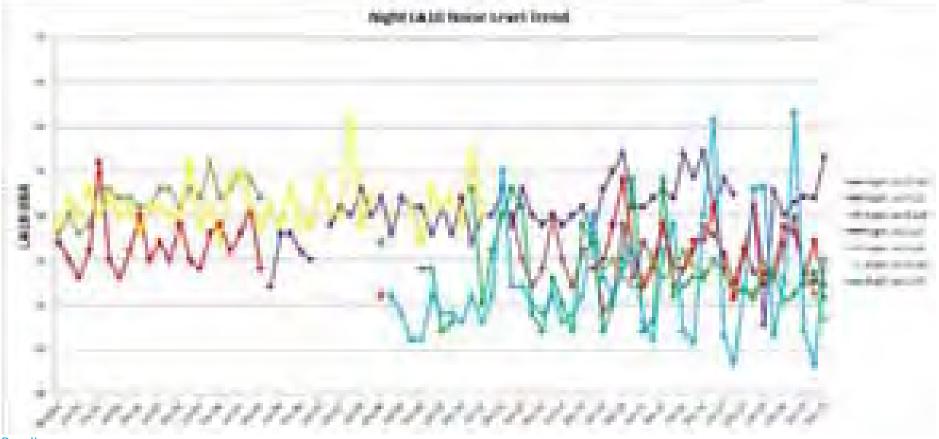

Figure 4 Long term Daytime LA10 Noise Levels

Figure 5 Long term Evening LA10 Noise Levels

Baseline

Table 15 presents the ambient LA10 noise levels recorded for the current monitoring period compared to the levels recorded during the baseline monitoring period.

Table 15 LA10 Results Comparison – Baseline

Monitoring Location	Period ¹	Long term Nig Noise Levels	ght-time LA10	Difference dB ³
		Baseline	December 2019	Difference dB*
	Day	N/A ²	No result	N/A
D Black Hill School, Black Hill	Evening	N/A ²	No result	N/A
	Night	N/A ²	No result	N/A
F	Day	51	63	12
Lot 684 Black Hill Road,	Evening	49	60	11
Black Hill	Night	48	57	9
G	Day	N/A ²	52	N/A
156 Buchanan Road,	Evening	N/A ²	46	N/A
Buchanan	Night	N/A ²	41	N/A
1	Day	50	58	8
49 Magnetic Drive,	Evening	53	53	0
Ashtonfield	Night	47	42	-5
L	Day	N/A ²	49	N/A
65 Tipperary Drive,	Evening	N/A ²	48	N/A
Ashtonfield	Night	N/A ²	45	N/A
	Day	51	48	-3
J 220 Parish Drive, Thornton	Evening	49	44	-5
	Night	48	38	-10

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: No data was available during baseline measurements, no comparisons can be made.

Note 3: Rounded to the nearest whole dB.

5.2.2.2 Previous Quarter

Table 16 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the previous monitoring period.

Table 16	LA10 Results Comparison – Previous Quarter

Monitoring Logotion	Deried	Long term Night-time LA10 Noise Levels		Difference dB ²	
Monitoring Location	Period ¹	September 2019	December 2019	Difference db-	
	Day	53	No result	-	
D Black Hill School, Black Hill	Evening	48	No result	-	
	Night	43	No result	-	
F	Day	56	63	7	
Lot 684 Black Hill Road,	Evening	54	60	7	
Black Hill	Night	52	57	5	
G	Day	50	52	3	
156 Buchanan Road,	Evening	46	46	0	
Buchanan	Night	44	41	-3	
	Day	56	58	2	
49 Magnetic Drive,	Evening	57	53	-5	
Ashtonfield	Night	47	42	-5	
L	Day	49	49	0	
65 Tipperary Drive,	Evening	42	48	6	
Ashtonfield	Night	33	45	12	
	Day	46	48	3	
J 220 Parish Drive, Thornton	Evening	43	44	2	
	Night	41	38	-3	

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.

Note 2: Rounded to the nearest whole dB.

5.2.2.3 Coinciding Period Last Year

Table 17 presents the ambient LA10 noise levels recorded for the current monitoring period compared to those measured during the coinciding monitoring period last year.

Monitoring Logation	Deried1	Long term Night-time LA10 Noise Levels		Difference dB ²	
Monitoring Location	Period ¹	December 2018	December 2019		
	Day	54	No result	-	
D Black Hill School, Black Hill	Evening	52	No result	-	
	Night	47	No result	-	
F	Day	58	63	4	
Lot 684 Black Hill Road,	Evening	56	60	4	
Black Hill	Night	50	57	7	
G	Day	74	52	-22	
156 Buchanan Road,	Evening	73	46	-27	
Buchanan	Night	41	41	0	
	Day	58	58	0	
49 Magnetic Drive,	Evening	55	53	-3	
Ashtonfield	Night	49	42	-7	
L	Day	50	49	-1	
65 Tipperary Dr,	Evening	49	48	-1	
Ashtonfield	Night	43	45	2	
	Day	51	48	-3	
J 220 Parish Drive, Thornton	Evening	45	44	-1	
	Night	43	38	-4	

Note 1: Periods are as detailed in the Industrial Noise Policy (INP) and are Daytime - 7.00 am to 6.00 pm Monday to Saturday, 8.00 am to 6.00 pm Sunday; Evening - 6.00 pm 10.00 pm; Night - 10.00 pm to 7.00 am pm Monday to Saturday, 10.00 pm to 8.00 am Sunday.
 Note 2: Rounded to the nearest whole dB.

Note 2: Rounded to the nearest whole dB.

5.3 Rail Noise Monitoring

In order to determine compliance with the rail noise criteria, a noise logger was positioned at Location J, however no train movements occurred during the monitoring period.

6 Conclusion

SLR was engaged by Donaldson Coal Pty Ltd to conduct quarterly noise monitoring surveys for Donaldson Coal Mine and Abel Coal Mine in accordance with the NMP, dated 3 June 2019.

Donaldson Open Cut Mine has ceased production and all major earthworks on the site have been finalised. Therefore, compliance noise monitoring for the Donaldson Open Cut Mine is no longer required.

Abel mine was placed in Care & Maintenance on 28th April 2016 and there was no operations onsite, excluding that from the Bloomfield CHPP which operates under the Abel Coal Mine project consent conditions.

Operator-attended and unattended noise measurements were conducted for the December 2019 quarter at six focus locations surrounding the mine.

Abel portal operations were not observed to be audible at any locations during the monitoring period with CHPP operations audible at Location L during the night-time attended noise survey. Contributed noise levels from Abel Mine did not exceed noise emission goals (including night-time sleep arousal criteria) and compliance with the Abel Mine Project Approval was indicated at all locations.

A comparison of ambient La10 and La90 noise levels recorded during the current monitoring period (December 2019), the baseline monitoring period, the last monitoring period (September 2019), and the coinciding monitoring period from last year (December 2018) has been conducted.

No rail movements occurred on the Bloomfield Rail Spur during the noise monitoring period.

APPENDIX A

Acoustic Terminology

1. Sound Level or Noise Level

The terms 'sound' and 'noise' are almost interchangeable, except that 'noise' often refers to unwanted sound.

Sound (or noise) consists of minute fluctuations in atmospheric pressure. The human ear responds to changes in sound pressure over a very wide range with the loudest sound pressure to which the human ear can respond being ten million times greater than the softest. The decibel (abbreviated as dB) scale reduces this ratio to a more manageable size by the use of logarithms.

The symbols SPL, L or LP are commonly used to represent Sound Pressure Level. The symbol LA represents A-weighted Sound Pressure Level. The standard reference unit for Sound Pressure Levels expressed in decibels is 2 x 10^{-5} Pa.

2. 'A' Weighted Sound Pressure Level

The overall level of a sound is usually expressed in terms of dBA, which is measured using a sound level meter with an 'A-weighting' filter. This is an electronic filter having a frequency response corresponding approximately to that of human hearing.

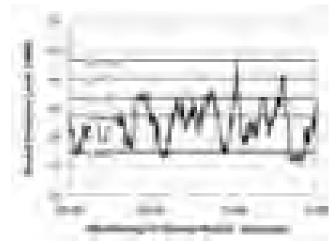
People's hearing is most sensitive to sounds at mid frequencies (500 Hz to 4,000 Hz), and less sensitive at lower and higher frequencies. Different sources having the same dBA level generally sound about equally loud.

A change of 1 dB or 2 dB in the level of a sound is difficult for most people to detect, whilst a 3 dB to 5 dB change corresponds to a small but noticeable change in loudness. A 10 dB change corresponds to an approximate doubling or halving in loudness. The table below lists examples of typical noise levels.

Sound Pressure Level (dBA)	Typical Source	Subjective Evaluation
130	Threshold of pain	Intolerable
120	Heavy rock concert	Extremely
110	Grinding on steel	noisy
100	Loud car horn at 3 m	Very noisy
90	Construction site with pneumatic hammering	
80	Kerbside of busy street	Loud
70	Loud radio or television	
60	Department store	Moderate to
50	General Office	quiet
40	Inside private office	Quiet to
30	Inside bedroom	very quiet
20	Recording studio	Almost silent

Other weightings (eg B, C and D) are less commonly used than A-weighting. Sound Levels measured without any weighting are referred to as 'linear', and the units are expressed as dB(lin) or dB.

3. Sound Power Level


The Sound Power of a source is the rate at which it emits acoustic energy. As with Sound Pressure Levels, Sound Power Levels are expressed in decibel units (dB or dBA), but may be identified by the symbols SWL or LW, or by the reference unit 10^{-12} W.

The relationship between Sound Power and Sound Pressure is similar to the effect of an electric radiator, which is characterised by a power rating but has an effect on the surrounding environment that can be measured in terms of a different parameter, temperature.

4. Statistical Noise Levels

Sounds that vary in level over time, such as road traffic noise and most community noise, are commonly described in terms of the statistical exceedance levels LAN, where LAN is the Aweighted sound pressure level exceeded for N% of a given measurement period. For example, the LA1 is the noise level exceeded for 1% of the time, LA10 the noise exceeded for 10% of the time, and so on.

The following figure presents a hypothetical 15 minute noise survey, illustrating various common statistical indices of interest.

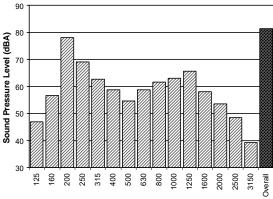
Of particular relevance, are:

LA1 The noise level exceeded for 1% of the 15 minute interval.

- LA10 The noise level exceeded for 10% of the 15 minute interval. This is commonly referred to as the average maximum noise level.
- LA90 The noise level exceeded for 90% of the sample period. This noise level is described as the average minimum background sound level (in the absence of the source under consideration), or simply the background level.
- LAeq The A-weighted equivalent noise level (basically, the average noise level). It is defined as the steady sound level that contains the same amount of acoustical energy as the corresponding time-varying sound.

5. Frequency Analysis

Frequency analysis is the process used to examine the tones (or frequency components) which make up the overall noise or vibration signal.


The units for frequency are Hertz (Hz), which represent the number of cycles per second.

Frequency analysis can be in:

- Octave bands (where the centre frequency and width of each band is double the previous band)
- 1/3 octave bands (three bands in each octave band)
- Narrow band (where the spectrum is divided into 400 or more bands of equal width)

The following figure shows a 1/3 octave band frequency analysis where the noise is dominated by the 200 Hz band. Note that the indicated level of each individual band is less than the overall level, which is the logarithmic sum of the bands.

1/3 Octave Band Centre Frequency (Hz)

6. Annoying Noise (Special Audible Characteristics)

A louder noise will generally be more annoying to nearby receivers than a quieter one. However, noise is often also found to be more annoying and result in larger impacts where the following characteristics are apparent:

- Tonality tonal noise contains one or more prominent tones (ie differences in distinct frequency components between adjoining octave or 1/3 octave bands), and is normally regarded as more annoying than 'broad band' noise.
- Impulsiveness an impulsive noise is characterised by one or more short sharp peaks in the time domain, such as occurs during hammering.
- Intermittency intermittent noise varies in level with the change in level being clearly audible. An example would include mechanical plant cycling on and off.
- Low Frequency Noise low frequency noise contains significant energy in the lower frequency bands, which are typically taken to be in the 10 to 160 Hz region.

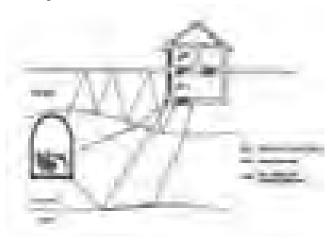
7. Vibration

Vibration may be defined as cyclic or transient motion. This motion can be measured in terms of its displacement, velocity or acceleration. Most assessments of human response to vibration or the risk of damage to buildings use measurements of vibration velocity. These may be expressed in terms of 'peak' velocity or 'rms' velocity.

The former is the maximum instantaneous velocity, without any averaging, and is sometimes referred to as 'peak particle velocity', or PPV. The latter incorporates 'root mean squared' averaging over some defined time period.

Vibration measurements may be carried out in a single axis or alternatively as triaxial measurements (ie vertical, longitudinal and transverse). The common units for velocity are millimetres per second (mm/s). As with noise, decibel units can also be used, in which case the reference level should always be stated. A vibration level V, expressed in mm/s can be converted to decibels by the formula 20 log (V/Vo), where Vo is the reference level (10^{-9} m/s). Care is required in this regard, as other reference levels may be used.

8. Human Perception of Vibration


People are able to 'feel' vibration at levels lower than those required to cause even superficial damage to the most susceptible classes of building (even though they may not be disturbed by the motion). An individual's perception of motion or response to vibration depends very strongly on previous experience and expectations, and on other connotations associated with the perceived source of the vibration. For example, the vibration that a person responds to as 'normal' in a car, bus or train is considerably higher than what is perceived as 'normal' in a shop, office or dwelling.

9. Ground-borne Noise, Structure-borne Noise and Regenerated Noise

Noise that propagates through a structure as vibration and is radiated by vibrating wall and floor surfaces is termed 'structure-borne noise', 'ground-borne noise' or 'regenerated noise'. This noise originates as vibration and propagates between the source and receiver through the ground and/or building structural elements, rather than through the air.

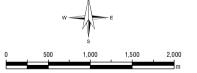
Typical sources of ground-borne or structure-borne noise include tunnelling works, underground railways, excavation plant (eg rockbreakers), and building services plant (eg fans, compressors and generators).

The following figure presents an example of the various paths by which vibration and ground-borne noise may be transmitted between a source and receiver for construction activities occurring within a tunnel.

The term 'regenerated noise' is also used in other instances where energy is converted to noise away from the primary source. One example would be a fan blowing air through a discharge grill. The fan is the energy source and primary noise source. Additional noise may be created by the aerodynamic effect of the discharge grill in the airstream. This secondary noise is referred to as regenerated noise.

APPENDIX B

Noise Monitoring Locations



Project No .:	630.01053.01200
Date:	11/01/2018
Drawn by:	NT
Scale:	1:45,000
Sheet Size:	A4
Projection:	GDA 1994 MGA Zone 56

LEGEND

Noise Monitoring Locations

Donaldson Coal

Noise Monitoring

Noise Monitoring Locations

APPENDIX B

APPENDIX C

Calibration Certificates

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 25532 & FILT 5408

Equipment Description: Sound Level Meter

Manufacturer:	B&K		
Model No:	2270	Serial No:	2679354
Microphone Type:	4189	Serial No:	2695417
Preamplifier Type:	ZC0032	Serial No:	12254
Filter Type:	1/3 Octave	Serial No:	2679354
Comments:	All tests pass (See over for	sed for class ´ r details)	1. 1. je i se
Owner:	SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Co <mark>ve, NSW 2066</mark>		
Ambient Pressure:	998 hPa ±	1.5 hPa	

Temperature:23°C ±2° C Relative Humidity: 26% ±5%

Date of Calibration: 09/09/2019 **Issue Date:** 09/09/2019 **Acu-Vib Test Procedure:** AVP10 (SLM) & AVP06 (Filters)

CHECKED BY:

Authorised Signature:

Jack Z

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Accredited Lab. No. 9262 Acoustic and Vibration Measurements Page 1 of 2 AVCERT10 Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 25532 & FILT 5408

The performance characteristics listed below were tested. The tests are based on the relevant clauses of IEC 61672-3:2013

Tests Performed:	Clause	Result
Absolute Calibration	10	Pass
Acoustical Frequency Weighting	12	Pass
Self Generated Noise	11.1	Entered
Electrical Noise	11.2	Entered
Long Term Stability	15	Pass
Electrical Frequency Weightings	13	Pass
Frequency and Time Weightings	14	Pass
Reference Level Linearity	16	Pass
Range Level Linearity	17	NA
Toneburst	18	Pass
Peak C Sound Level	19	Pass
Overload Indicator	20	Pass
High Level Stability	21	Pass

Statement of Compliance: The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2013, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2013, the sound level meter submitted for testing conforms to the class 1 requirements of IEC61672-1:2013. A full technical report is available if required.

This Sound Level Meter included an Octave Filter Set. Tests were based on IEC 1260: 1995 and AS/NZS 4476 - 1997 and were conducted to test the following performance characteristics:

1. Relative attenuation

clause 5.3

Date of Calibration: 09/09/2019 Issue Date: 09/09/2019 Checked by: 1:43

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web sile: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT10

CERTIFICATE NO: 25534

EQUIPMENT TESTED:	1/2" Microphone	
Manufacturer: Type No: Owner:	B & K 4197 Serial No: 3077697 (Part SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066	2)
Tests Performed:	Acoustic Microphone Frequency Response with Inverse A Weighting	

CONDITION OF TEST:

Ambient Pressure:997hPa ±1.5 hPaRelative Humidity: 24% ±5%Temperature:23°C ±2° CDate of Calibration:09/09/2019Issue Date09/09/2019Acu-Vib Test Procedure:AVP05 (Microphone Acoustic Frequency Response).

CHECKED BY: 18 AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

> Page 1 of 2 Calibration Certificate AVCERT01 Rev.1.2 05.02.18

Acoustic Tests, Microphone response

Job No:	13678		Test No: 255334
Microphone ty	ype: B&K 4197	7	Serial No,: 3077697 (Part 2)
Preamplifier t	ype: 2683		Serial No. : 2792513
SLM body (if	appropriate):	SVAN 912 AE	Serial No: 4396
Ambient Temperature: 23C ±2° C, Relative Humidity: 997 RH ±5% RH,			

Ambient Pressure: 24 hPa ±1.5 hPa

				TIOC	
Frequency	Deviation	Type 2 Tol.	Type 1 Tol.	U95	P/F
Hz	re 1 kHz			dB	
31.5 Hz	0.11dB	± 3.0 dB	± 1.5 dB dB	0.12	Р
63 Hz	-0.01dB	± 2.0 dB	± 1.5 dB dB	0.10	Р
05112	-0.010D	± 2.0 UD		0.10	1
				0.00	
125 Hz	-0.08dB	\pm 1.5 dB	\pm 1.0 dB dB	0.09	Р
250 Hz	-0.15dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
500 Hz	-0.14dB	± 1.5 dB	± 1.0 dB dB	0.09	P
300 HZ	-0.14ub	± 1.5 dB		0.09	Г
1 kHz Ref	0.00dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
2 kHz	0.05dB	± 2.0 dB	± 1.0 dB dB	0.07	P
- 1915	0100				_
4 1.11	0.25 JD			0.13	Р
4 kHz	-0.25dB	± 3.0 dB	\pm 1.0 dB dB	0.13	P
8 kHz	-0.21dB	± 5.0 dB	+1.5;-3.0 dB	0.13	Р
12.5 kHz	-0.10dB	$+5.0; -\infty dB$	+3.0;-6.0 dB	0.19	Р
	0110uD	,		0.19	•
164.11	0 (1 10	αt		0.20	
16 kHz	0.61dB	+ 5.0; - ∞ dB	+ 3.0; - ∞ dB	0.30	Р

Tolerances from AS1259-1990 part 1, (IEC 60651).

Notes:

Signed (Testing Officer)

Checked by:

Acoustic test WS 1 results

Issue date: 26th September 2017

Date:09/09/2019

Date:09/09/2019

CERTIFICATE NO: 25533

EQUIPMENT TESTED:	1/2" Microphone
Manufacturer: Type No: Owner:	B & K 4197 Serial No: 3077697 (Part 1) SLR Consulting Australia Pty Ltd Level 2, 2 Lincoln Street Lane Cove, NSW 2066
Tests Performed:	Acoustic Microphone Frequency Response with Inverse A Weighting

CONDITION OF TEST:

Ambient Pressure:997hPa ±1.5 hPaRelative Humidity: 24% ±5%Temperature:23°C ±2° CDate of Calibration:09/09/2019Issue Date09/09/2019Acu-Vib Test Procedure:AVP05 (Microphone Acoustic Frequency
Response)Image: Calibratic Cali

CHECKED BY: 183 AUTHORISED SIGNATURE:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 Web site: www.acu-vib.com.au

> Page 1 of 2 Calibration Certificate AVCERT01 Rev.1.2 05.02.18

Acoustic Tests, Microphone response

Job No:13678Test No: 25533Microphone type:B&K 4197Serial No,: 3077697 (Part 1)Preamplifier type:2683Serial No. : 2792513SLM body (if appropriate):SVAN 912 AESerial No: 4396Ambient Temperature:23C $\pm 2^{\circ}$ C, Relative Humidity:997 RH $\pm 5\%$ RH,

Ambient Pressure: 24 hPa ±1.5 hPa

Frequency	Deviation	Type 2 Tol.	Type 1 Tol.	U95	P/F
Hz	re 1 kHz	1990 2 101.		dB	1/1
31.5 Hz	0.11dB	± 3.0 dB	± 1.5 dB dB	0.12	Р
63 Hz	-0.11dB	± 2.0 dB	± 1.5 dB dB	0.10	Р
125 Hz	-0.18dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
250 Hz	-0.25dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
500 Hz	-0.24dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
1 kHz Ref	0.00dB	± 1.5 dB	± 1.0 dB dB	0.09	Р
2 kHz	0.05dB	± 2.0 dB	± 1.0 dB dB	0.07	Р
4 kHz	-0.25dB	± 3.0 dB	+ 1.0 dB dB	0.13	Р
8 kHz	-0.31dB	± 5.0 dB	+1.5;-3.0 dB	0.13	Р
12.5 kHz	-0.20dB	+ 5.0; - ∞ dB	+3.0;-6.0 dB	0.19	Р
16 kHz	0.51dB	+ 5.0; - ∞ dB	+ 3.0; - ∞ dB	0.30	Р

Tolerances from AS1259-1990 part 1, (IEC 60651).

Notes:

Signed (Testing Officer)

Checked by:

Acoustic test WS 1 results

Issue date: 26th September 2017

Date:09/09/2019

Date:09/09/2019

CERTIFICATE OF CALIBRATION

CERTIFICATE NO.: SLM 42109

Equipment Description: Noise Logger

Manufacturer:	ARL		
Model No:	EL-316	Serial No:	16-207-050
Microphone Type:	UC-53A	Serial No:	318219
Preamplifier Type:	NA	Serial No:	NA
Comments:	All tests pass (See over for	51	
Owner:	SLR Consulti Level 2, 2 Lir Lane Cove, N	icoln Street	Pty Ltd
Ambient Pressure:	1019 hPa±′	1.5 hPa	
Temperature:	23 °C ±2°	C Relative H	umidity: 53 % ±5%
Date of Calibration: Acu-Vib Test Procedu CHECKED BY:	27/06/2019 •e: AVP05 (SLM Authorised (,	e: 27/06/2019

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

 HEAD OFFICE

 Unit 14, 22 Hudson Ave.
 Castle Hill NSW 2154

 Tel: (02) 96808133
 Fax: (02)96808233

 Mobile: 0413 809806
 web site: www.acu-vib.com.au

Page 1 of 2 AVCERT05b Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 42109

The performance characteristics listed below were tested. The tests are based on the relevant clauses of A.S. 1259.1 and A.S. 1259.2 - 1990

1.	RMS Performance	clause 10.4.5
2.	Time Weighting Response, F&S	clause 10.4.2
3.	Time Weighting I	clause 10.4.3 NA
4.	Time Weighting P	clause 10.4.4 NA
5.	Input Attenuator Accuracy	clause 10,3,3
6,	Detector & Differential Linearity	clause 10.4.1
7.	Weighting Networks & Linearity	clause 10.2.3
8.	Overload Indication	clause 10.3.2
9.	AC Output & Weighted Noise Level	clause 11. (c). (ii) 10.3.4
10	. Time Averaging	clause 9.3.2
11	. Absolute Sensitivity	clause 10.2.2

Note: Absolute Sensitivity as found was 95.8 dB and adjusted to 94.0 dB Uncertainty: ±0.13dB (at 95% c.l.) k=2

Date of Calibration: 27/06/2019 Issue Date: 27/06/2019 Checked by:

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to

Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Tel: (02) 96808133 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT05b

CERTIFICATE OF CALIBRATION

CERTIFICATE No.: SLM 42108

Equipment Description: Noise Logger

Manufacturer:	ARL		
Model No:	EL-316	Serial No:	16-207-044
Microphone Type:	UC-53A	Serial No:	321979
Preamplifier Type:	NA	Serial No:	NA
Comments:	All tests pass (See over for	51	
Owner:	SLR Consult Level 2, 2 Lir Lane Cove, I	ncoln Street	Pty Ltd
Ambient Pressure:	1019 hPa±	1.5 hPa	
Temperature:	23 °C ±2°	C Relative H	umidity: 53 % ±5%
Date of Calibration: Acu-Vib Test Procedur CHECKED BY:	27/06/2019 e: AVP05 (SLM Authorised	-	te: 27/06/2019

Accredited for compliance with ISO/IEC 17025 - Calibration The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

> Page 1 of 2 AVCERT05b Rev. 1.3 15.05.18

CERTIFICATE NO.: SLM 42108

The performance characteristics listed below were tested. The tests are based on the relevant clauses of A.S. 1259.1 and A.S. 1259.2 - 1990

1.	RMS Performance	clause 10.4.5
2.	Time Weighting Response, F&S	clause 10.4.2
3.	Time Weighting I	clause 10.4.3 NA
4.	Time Weighting P	clause 10.4.4 NA
5.	Input Attenuator Accuracy	clause 10.3.3
6.	Detector & Differential Linearity	clause 10.4.1
7.	Weighting Networks & Linearity	clause 10.2.3
8.	Overload Indication	clause 10.3.2
9.	AC Output & Weighted Noise Level	clause 11. (c). (ii) 10.3.4
10	. Time Averaging	clause 9.3.2
11	. Absolute Sensitivity	clause 10.2.2
5. 6. 7. 8. 9. 10	Input Attenuator Accuracy Detector & Differential Linearity Weighting Networks & Linearity Overload Indication AC Output & Weighted Noise Level Time Averaging	clause 10.3.3 clause 10.4.1 clause 10.2.3 clause 10.3.2 clause 11. (c). (ii) 10.3.4 clause 9.3.2

Note: Absolute Sensitivity as found was 88.1 dB and adjusted to 94.0 dB Uncertainty: ± 0.13 dB (at 95% c.l.) k=2

Date of Calibration: 27/06/2019 Checked by:

Issue Date: 27/06/2019

Accredited for compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibration and/or measurements included in this document are traceable to Australian/national standards.

The uncertainties quoted are calculated in accordance with the methods of the ISO Guide to the Uncertainty of Measurement and quoted at a coverage factor of 2 with a confidence interval of approximately 95%.

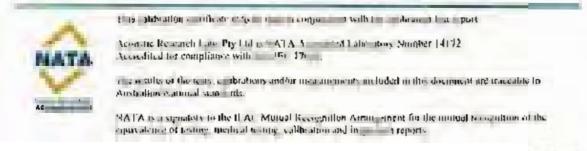
Accredited Lab. No. 9262 Acoustic and Vibration Measurements

HEAD OFFICE Unit 14, 22 Hudson Ave. Castle Hill NSW 2154 Tel: (02) 96808133 Fax: (02)96808233 Mobile: 0413 809806 web site: www.acu-vib.com.au

Page 2 of 2 End of Calibration Certificate AVCERT05b

Level 7 Building 2 423 Pennant Hills Rd Pennant Hills NSW AUSTRALIA 2220 Ph: +62 29484 0800 A.B.N. 65 160 399 219 Www.acousticresearch.com.au

Sound Level Meter AS 1259,1:1990 - AS 1259.2:1990 Calibration Certificate


Calibratian Number 017217

	C ent Det_il	21	R Const. Guy Australia Pty. Ltd. incoln Street ne Covy NSW 2066	
laste Miere	ested/ Model Number : unient Serial Number : pliane Serial Number : plifter Serial Number :	16	203-5-5 2080 089	
	Atinost	erle	Conditions	
,	Relative Linonidity : Barometric Pressure :	14. 46	9°C 4% 1.27kPa	
Calibration feebalcan : Calibration Date :			Second at Check: Riley Couper Report are Date : 13/06/2017 K	en William
Clause and Characteris c	lesica R	c li	Clause and Character Texte	Result
10.7 Absolute ser with		'un s	10.1 finlier or gener or er	4 - 4
10 3: Frequency w hting	1	oss.	10.4 1 with time thorasteristic Land S	P
10 "Over dilude ti as	,	'uss	10 s thin that istic !	Puss.
10-13: A of lex 1	. onting /	1285	10.4.5, R.M	Pass
		115.5	93.2 Fink tyc 102	Pass
8 9: Detector-indicator Hueach 8, 10: Offerential level linearth			945 Overload indication	trank

	1	k 1/, dawa wasa di	
Acoustic Test.		Freedom at statements	
41 S H 10 Skill	-11 16dB	Terry dure	40.00 · · ·
1" 54 11	11.1.115	h' in Hannahry	
tohii	-11 19,111	Recommenter Pressentes	· # 01.14
Electrical Lesis			
st. SH w kH-	10 1 2010		

All two examples one deepert at the second on the best while a survey for the of .

The control benef mater under test have been shown to a new at the type 1 - 20 - 11. her, retaile a story . dow A to 38 1 - 30 1 1090 and 18 1 - 1990 me the 1 - tated above

Pstall tail

Let 7 Building 2 For Mills Rd For Hills N W AU TRALIA A.B.N 3 9 WWW.ac 10

Calibrat on Certificat-

Calibration Number C18514

C'llent De al	SLE i madring 1986 - 2, 2 Guota De Kastropé 19 - Marco III 12
upment lete inde	ALLEINS
Instroment Serial Number :	16 207 3
Microphone hered Sunder	3170***
Pr	124,1
n nie pt	erie Contlan II-
Amblent Temperature :	21.740
Relative Humidity :	\$3 8
Barometele Pressure ;	հար ծն <u>ի</u> լու
Californian Tanta Inner Lucks Inc.	Kannandaran Kanadar yang sang sang

Calibration for in the state Lucky lies Calibration Date 1 - 14 June 18		Report Issue Date : 1-1 Jun 201	
Approved Si	gnatory :	ala - s	son Williams
finnereristie Fester	756	Cla má Chai te-tic f-d	Result
In the formations	1.00	should be a none etc.	
har list a visiting	Poss	112-1.2. Fina weighting chores retraine F and S	Pres

10 1 I No A ighting	Prove	1194.2. Fing weighting choose terians F and S	$P_{i=2}$
10.5 · · · · · · · · · · · · · · · · · · ·	Post	10.4.3 firm we dine care wristed	Par
hus han a di lesel a 👘 empol	H	NULLS R.M. ip plomi n	$Pr \rightarrow$
8.9 D. cetter-inductor function	Pass	9.3.7. How miny	Peran
8.10; Differential fasel functify	Preca	A 3.5 (Doc - Diath action	£

		(11) 000 00 M.	
42 6 1		Fuying the human	
. 3 11 4 × 140	# 3 - 14	$f' = i_{f}$ $r_{1i_{f}}$	1.00
1 skitz	. Jarla	R ore, Human	1.1.10
trikit	19 119 10	Recomment Provident	, 14 H 6
the most to the			
11511-11. 11	0.12.14		

All monthumber and decidence in the Complexity of Stanley and Print of 2

the cound I to a number of the constraint on an transformer I want on the second state of the second state

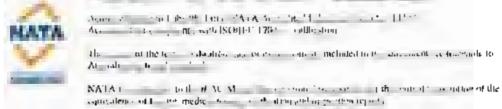
	for exploration of a labor strength of with the all of the off
ATA	Assume Revenue for Phylicity (SYX According for the construction of the formation According to the SYX Construction and the formation of the system of the
V .	The sensitive the set of difference of the profilent terms in the second set are been a Marken in the second state of
	SATA structure difference on internet of all provided other engineering of the second operation of the second

Parie I

Public Puilding : 473 Pane at H and Public Pills NSW AUTRATIA Ph: +63 most martial www.accountierassanch.com.mr

Level Meter As remained the and 20th Damage

Calibrat on Certificat-


Calibration Namber Classifi

	ent D	SLR Cocatin	
		Suite Don ill. Aver	
		Howtharii Yix 1122	
gu duent l'ann	ing in a star of a	ARE DO STO	
Instrume	at Sirial 4 umber -	(n-10)-(n)-(n)-	
Miccopha	ne Serial Number :	312150	
e mplifi	er Serlal Number :	180.0	
	ingspit	erie & onthions	
Amb	tent fontgorature :	115 C	
F	Relative Humbliny :	42.000	
136.	cometrie Pressore :	99 Ikca	
Calibration Technician ; 1	nel - In wa	se ont to Check: 1 with	· · · arimula
	1 1010 1/1 9		48 18
Childrandin oper .		sections is the same rest.	ur - 10
4 P	(noved Signatory -	the fame is	Ken William
and ba er to	4	e t Cim e non , haroct h	ed all
10.7 ' Al plans physics in a		ua di dina dina di	
10.1 F succes to Infin		as Mall from a discription	
0.2.2 Overload unication.		 10.4 × 1062 weig (fug change) 	
10.3 § Accur – Clevel ianen sonitad		ss 📫 🐪 R.M. i perkonomet	Bes
 De setors ind infor binearity 		55 9 1 0	Pres
10: Dit alal 1 - Mingarity		as 9.5 Ov d'indication	Pros
	L1 L 1.01	12 - 01	
NG0 10		Lats metry.	
1 . 11 kll- (11.1 s.d.		n she	
1 · · · · · · · · · · · · · · · · · · ·		so lower thoughty	
i te te an air air an air a		Downstra Breason - 0 Pi	r
a need pro-			
All MOLLING	offers are derford in the s	we have to when a second 2	
the count l. 1 27 other tes has t		in Trophosical in	- 52 - 0 - 18 12, 2,1 1920
	10 M 11 1. 1. 4. 7 1 -1	6 with to construct distants	

Anna a chickene ben "ArA to the 11" of the

to the term of a allowing on the other of meladed to the according to the stands to

Accession in the second score of the store

41:-

At tale to the tale

PAGPARALE

: ÷ ÷ :

3		1		No.	i i
. 	ž	۱ ;		1	100
		100	Indexed with	Date year	
	[s		16-	-	÷.
: 				3	
·· -		·		 	
	: :		-		
- -	- -	-			
1		- -	-		
:	-	•	•••••••••••••••••••••••••••••••••••••••		
		•	、		
÷,		Ċ	•	:	

:

2

the other was the second second and the two in

a 10N4 YERST RENALINSE

and an extension of the second s ľ

March 1 and and the day of the factor of the factor of And A manufactures of the second

- 217 - 17

1:,

- -

 $\frac{1}{2} \sum_{i=1}^{n} \left\{ \frac{1}{2} \sum_{i=1}^{n}$

ĿĒ.

• The of second graphs, we say not be not computed specification. The order of the order spectrum of a situation (we will provide the order of th (1) We detund the firm a substance problem of the law long manufactor of a constance in CAM dependence in pro-spheric spheroid and the second problem (2011). 1 feb and the strategy and provide the second fit the track to the stack to the fit of the state for an estimate details with the state of the stat

n Arrows, frances of your Solider of the process on the sector of and successful to the other sectors. A stability of the sectors are spectra and the sector of the process of the sector of the secto

2.4 VEBRINTION IN CONTRACTOR

(1) Statistical and a statistic statistical statistical statistics of the statistical statistical statistics of the statistical statistical statistics of the statist

--'''''''''

Ş ţ

<u>,</u>

Hat DUDE. | -]

CAUSE DON DEPEND

with you up that by AD COURS are SN 120 May 2000 and an origination ACO PACIER, by POST No. 12101 FACTORY CAURRATION DATA OF THE SHAN 2774 No. 69756

SOUND DEPENDENCIER

(4) HOAMINY & U.M. DECLARATION

討

404

1000

D-separate

the man the state

1. Support for the second s

2

And the state of the second second

1

Ę ķ Y. 16 41.Y . . .

21.5 __________

Ediniz harmedin

SVANTEX

ISO5001 cert Sec

California of the Annual Providence (Proved

Jucha.

Test date (2014) 10476

na in statistica en en en en la companya en la comp En esta en la companya en la company En esta en la companya en la companya

ş

Þ

1810, 1910 States and a state framework of the States

. 25

:: . la .

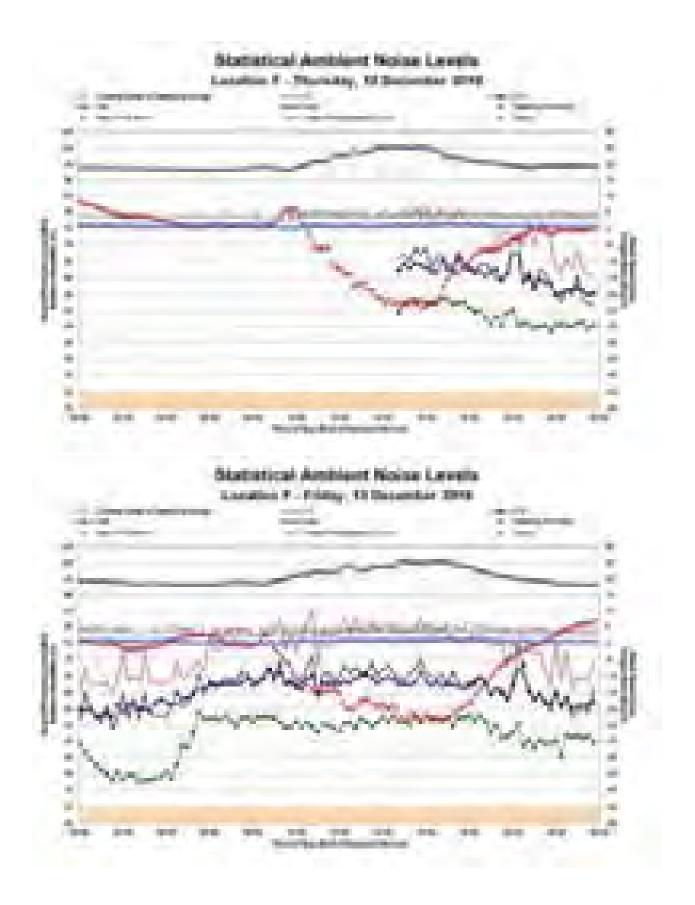
÷

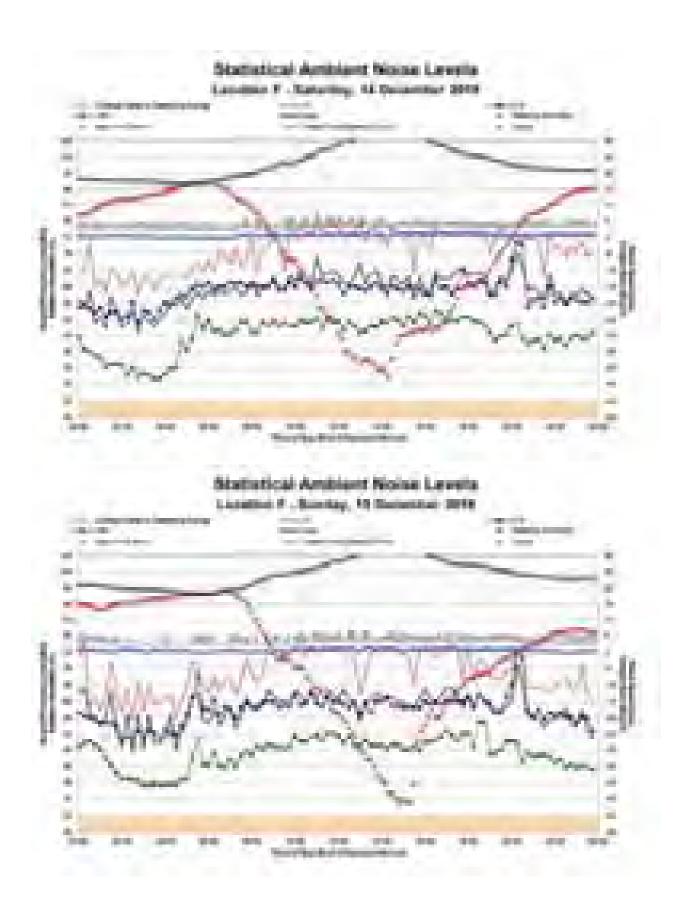
1111

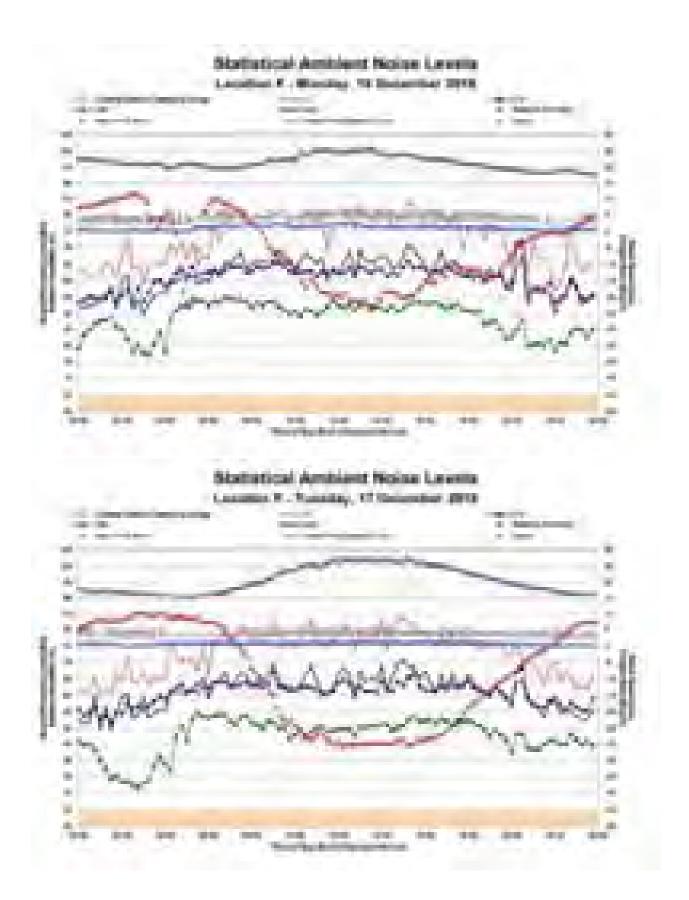
Table To Confidence

LUNDER DUTY DESCRIPTION

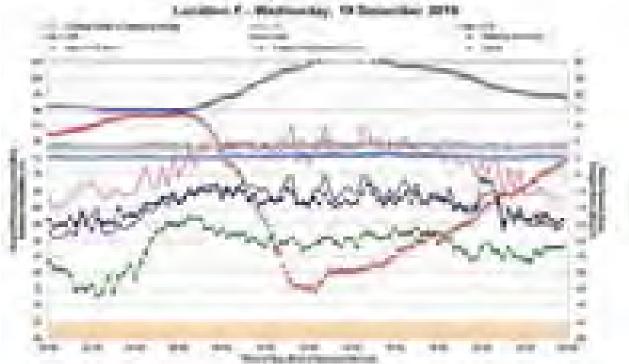
and the state of a light of the state of the

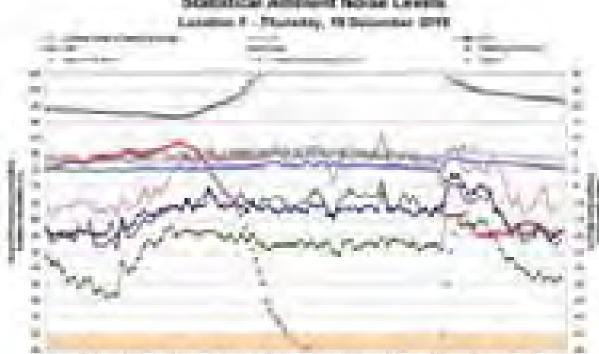

7. INTERPORT MOTSF (JAN BA, Lie referand concernance) C.D.C. (1927-12. Year of Alexan Table (D.D.C. (1927-12. Year of Alexan Table) <u>Area State States (States of Alexan Table)</u> A INTERNAL SOURALIAN RELATION OF ALEXAND	ANI-HAMMAN AND AND AND AND AND AND AND AND AND A	1 (TAU BRITION Transit John Hiff Koune Khomman Hit (Tat VIN Komparitie) <u>John Karton Khomman Hit (Tat VIN Komparitie)</u> <u>John Karton Khomman Hit (Tat VIN Komparitie)</u> 2.4 AMBKATION (Tenner) 2.4 AMBKATION (TENER) 2.4 AMBKATION (Tenner) 2.4 AMBKATION (TENER) 2.4 AMBKATION (TENER) 2.4 AMB	D. HALDUTENCY RESPONDED TO THE TAIL THE	3 INTERNAL NOISE LEVEL INVALVAL INTERIOR INTERIOR IN INTERIOR INTERIOR INFORMATION INTERIOR INTERIOR INTERIORI INTERIORI INTERIORI INTERIORI INTERIO
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \frac{1}{\left(\left(\frac{1}{2} \right) \left($	NU Jackman (m) S FRLOL ENCY RESPONSE - Bandl ALLUCC (Aberna) S FRLOL ENCY RESPONSE - Bandl ALLUCC (Aberna) <td></td>	


A DESCRIPTION OF A


APPENDIX D

Statistical Ambient Noise Levels





Statistical Amblent Noise Levels

10.00

100

1000

1000

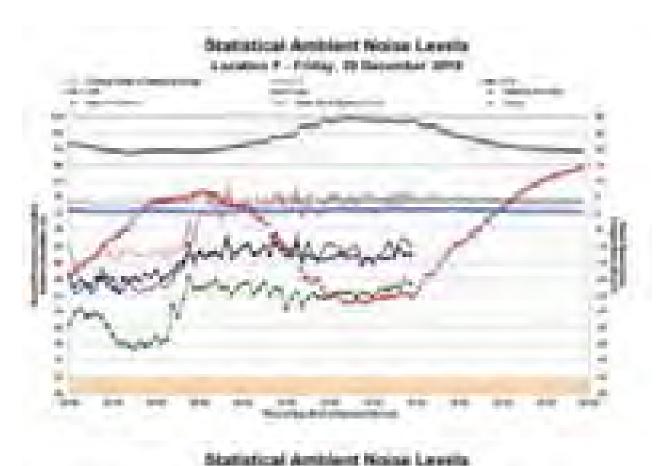
18.00

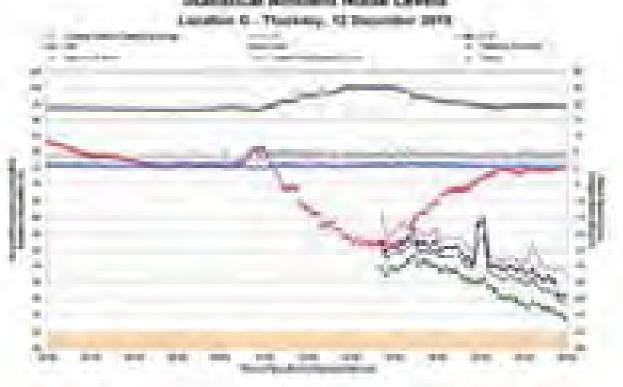
1000

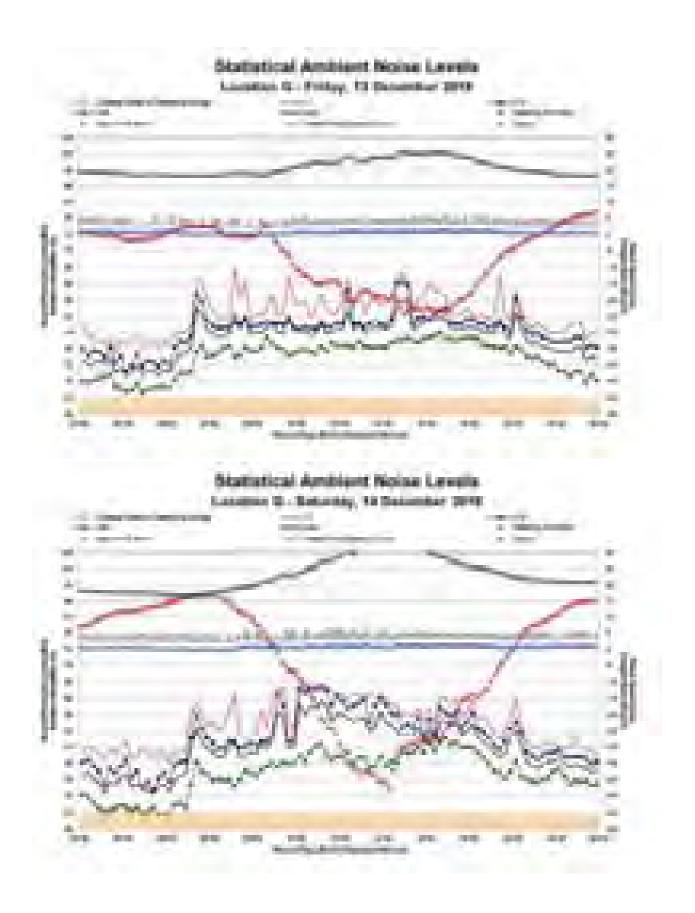
100

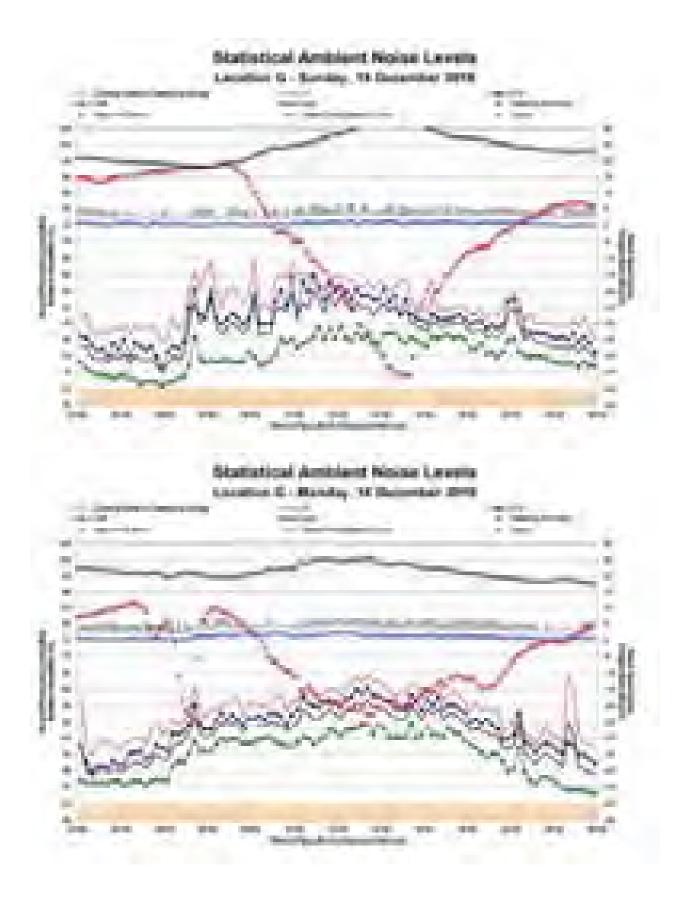
10.00

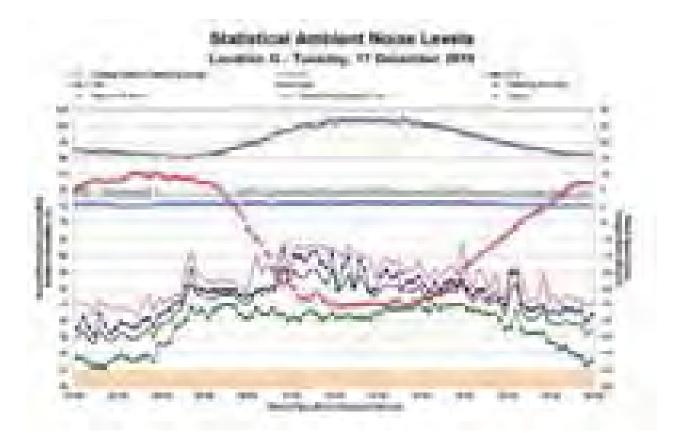
10000

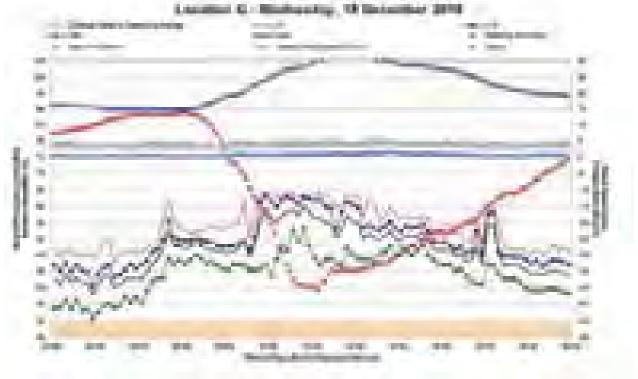

Statistical Amblent Noise Levels

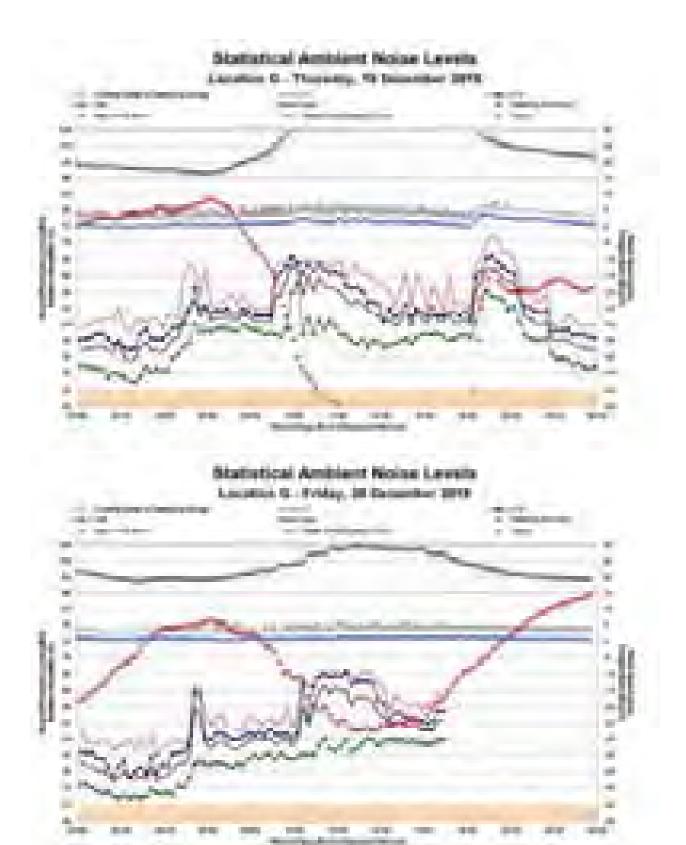

10.00

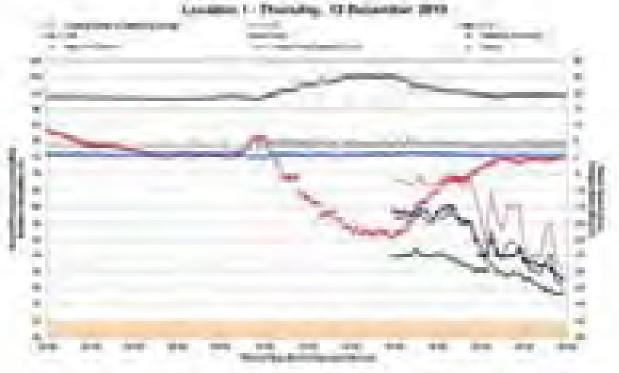

10.00

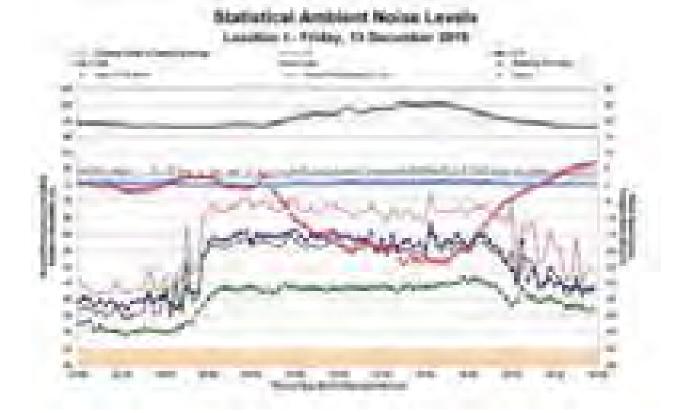

Second

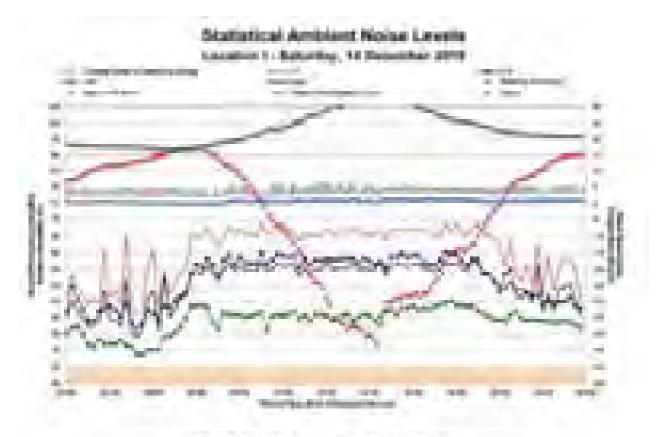

100.000

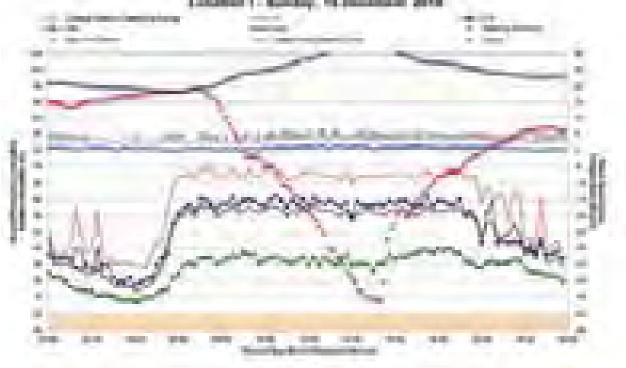


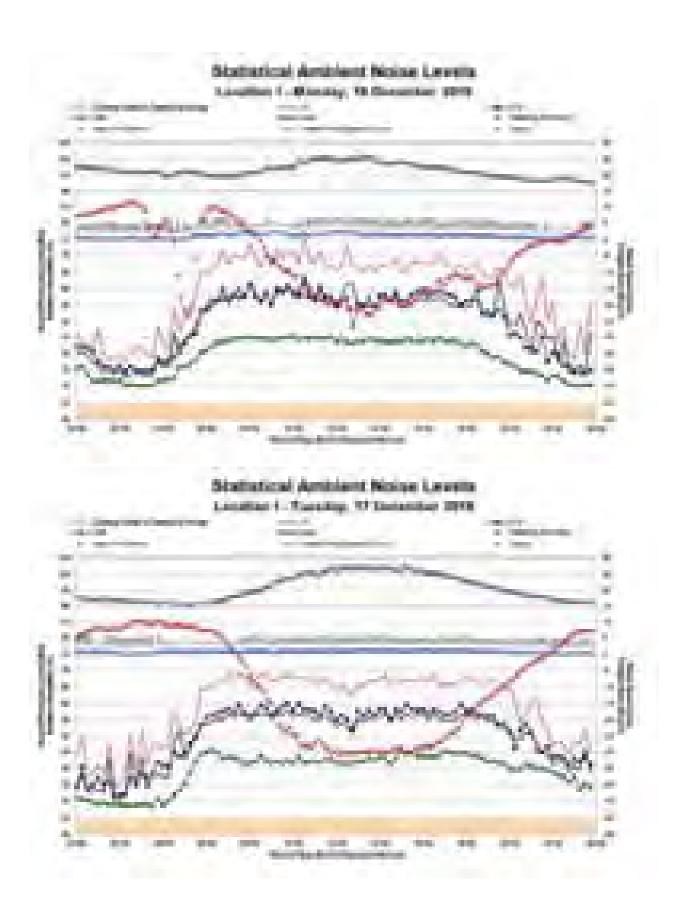


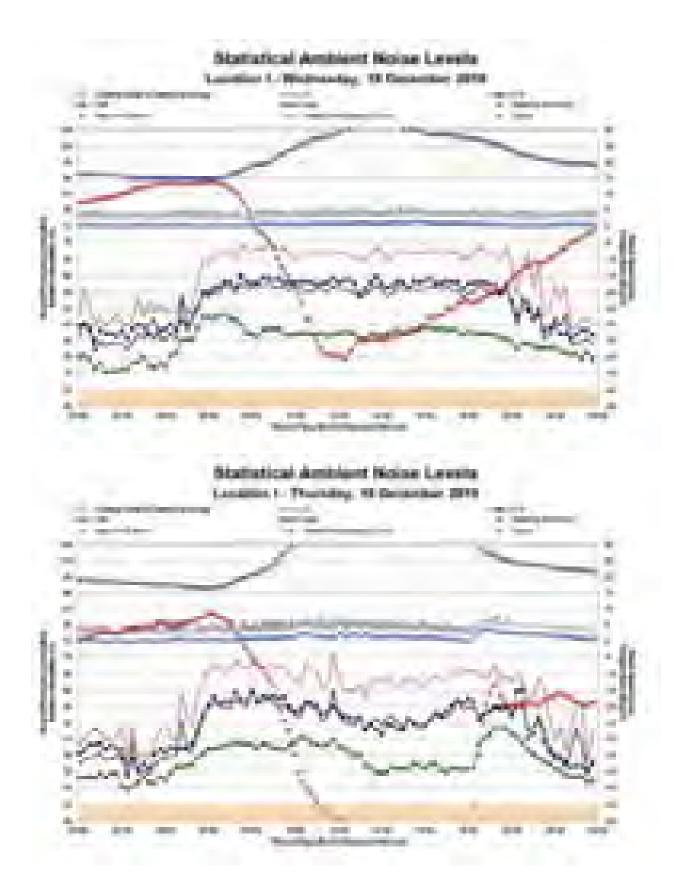

Statistical Amblant Noise Levels

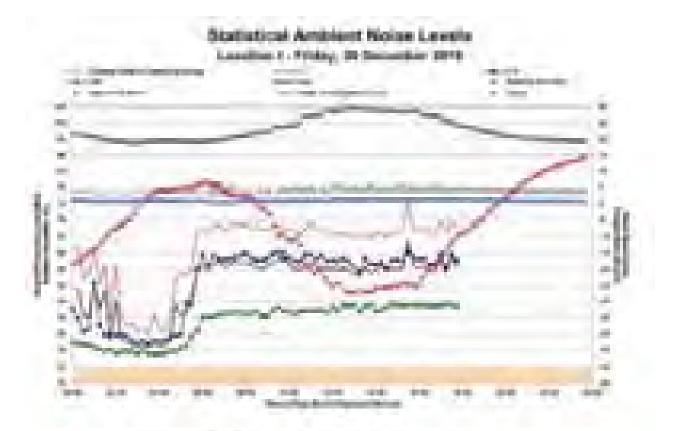


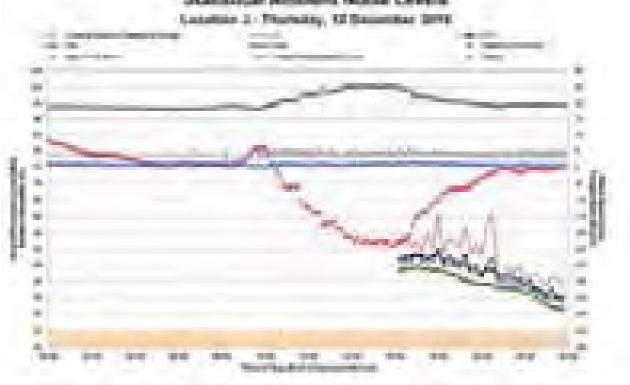


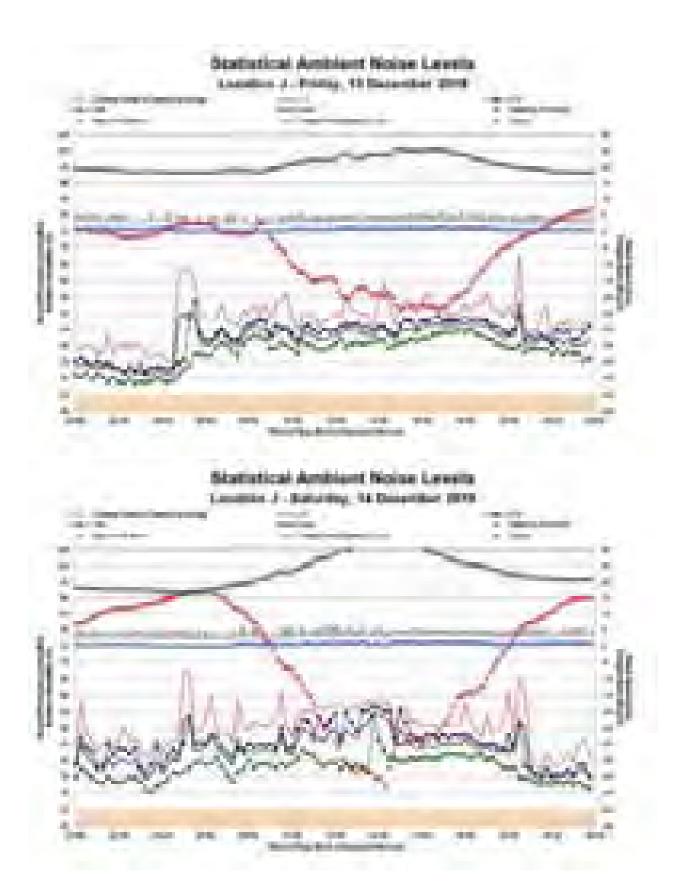


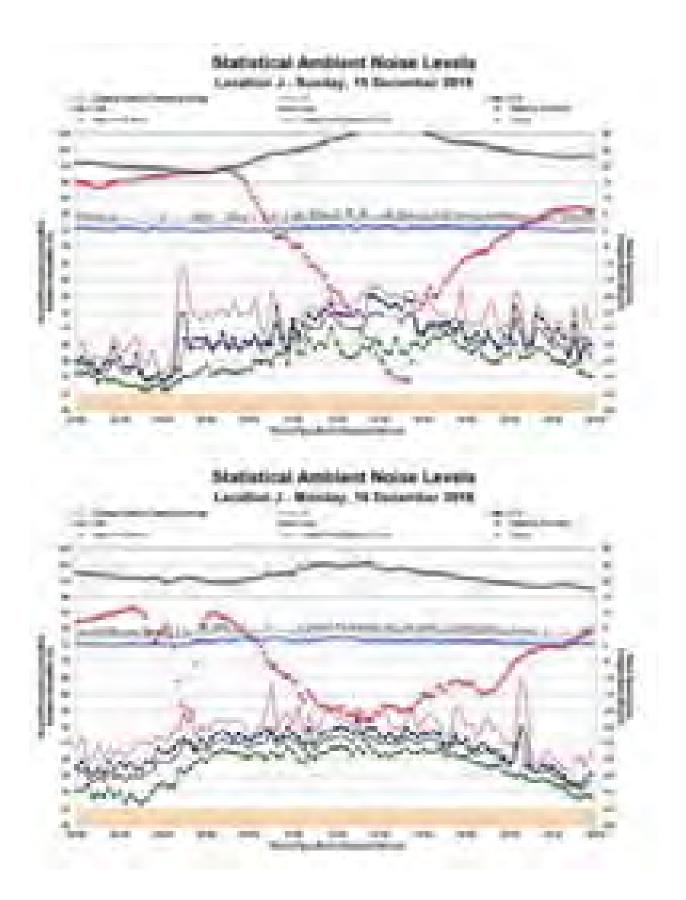


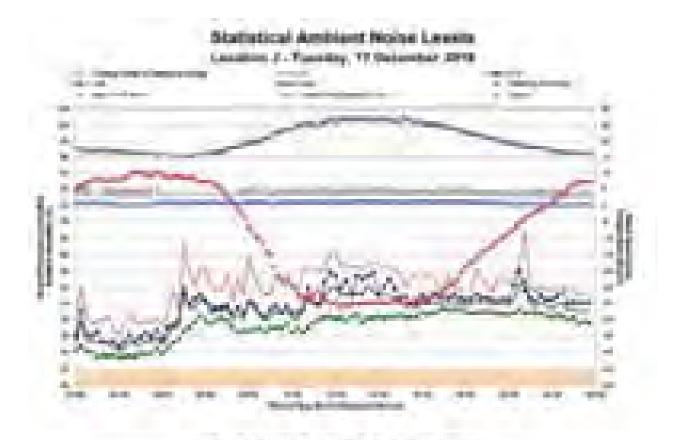


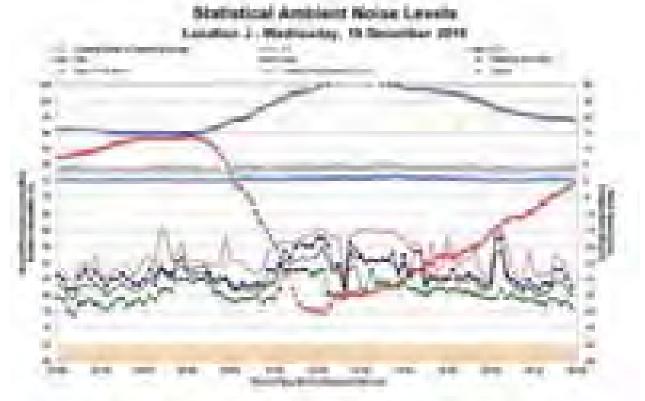




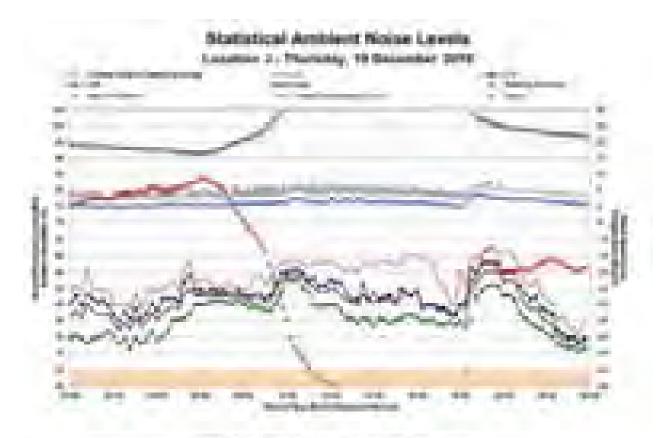


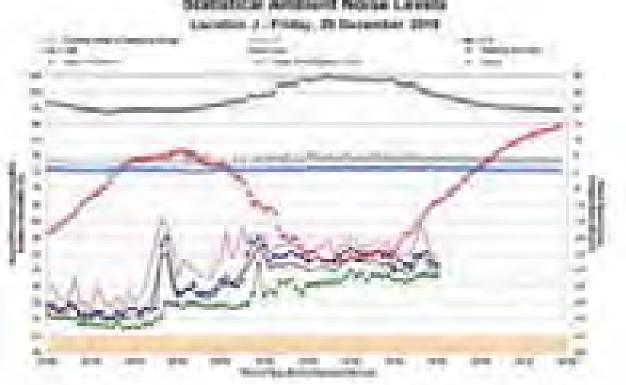


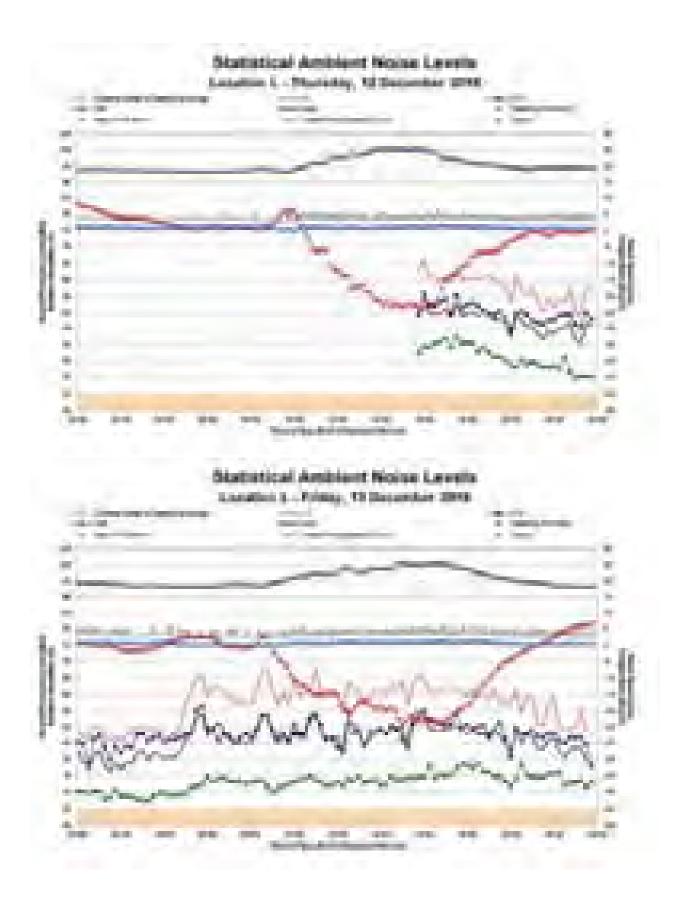


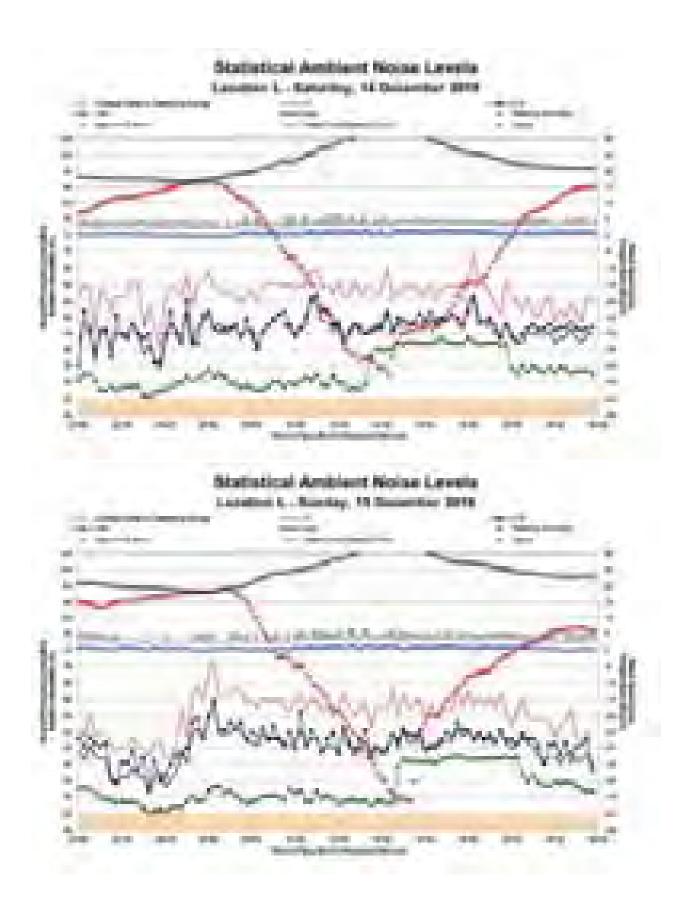


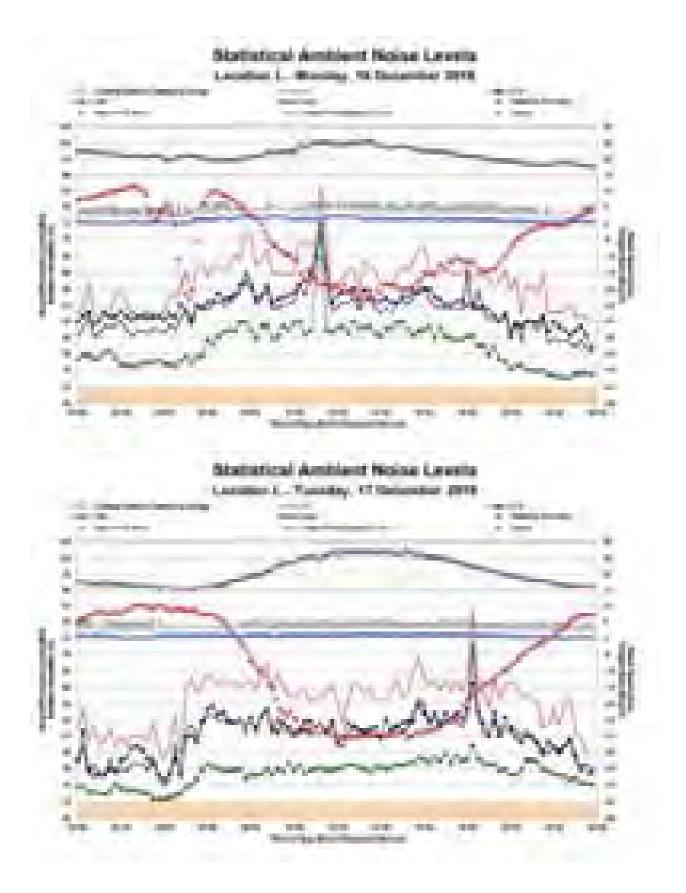
Statistical Amblent Noise Levels

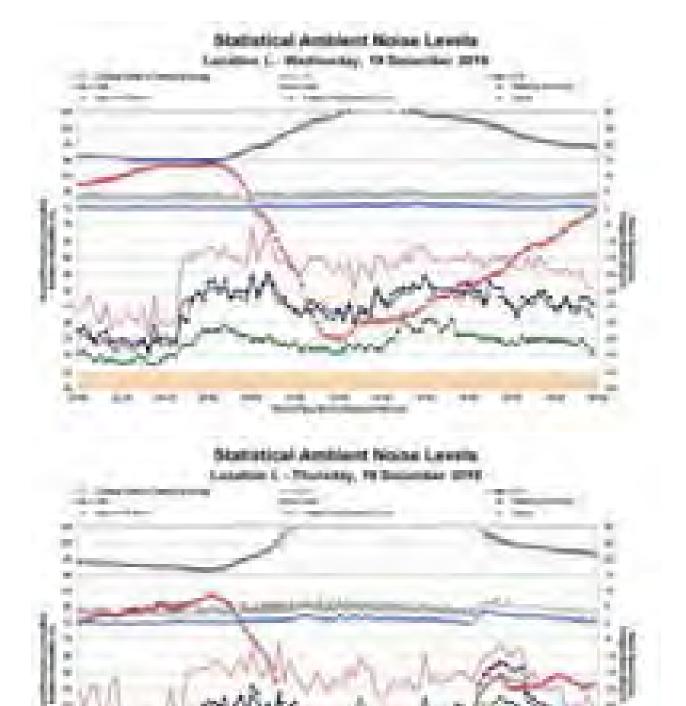







SUR[®]





Statistical Amblent Noise Levels

2010

1000

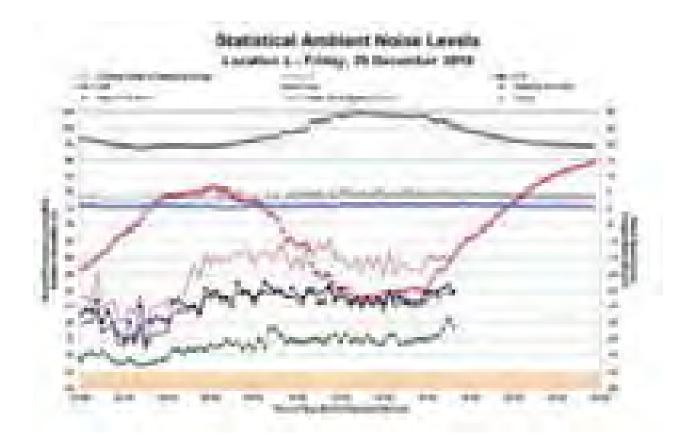
10.00

.....

Sec. 1

8

100


1000

12.00

100.00

10.00

1000

ASIA PACIFIC OFFICES

BRISBANE

Level 2, 15 Astor Terrace Spring Hill QLD 4000 Australia T: +61 7 3858 4800 F: +61 7 3858 4801

MACKAY

21 River Street Mackay QLD 4740 Australia T: +61 7 3181 3300

ROCKHAMPTON

rockhampton@slrconsulting.com M: +61 407 810 417

AUCKLAND

68 Beach Road Auckland 1010 New Zealand T: +64 27 441 7849

CANBERRA

GPO 410 Canberra ACT 2600 Australia T: +61 2 6287 0800 F: +61 2 9427 8200

MELBOURNE

Suite 2, 2 Domville Avenue Hawthorn VIC 3122 Australia T: +61 3 9249 9400 F: +61 3 9249 9499

SYDNEY

2 Lincoln Street Lane Cove NSW 2066 Australia T: +61 2 9427 8100 F: +61 2 9427 8200

NELSON

5 Duncan Street Port Nelson 7010 New Zealand T: +64 274 898 628

DARWIN

5 Foelsche Street Darwin NT 0800 Australia T: +61 8 8998 0100 F: +61 2 9427 8200

NEWCASTLE

10 Kings Road New Lambton NSW 2305 Australia T: +61 2 4037 3200 F: +61 2 4037 3201

TAMWORTH

PO Box 11034 Tamworth NSW 2340 Australia M: +61 408 474 248 F: +61 2 9427 8200

NEW PLYMOUTH

Level 2, 10 Devon Street East New Plymouth 4310 New Zealand T: +64 0800 757 695

GOLD COAST

Ground Floor, 194 Varsity Parade Varsity Lakes QLD 4227 Australia M: +61 438 763 516

PERTH

Ground Floor, 503 Murray Street Perth WA 6000 Australia T: +61 8 9422 5900 F: +61 8 9422 5901

TOWNSVILLE

Level 1, 514 Sturt Street Townsville QLD 4810 Australia T: +61 7 4722 8000 F: +61 7 4722 8001

Appendix 2

Air and Water Monitoring Results

(No. of pages including blank pages = 30)

This page has intentionally been left blank

Deposited Dust 2008 to 2019

									Page 1 of 4		
		D1			D2		D3				
Month	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash		
Jan-08	0.4	1.4	0.01	0.1	0.6	<0.1	14	2.6	4.1		
Feb-08	4.5	1.6	2.8	0.6	0.6	0.3	9.2	3.2	3.6		
Mar-08	0.4	1.6	0.1	0.4	0.6	0.1	0.8	3.1	0.3		
Apr-08	1.1	1.6	0.6	2.4	0.7	1.1	0.9	3.1	0.5		
May-08	0.2	1.6	<0.1	0.4	0.7	<0.1	0.1	3.1	<0.1		
Jun-08	0.4	1.6	0.3	0.7	0.7	0.4	1.3	3.1	0.6		
Jul-08	1	1.5	0.6	0.5	0.7	0.3	0.7	3.1	0.4		
Aug-08	0.6	1.5	0.3	1	0.8	0.4	1.3	3.1	0.7		
Sep-08	1	1.2	0.6	5	1.1	<0.1	1	3.1	0.6		
Oct-08	0.8	1.2	0.4	1.4	1.2	0.8	2.7	3.2	1		
Nov-08	1.2	1.2	0.8	1.2	1.2	0.8	1.7	3.1	1.1		
Dec-08	1.1	1.1	0.8	3	1.4	1.1	1.6	2.9	0.9		
Jan-09	0.4	1.1	<0.1	4.4	1.8	0.7	1.5	1.9	0.9		
Feb-09	2.8	0.9	2.1	5.8	2.2	2.8	2.7	1.4	2		
Mar-09	2	1.1	1.2	0.8	2.2	0.3	0.8	1.4	0.4		
Apr-09	0.6	1.0	0.5	1.6	2.2	0.7	0.8	1.4	0.5		
May-09	0.4	1.0	<0.1	1.3	2.2	0.4	0.8	1.4	0.4		
Jun-09	0.2	1.0	<0.1	1	2.3	0.3	0.6	1.4	0.3		
Jul-09	0.8	1.0	0.5	3.6	2.5	0.8	0.8	1.4	0.5		
Aug-09	1	1.0	0.7	18	3.9	9.6	1.8	1.4	1.1		
Sep-09	4.3	1.3	3.6	9	4.3	4.6	5.2	1.8	4.3		
Oct-09	0.8	1.3	0.5	1.7	4.3	0.6	1.4	1.6	0.9		
Nov-09	1.4	1.3	1.1	4	4.5	2	1.6	1.6	1.1		
Dec-09	0.6	1.3	0.3	0.8	4.3	0.4	5.6	2.0	4.8		
Jan-10	1.9	1.4	0.9	**11.3	4.3	1.5	1.9	2.0	1.1		
Feb-10	0.6	1.2	0.2	0.6	3.9	<0.1	3.2	2.0	1.5		
Mar-10	0.8	1.1	0.2	1.8	3.9	0.4	2.4	2.2	1.8		
Apr-10	0.8	1.1	0.3	4.9	4.2	1.8	3	2.4	2.1		
May-10	0.3	1.1	<0.1	2.2	4.3	0.8	3	2.5	2.2		
Jun-10	0.6	1.2	0.2	1.1	4.3	0.4	0.7	2.6	0.3		
Jul-10	0.4	1.1	<0.1	0.5	4.1	0.2	1.9	2.6	1.1		
Aug-10	0.6	1.1	0.3	2.6	2.7	0.4	1.6	2.6	1.2		
Sep-10	0.9	0.8	0.3	1.6	2.0	0.2	0.9	2.3	0.5		
Oct-10	0.9	0.8	0.3	3.5	2.1	1.5	0.9	2.2	0.4		
Nov-10	1	0.8	0.2	0.7	1.8	0.2	0.9	2.2	0.3		
Dec-10	1	0.8	0.5	0.7	1.8	0.3	1.8	1.9	1.1		
Jan-11	0.7	0.7	0.3	4.1	2.0	0.9	0.9	1.8	0.5		
Feb-11	0.5	0.7	0.2	2.9	2.2	0.7	-	1.6			
Mar-11	0.7	0.7	0.2	0.6	2.1	0.3	4.9	1.9	3.8		
Apr-11	0.4	0.7	0.1	1.1	1.8	0.5	5.4	2.1	4.8		
May-11	0.7	0.7	0.3	1.1	1.7	0.4	1.7	2.0	1.1		
Jun-11	0.6	0.7	0.1	0.5	1.7	0.2	1.6	2.0	1		
Jul-11	0.4	0.7	0.1	0.0	1.6	<0.1	0.6	1.9	0.3		
Aug-11	1.3	0.8	0.8	0.4	1.4	0.2	0.8	1.9	0.5		
Sep-11	1	0.8	0.5	1.2	1.4	0.5	0.6	1.8	0.3		

Deposited Dust 2008 to 2019

Page 2 of 4

		D1			D2			D3	rage 2 01 4
Month	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash
Oct-11	0.5	0.7	0.3	1	1.2	0.8	0.8	1.8	0.4
Nov-11	1.1	0.7	0.4	1.2	1.2	0.4	2	1.9	0.8
Dec-11	0.9	0.7	0.3	0.6	1.2	0.2	0.4	1.8	0.3
Jan-12	0.7	0.7	0.1	0.4	0.9	<0.1	0.4	1.7	0.1
Feb-12	0.8	0.8	<0.1	0.3	0.7	<0.1	0.7	1.7	<0.1
Mar-12	1.3	0.8	0.3	1.1	0.8	0.3	1	1.3	0.4
Apr-12	0.9	0.9	0.2	1.3	0.8	0.4	1.2	1.0	0.4
May-12	0.5	0.8	0.3	0.6	0.7	0.2	2.8	1.1	1
Jun-12	0.6	0.8	0.2	4.1	1.0	1.5	1.1	1.0	0.4
Jul-12	0.4	0.8	0.1	0.9	1.1	0.3	0.4	1.0	0.2
Aug-12	1	0.8	0.5	0.8	1.1	0.4	1.3	1.1	0.6
Sep-12	1.3	0.8	0.5		1.1		0.8	1.1	0.5
Oct-12	0.7	0.9	0.3	0.5	1.1	0.3	1.1	1.1	0.5
Nov-12	1	0.8	0.4	1.3	1.1	0.5	1.5	1.1	0.9
Dec-12	1.6	0.9	0.9	3.9	1.4	2.1	1.3	1.1	0.3
Jan-13	0.8	0.9	0.4	0.6	1.4	0.2	0.9	1.2	0.4
Feb-13	0.6	0.9	0.2	1	1.5	0.4	1	1.2	0.4
Mar-13	0.7	0.8	0.2	1.1	1.5	0.4	4.7	1.5	1
Apr-13	0.5	0.8	0.1	3.5	1.7	0.6	1.9	1.6	0.8
May-13	0.3	0.8	0.1	0.8	1.7	0.3	1	1.4	0.5
Jun-13	0.4	0.8	0.2	0.5	1.4	0.4	0.5	1.4	0.4
Jul-13	0.2	0.8	0.2	0.3	1.3	0.2	0.5	1.4	0.3
Aug-13	0.5	0.7	0.3	0.7	1.3	0.4	1.2	1.4	1
Sep-13	0.8	0.7	0.5	0.8	1.3	0.5	1.5	1.4	0.9
Oct-13	0.8	0.7	0.7	0.9	1.3	0.8	3.6	1.6	1.7
Nov-13	1.0	0.7	0.5	0.8	1.2	0.6	4.0	1.8	2.4
Dec-13	0.7	0.6	0.5	0.8	1.0	0.5	3.3	2.0	2.3
Jan-14	0.6	0.6	0.3	0.6	1.0	0.3	2.2	2.1	1.6
Feb-14	0.9	0.6	0.6	0.2	0.9	0.2	2	2.2	1.5
Mar-14	1.0	0.6	0.5	3.2	1.1	1	3.2	2.1	1.1
Apr-14	0.4	0.6	0.1	0.5	0.8	0.1	2.3	2.1	1.4
May-14	0.5	0.7	0.5	5.6	1.2	1.8	2.5	2.2	1.5
Jun-14	0.5	0.7	0.5	0.4	1.2	0.2	2.4	2.4	2
Jul-14	0.8	0.7	0.3	0.7	1.3	0.3	1.3	2.5	0.7
Aug-14	0.2	0.7	0.2	0.2	1.2	0.2	0.6	2.4	0.5
Sep-14	0.4	0.7	0.1	0.6	1.2	0.1	0.6	2.3	0.1
Oct-14	0.6	0.6	0.3	1.3	1.2	0.8	1.1	2.1	0.6
Nov-14	1.4	0.7	0.9	1.6	1.3	0.9	6.2	2.3	3.1
Dec-14	0.3	0.6	0.3	0.7	1.3	0.5	3.8	2.4	2.9
Jan-15	*16.2	0.6	13.1	0.8	1.3	0.4	2.2	2.4	1.2
Feb-15	0.6	0.6	0.4	6.5	1.8	1.9	3.2	2.5	1.5
Mar-15	0.5	0.6	0.5	0.5	1.6	0.3	0.9	2.3	0.6
Apr-15	0.7	0.6	0.3	0.8	1.6	0.3	5	2.5	3.5
May-15	0.2	0.6	0.2	1.5	1.3	0.9	2.9	2.5	2.2
Jun-15	0.2	0.5	0.1	0.2	1.3	0.2	1.8	2.5	1.2
Jul-15	0.2	0.5	0.2	0.3	1.3	0.2	1.8	2.5	1.4

Deposited Dust 2008 to 2019

Page 3 of 4

		D1			D2			Pa		
Month	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash	
Aug-15	0.8	0.5	0.5	0.5	1.3	0.4	3	2.7	2.8	
Sep-15	0.5	0.5	0.2	0.8	1.3	0.5	1.6	2.8	1.2	
Oct-15	1	0.6	0.6	0.7	1.2	0.4	1.5	2.8	1.1	
Nov-15	0.8	0.5	0.4	0.8	1.2	0.3	1.0	2.4	0.7	
Dec-15	2.0	0.7	0.9	1.1	1.2	0.6	3.0	2.3	2.5	
Jan-16	0.9	0.7	0.7	0.5	1.2	0.3	0.6	2.2	0.3	
Feb-16	0.5	0.7	0.3	0.5	0.7	0.3	0.7	2.0	0.5	
Mar-16	0.3	0.7	0.3	0.4	0.7	0.4	1.0	2.0	1	
Apr-16	0.4	0.7	0.2	0.5	0.7	0.4	1.4	1.7	0.7	
May-16	0.4	0.7	0.3	0.4	0.6	0.3	0.6	1.5	0.3	
Jun-16	0.3	0.7	0.2	0.5	0.6	0.4	0.8	1.4	0.5	
Jul-16	0.3	0.7	0.1	0.2	0.6	0.1	0.9	1.3	0.6	
Aug-16	0.5	0.7	0.2	0.5	0.6	0.3	4.2	1.4	2.2	
Sep-16	0.4	0.7	0.2	0.4	0.5	0.2	1.1	1.4	0.7	
Oct-16	0.5	0.6	0.4	0.6	0.5	0.3	0.8	1.3	0.4	
Nov-16	0.6	0.6	0.5	0.5	0.5	0.3	2.9	1.5	1.2	
Dec-16	1.0	0.5	0.7	1.3	0.5	0.8	3.6	1.6	1.7	
Jan-17	0.4	0.5	0.3	0.7	0.5	0.4	1	1.6	0.6	
Feb-17	0.6	0.5	0.6	11	1.4	9	1.6	1.7	1.1	
Mar-17	0.5	0.5	0.2	0.8	1.5	0.5	2.3	1.8	1.3	
Apr-17	0.2	0.5	0.1	4.1	1.8	1.1	0.6	1.7	0.3	
May-17	0.2	0.5	0.1	0.4	1.8	0.2	0.4	1.7	0.4	
Jun-17	0.4	0.5	0.2	4.4	2.1	2.1	0.9	1.7	0.5	
Jul-17	0.4	0.5	0.2	0.5	2.1	0.2	1.1	1.7	0.5	
Aug-17	0.3	0.5	0.3	0.5	2.1	0.3	0.6	1.4	0.4	
Sep-17	0.5 0.7	0.5	0.3	0.6	2.1 2.1	0.4	1.1	1.4	0.7	
Oct-17 Nov-17	0.7	0.5 0.5	0.4 0.4	1.8	2.1	0.4 0.8	1	1.4 1.3	0.8 0.7	
Dec-17	0.8	0.5	0.4	0.7	2.2	0.8	0.8	1.0	0.7	
Jan-18	0.7	0.5	0.4	1.6	2.2	0.4	1.8	1.1	1.1	
Feb-18	0.5	0.5	0.3	0.8	1.4	0.5	1.0	1.1	0.8	
Mar-18	0.3	0.5	0.4	0.6	1.4	0.5	5.1	1.1	1.2	
Apr-18	0.4	0.5	0.4	1	1.4	0.3	3.9	1.6	3.1	
May-18	0.3	0.5	0.3	0.8	1.1	0.7	0.8	1.6	0.5	
Jun-18	0.7	0.6	0.2	3.1	1.1	0.8	1	1.6	0.5	
Jul-18	0.3	0.5	0.2	0.5	1.1	0.0	0.3	1.6	0.3	
Aug-18	0.5	0.6	0.4	0.5	1.1	0.4	0.6	1.6	0.5	
Sep-18	0.7	0.6	0.4	0.7	1.1	0.4	0.8	1.5	0.5	
Oct-18	0.3	0.5	0.2	0.5	1.1	0.4	0.7	1.5	0.5	
Nov-18	0.6	0.5	0.4	2.0	1.1	1.1	3.0	1.7	2.3	
Dec-18	1.1	0.6	0.8	2.0	1.2	1.1	2.9	1.8	2	
Jan-19	1.2	0.6	1	1.7	1.2	1.1	1.5	1.8	1.1	
Feb-19	0.7	0.6	0.6	1.6	1.3	1.1	1.3	1.8	1	
Mar-19	1.3	0.7	0.9	1.8	1.4	1.5	2	1.6	1.5	
Apr-19	0.3	0.7	0.3	0.8	1.3	0.7	0.9	1.3	0.9	

								F	Page 4 of 4
		D1			D2			D3	
Month	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash	Insoluble Matter	Rolling Annual Average	Ash
May-19	0.4	0.7	0.2	0.9	1.3	0.5	0.8	1.3	0.5
Jun-19	0.5	0.7	0.3	1.7	1.2	0.8	0.7	1.3	0.5
Jul-19	0.3	0.7	0.2	0.4	1.2	0.3	0.4	1.3	0.3
Aug-19	0.4	0.7	0.2	0.5	1.2	0.4	0.7	1.3	0.4
Sep-19	0.5	0.6	0.3	0.6	1.2	0.5	0.6	1.3	0.4
Oct-19	1	0.7	0.6	2.9	1.4	1.3	1.5	1.4	1.1
Nov-19	0.4	0.7	0.2	0.9	1.3	0.5	0.8	1.3	0.5
Dec-19	0.5	0.7	0.3	1.7	1.2	0.8	0.7	1.3	0.5
Average*	0.7	0.8	0.4	1.5	1.5	0.8	1.8	1.8	1.1
Stnd Dev*	0.6	0.3	0.4	2.1	1.0	1.2	1.7	0.5	1.0
Min*	0.2	0.5	0.0	0.1	0.5	0.1	0.1	1.0	0.1
Max*	4.5	1.6	3.6	18.0	4.5	9.6	14.0	3.2	4.8

* Since 2008

** Contaminated sample (e.g. bird droppings)

Surface Water 2008 to 2019

Surface Water	Quality	Monitoring	Results -	2008/2009
---------------	---------	------------	-----------	-----------

Sample Site Date	рН	EC	TSS	1	Sample	1	1			
		(µS/cm)	(mg/L)	Flow	Sample Site	Date	рН	EC (µS/cm)	TSS (mg/L)	Flow
• · ·	6.6	940	2	N	1	Dec-08	7.0	1210	6	Ν
8 Jun-08	7.1	810	7	N	8	Dec-08	7.3	980	16	Ν
9 Jun-08	7.7	740	4	L	9	Dec-08	6.8	1040	2	L
10 Jun-08	7.6	1230	5	L	10	Dec-08	7.2	1390	2	Ν
11 Jun-08	7.1	1840	2	N	11	Dec-08	6.8	1610	15	Ν
FMCU Jun-08	6.9	620	11	VL	FMCU	Dec-08	7.0	450	2	Ν
FMCD Jun-08	7.2	300	6	N	FMCD	Dec-08	6.8	160	4	L
1 Jul-08	6.8	1160	6	L	1	Jan-09	6.8	1130	39	Ν
8 Jul-08	7.2	1100	4	L	8	Jan-09	6.8	870	22	Ν
9 Jul-08	7.6	1060	3	L	9	Jan-09	7.0	1180	7	L
10 Jul-08	7.3	1400	4	М	10	Jan-09	7.3	1350	7	L
11 Jul-08	6.8	2060	7	L	11	Jan-09	6.8	1330	12	Ν
FMCU Jul-08	7.4	820	10	N	FMCU	Jan-09	7.0	230	9	Ν
FMCD Jul-08	7.4	190	2	VL	FMCD	Jan-09	7.3	150	27	М
1 Aug-08	6.9	1220	2	N	1	Feb-09	6.8	680	7	Ν
8 Aug-08	7.4	1140	4	L	8	Feb-09	7.0	590	3	L
9 Aug-08	7.7	1090	7	М	9	Feb-09	7.3	540	7	L
10 Aug-08	7.5	1410	5	N	10	Feb-09	7.1	1270	3	L
11 Aug-08	7.0	2220	4	N	11	Feb-09	6.8	910	11	Ν
FMCU Aug-08	8.3	730	14	N	FMCU	Feb-09	6.8	350	13	Ν
FMCD Aug-08	7.8	170	3	L	FMCD	Feb-09	7.4	260	11	М
1 Sep-08	7.1	890	9	N	1	Mar-09	6.8	650	4	Ν
8 Sep-08	7.5	820	2	L	8	Mar-09	7.2	700	3	Ν
9 Sep-08	7.8	650	5	M	9	Mar-09	7.5	820	2	М
10 Sep-08	7.9	1250	8	М	10	Mar-09	7.4	1230	6	М
11 Sep-08	7.3	1330	14	N	11	Mar-09	7.3	1060	7	Ν
FMCU Sep-08	7.3	460	96	L	FMCU	Mar-09	7.3	420	9	Ν
FMCD Sep-08	7.3	320	11	N	FMCD	Mar-09	7.6	150	7	М
1 Oct-08	6.7	970	3	N	1	Apr-09	7.0	740	4	Ν
8 Oct-08	7.7	1150	2	L	8	Apr-09	7.4	500	4	Ν
9 Oct-08	7.5	910	2	Μ	9	Apr-09	7.5	1030	9	М
10 Oct-08	7.1	1200	2	N	10	Apr-09	7.3	1050	10	М
11 Oct-08	6.8	1930	2	N	11	Apr-09	7.7	1020	11	Ν
FMCU Oct-08	6.8	540	15	N	FMCU	Apr-09	6.7	340	17	М
FMCD Oct-08	7.1	200	31	М	FMCD	Apr-09	7.3	200	51	Н
1 Nov-08	7.1	1130	4	N	1	May-09	7.4	810	10	N
8 Nov-08	7.7	940	15	N	8	May-09	7.5	660	44	М
9 Nov-08	7.4	1050	3	Н	9	May-09	7.9	610	41	М
10 Nov-08	7.4	510	2	L	10	May-09	7.7	1070	5	М
11 Nov-08	7.2	2020	6	N	11	May-09	7.3	940	3	N
FMCU Nov-08	7.0	570	11	N	FMCU	May-09	6.9	540	10	N
FMCD Nov-08	7.9	160	2	М	FMCD	May-09	8.0	180	2	М

N - Nil Flow, L - Low Flow, M - Medium Flow, H - High Flow

			-						-	-	Pag	e 2 of 12
Sample Site	Date	pН	EC (uS/cm)	TSS (mg/L)	Flow		Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	Flow
1	Jun-09	6.8	510	15	N		1	Dec-09	NS	NS	NS	N
8	Jun-09	7.4	630	<2	M		8	Dec-09	NS	NS	NS	N
9	Jun-09	7.7	390	22	H		9	Dec-09	NS	NS	NS	N
10	Jun-09	7.4	680	23	M	-	10	Dec-09	NS	NS	NS	N
11	Jun-09	7.1	560	8	N		11	Dec-09	7.4	1590	18	N
FMCU	Jun-09	7.6	280	12	H	-	FMCU	Dec-09	NS	NS	NS	N
FMCD	Jun-09	7.2	240	20	H	-	FMCD	Dec-09	NS	NS	NS	N
1	Jul-09	7.8	880	9	N		1	Jan-10	NS	NS	NS	N
8	Jul-09	7.6	820	<2	L		8	Jan-10	NS	NS	NS	N
9	Jul-09	7.9	870	19	 L	-	9	Jan-10	NS	NS	NS	N
10	Jul-09	7.6	1290	9	L		10	Jan-10	NS	NS	NS	N
10	Jul-09	NS	NS	NS			11	Jan-10	7.1	2220	37	L
FMCU	Jul-09	6.6	510	23		-	FMCU	Jan-10	NS	NS	NS	N
FMCD	Jul-09	7.5	150	69	L		FMCD	Jan-10	NS	NS	NS	N
1	Aug-09	7.2	990	15	 L		1	Feb-10	NS	NS	NS	N
8	Aug-09 Aug-09	7.3	840	11	Ľ		8	Feb-10	NS	NS	NS	N
9	Aug-09 Aug-09	7.6	1180	25			9	Feb-10	NS	NS	NS	N
10	Aug-09 Aug-09	7.3	1640	16	L		10	Feb-10	NS	NS	NS	N
10	Aug-09 Aug-09	7.3	1720	18	L 		10	Feb-10	7.1	1820	17	N
FMCU	Aug-09 Aug-09	7.4	700	21	N		FMCU	Feb-10	NS	NS	NS	N
FMCD	Aug-09 Aug-09	7.8	140	2	N	-	FMCD	Feb-10	NS	NS	NS	N
1	Sep-09	7.8	1050	5	N	-	1	Mar-10	NS	NS	NS	N
8	Sep-09 Sep-09	6.4	730	10	N		8	Mar-10	NS	NS	NS	N
9	Sep-09 Sep-09	7.6	1770	10	N		9	Mar-10	NS	NS	NS	N
9 10		7.5	1820	8			9 10	Mar-10 Mar-10	NS	NS	NS	N
10	Sep-09	6.2	1620	0 10	L N		10		7.5	1500	8	N
	Sep-09	NS	NS	NS	N			Mar-10	NS	NS	o NS	N
FMCU	Sep-09						FMCU FMCD	Mar-10				
FMCD	Sep-09	NS	NS	NS 10	N			Mar-10	NS	NS	NS	N
1 8	Oct-09	8.6 NS	1050 NS	10 NS	N N	-	1	Apr-10	NS NS	NS NS	NS NS	N
	Oct-09				N		8	Apr-10				N
9	Oct-09	8.4	1500	186			9	Apr-10	NS	NS	NS	N
10	Oct-09	8.5	1770	3	L	-	10	Apr-10	NS	NS 1620	NS 70	N
11	Oct-09	8.3	1480	7	N			Apr-10	7.2	1620	72	- NI
FMCU FMCD	Oct-09	NS	NS	NS	N		FMCU	Apr-10	NS	NS	NS	N
	Oct-09	NS	NS	NS	N		FMCD	Apr-10	NS	NS	NS	N
1	Nov-09	8.8	1580	22 NS		-	1	May-10	NS	NS	NS	N
8	Nov-09	NS	NS	NS	N	╎┝	8	May-10	NS	NS	NS	N
9	Nov-09	NS	NS	NS 10	N	-	9	May-10	NS	NS	NS	N
10	Nov-09	8.5	2610	10	L	-	10	May-10	NS	NS	NS	N
11	Nov-09	8.8	2230	26	L	-	11	May-10	NS	NS	NS	N
FMCU	Nov-09	NS	NS	NS	N	-	FMCU	May-10	7.5	322.0	14.0	-
FMCD	Nov-09	NS		NS	N	ΙL	FMCD	May-10	7.9	165	360	-

Surface Water Quality Monitoring Results – 2009/2010

D - Dry, N - Nil Flow, L - Low Flow, M - Medium Flow, H - High Flow NS - Sample Unobtainable

		•				,,,,,	toring Re	suits – 4	2010/20	,,,,	Pa	ige 3
Sample Site		л Ц	EC (uS/cm)	TSS	Flow		Sample Site	Data	лЦ	EC (uS/cm)	TSS	
	Date	pH						Date Dec-10	pH		(mg/L)	Flo
1	Jun-10	7.9	460	19 NC	NS		1		6.7	436.0	28.0	S
8	Jun-10	NS	NS	NS	Dry		8	Dec-10	7.16	732	6	S
9	Jun-10	NS	NS	NS	Dry		9	Dec-10	7.32	1070	32	St
10	Jun-10	7.3	880	8	NS		10	Dec-10	7.17	1410	10	Tric
11	Jun-10	7.5	690	20	NS		11	Dec-10	6.85	493	36	S
FMCU	Jun-10	6.9	388	NS	NS		FMCU	Dec-10	6.8	465.0	7.0	Tric
FMCD	Jun-10	0	0	0	0		FMCD	Dec-10	7.21	1580	<5	Slo
1	Jul-10	6.22	504	18	Pond		1	Jan-11	6.9	536.0	36.0	St
8	Jul-10	7.16	1110	2	Pond		8	Jan-11	7.19	943	<5	Tric
9	Jul-10	7.2	1300	27	Trickle		9	Jan-11	NS	NS	NS	-
10	Jul-10	7.12	1350	8	Trickle		10	Jan-11	7.41	1680	5	St
11	Jul-10	7.06	865	13	Pond		11	Jan-11	7.05	568	18	Slo
FMCU	Jul-10	7.9	590	8	Trickle		FMCU	Jan-11	6.7	528.0	14.0	St
FMCD	Jul-10	7.99	128	1	Steady		FMCD	Jan-11	6.79	138	6	Slo
1	Aug-10	6.55	492	12	Slow		1	Feb-11	6.7	424.0	100	St
8	Aug-10	6.75	988	1	Trickle		8	Feb-11	7.25	624	49	St
9	Aug-10	6.92	516	44	Trickle		9	Feb-11	NS	NS	NS	-
10	Aug-10	6.67	1220	10	Trickle		10	Feb-11	7.16	519	31	St
11	Aug-10	6.89	602	13	Slow		11	Feb-11	7.44	1570	20	St
FMCU	Aug-10	7.31	543	7	Still		FMCU	Feb-11	6.7	488.0	16.0	St
FMCD	Aug-10	7.38	130	2	Steady		FMCD	Feb-11	6.85	139	<5	Slo
1	Sep-09	7.05	464	4	Still		1	Mar-11	NS	NS	NS	D
8	Sep-10	7.14	947	3	Trickle		8	Mar-11	7.29	151	20	St
9	Sep-10	7.23	1410	6	Trickle		9	Mar-11	NS	NS	NS	
10	Sep-10	7.25	1700	2	Trickle		10	Mar-11	NS	NS	NS	D
11	Sep-10	7	671	14	Still		11	Mar-11	7.13	578	16	St
FMCU	Sep-10	7.29	534	4	Pond		FMCU	Mar-11	NS	NS	NS	D
FMCD	Sep-10	7.44	121	1	Steady		FMCD	Mar-11	6.73	122	<5	Stea
1	Oct-10	7.19	484	5	Still		1	Apr-11	NS	NS	NS	D
	Oct-10	7.29	1010	2	Still		8	Apr-11	7.27	650	9	St
9	Oct-10	7.74	1570	7	Trickle		9	Apr-11	NS	NS	NS	- 51
10	Oct-10 Oct-10	7.59	1840	6	Trickle		10	Apr-11	7.12	487	230	Tric
11	Oct-10	7.22	734	16	Still		11	Apr-11	6.82	577	48	St
FMCU	Oct-10	7.07	456	7	Still		FMCU	Apr-11	7.1	292.0	20.0	St
FMCD	Oct-10 Oct-10	6.93	121	1	Steady		FMCD	Apr-11	7.26	133	<5	Ste
1	Nov-10	6.89	402	12	Steady		1	May-11	NS	NS	NS	D
8	Nov-10	7.13	461	2	Still		8	May-11	7.22	717	5	St
9	Nov-10	7.13	307	45	Trickle		<u> </u>	May-11	NS	NS	NS	3
	Nov-10							May-11				
10		7.09	751	32	Trickle		10		6.99	1203	5	St
11	Nov-10	6.95	340	6	Still		11	May-11	6.87	320	22	St
FMCU	Nov-10	6.94	509	16	Trickle		FMCU	May-11	6.5	278.0	12.0	St
FMCD	Nov-10	7.14	294	23	Steady		FMCD	May-11	6.78	120	6	Ste

Surface Water Quality Monitoring Results – 2010/2011

NS - Sample Unobtainable

					-						ge 4 of 12
Sample			EC	TSS		Sample			EC	TSS	
Site	Date	рН	(uS/cm)	(mg/L)	Flow	Site	Date	рН	(uS/cm)	(mg/L)	Flow
1	Jun-11	6.55	607	25	Slow	1	Dec-11	7.0	545.0	30.0	Slow
8	Jun-11	6.63	771	20	Steady	8	Dec-11	7.49	615	10	Steady
9	Jun-11	NS	NS	NS	NS	9	Dec-11	NS	NS	NS	NS
10	Jun-11	6.69	854	25	Steady	10	Dec-11	7.32	752	24	Slow
11	Jun-11	6.56	757	14	Still	11	Dec-11	7.31	526	49	Slow
FMCU	Jun-11	7	460	8	Slow	FMCU	Dec-11	7.2	452.0	8.0	Trickle
FMCD	Jun-11	7.48	138	8	Steady	FMCD	Dec-11	7.33	248	5	Steady
1	Jul-11	6.59	227	38	Steady	1	Jan-12	7.2	673.0	14.0	Still
8	Jul-11	6.6	255	16	Fast	8	Jan-12	7.33	296	60	Steady
9	Jul-11	NS	NS	NS	NS	9	Jan-12	NS	NS	NS	NS
10	Jul-11	6.65	248	74	Fast	10	Jan-12	7.36	1440	33	Steady
11	Jul-11	6.54	200	91	Steady	11	Jan-12	7.56	494	85	Still
FMCU	Jul-11	6.87	639	5	Trickle	FMCU	Jan-12	7.4	511.0	18.0	Still
FMCD	Jul-11	7.03	146	16	Steady	FMCD	Jan-12	7.51	147	10	Still
1	Aug-11	6.93	527	24	Slow	1	Feb-12	7.3	388.0	44.0	Slow
8	Aug-11	6.81	301	14	Slow	8	Feb-12	7.5	480	20	Slow
9	Aug-11	NS	NS	NS	NS	9	Feb-12	NS	NS	NS	NS
10	Aug-11	7.11	821	102	Slow	10	Feb-12	7.47	618	30	Slow
11	Aug-11	6.93	1060	29	Slow	11	Feb-12	7.4	393	25	Slow
FMCU	Aug-11	7.74	611	NS	Trickle	FMCU	Feb-12	7.1	384.0	16.0	Slow
FMCD	Aug-11	6.95	180	5	Steady	FMCD	Feb-12	7.49	253	55	Steady
1	Sep-11	6.78	674	8	Trickle	1	Mar-12	7.0	687.0	16.0	Trickle
8	Sep-11	6.81	770	7	Slow	8	Mar-12	7.64	668	16	Slow
9	Sep-11	NS	NS	NS	NS	9	Mar-12	NS	NS	NS	NS
10	Sep-11	7.18	1410	5	0	10	Mar-12	7.51	850	18	Slow
11	Sep-11	6.97	866	26	Trickle	11	Mar-12	7.31	767	8	Slow
FMCU	Sep-11	6.81	502	10	Still	FMCU	Mar-12	6.9	199.0	21.0	Fast
FMCD	Sep-11	7.08	200	10	Steady	FMCD	Mar-12	6.96	186	42	Fast
1	Oct-11	6.96	781	5	Trickle	1	Apr-12	7.0	579.0	36.0	Slow
8	Oct-11	7.09	932	5	Trickle	8	Apr-12	7.44	448	12	Steady
9	Oct-11	NS	NS	NS	NS	9	Apr-12	NS	NS	NS	NS
10	Oct-11		1150	6	Slow	10	Apr-12		753	24	Steady
11	Oct-11	7.13	606	624	Trickle	11	Apr-12		510	16	Slow
FMCU	Oct-11	6.78	597	12	Slow	FMCU	Apr-12		432.0	26.0	Steady
FMCD	Oct-11	6.98	180	11	Steady	FMCD	Apr-12		196	228	Fast
1	Nov-11	7.05	455	173	Slow	1	May-12		1190.0	37.0	Still
8	Nov-11	6.97	217	18	Fast	8	y May-12		634	5	Slow
9	Nov-11	NS	NS	NS	NS	9	May-12		NS	NS	NS
10	Nov-11	7.23	285	342	Fast	10	May-12		1440	22	Slow
11	Nov-11		1180	16	Steady	11	May-12		1010	78	Still
	Nov-11	7.1	270	51	Still	FMCU	May-12		491.0	15.0	Slow
	Nov-11		133	132	Steady	FMCD	May-12		192	33	Fast

Surface Water Quality Monitoring Results – 2011/2012

FMCDNov-117.17133132SteadyFMCDMay-127.5919233FastD - Dry, N - Nil Flow, L - Low Flow, M - Medium Flow, H - High Flow NS - Sample Unobtainable

Sample			EC	TSS		Sample			EC	TSS	e 5 of 12
Site	Date	ъЦ	(uS/cm)	(mg/L)	Flow	Site	Date	pН	(uS/cm)	(mg/L)	Flow
<u> </u>		pH 6.97	699	(mg/L) 22	FIOW	1	Dec-12	<u>рп</u> 0.0	0.0	0.0	**********
8	Jun-12	7.35	841	 <5		8	+	0.0	0.0	0.0	Dry NS
<u> </u>	Jun-12		***************	NS		9	Dec-12	************	**************	*************	
	Jun-12	NS	NS	~~~~~~~~~~~	NS	~~~~~~~~~~~	Dec-12	NS	NS	NS	NS
10	Jun-12	7.41	825	22		10	Dec-12	0	0	0	NS
11	Jun-12	7.1	822	19		11	Dec-12	0	0	0	NS
FMCU	Jun-12	7.03	228	29		FMCU	Dec-12	7.4	427.0	16.0	-
FMCD	Jun-12	7.13	215	26		FMCD	Dec-12	7.69	142	5	-
1	Jul-12	6.97	906	<5		1	Jan-13	0.0	0.0	0.0	Dry
8	Jul-12	7.3	431	32	-	8	Jan-13	0	0	0	NS
9	Jul-12	NS	NS	NS	NS	9	Jan-13	NS	NS	NS	NS
10	Jul-12	7.66	1020	12	-	10	Jan-13	0	0	0	NS
11	Jul-12	0	0	0	NS	11	Jan-13	0	0	0	NS
FMCU	Jul-12	7.35	624	22		FMCU	Jan-13	7.7	461.0	20.0	-
FMCD	Jul-12	7.52	230	40	-	FMCD	Jan-13	7.77	157	<5	-
1	Aug-12	7.13	1330	17		1	Feb-13	6.9	483.0	28.0	-
8	Aug-12	7.36	717	174	-	8	Feb-13	0	0	0	NS
9	Aug-12	NS	NS	NS	NS	9	Feb-13	NS	NS	NS	NS
10	Aug-12	7.67	1520	9	-	10	Feb-13	7.08	724	18	-
11	Aug-12	7.43	1070	25	-	11	Feb-13	6.72	391	23	-
FMCU	Aug-12	7.32	477	6	-	FMCU	Feb-13	6.7	325.0	5.0	-
FMCD	Aug-12	7.52	235	6	-	FMCD	Feb-13	7.21	257	6	-
1	Sep-12	7.18	1590	17	-	1	Mar-13	7.0	922.0	24.0	-
8	Sep-12	0	0	0	NS	8	Mar-13	0	0	0	NS
9	Sep-12	NS	NS	NS	NS	9	Mar-13	NS	NS	NS	NS
10	Sep-12	7.62	1720	106	-	10	Mar-13	7.47	1210	6	-
11	Sep-12	7.4	1290	95	-	11	Mar-13	6.98	595	13	-
FMCU	Sep-12	7.21	500	7	-	FMCU	Mar-13	7.1	284.0	26.0	-
FMCD	Sep-12	7.57	206	<5	-	FMCD	Mar-13	7.19	300	<5	-
1	Oct-12	7.24	1760	18	-	1	Apr-13	7.1	1030.0	8.0	-
8	Oct-12	0	0	0	NS	8	Apr-13	0	0	0	NS
9	Oct-12	NS	NS	NS	NS	9	Apr-13	NS	NS	NS	NS
10	Oct-12	7.67	1750	12	-	10	Apr-13	7.42	1490	6	-
11	Oct-12	7.62	1650	57	-	11	Apr-13	7.1	675	10	-
FMCU	Oct-12	7.37	453	16	-	FMCU	Apr-13	7.1	269.0	25.0	-
FMCD	Oct-12	7.65	171	8	-	FMCD	Apr-13	7.37	172	82	-
1	Nov-12	0	0	0	Dry	1	May-13	7.0	648.0	22.0	-
8	Nov-12	0	0	0	NS	8	May-13	0	0	0	NS
9	Nov-12	NS	NS	NS	NS	9	May-13	NS	NS	NS	NS
10	Nov-12	0	0	0	NS	10	May-13	7.55	1070	38	-
11	Nov-12	7.67	2550	108	-	11	May-13	7.16	603	15	
FMCU	Nov-12	7.11	549	36		FMCU	May-13	0.0	0.0	0.0	NS
FMCD	Nov-12	7.44	149	43			May-13		0.0	0.0	NS

Comme			F 0	TOO		Commente	, I		F 0		e 6 of 12
Sample			EC	TSS		Sample			EC	TSS	
Site	Date	pH	(uS/cm)	(mg/L)	Flow	Site	Date	pH	(uS/cm)		Flow
1	Jun-13	6.97	702	<5		1	Dec-13	6.7	706.0	9.0	-
8	Jun-13	NF	NF	NF	NF	8	Dec-13	NF	NF	NF	NF
9	Jun-13	NS	NS	NS	NS	9	Dec-13	NS	NS	NS	NS
10	Jun-13	7.54	1240	<5		10	Dec-13	7.02	1130	13	-
11	Jun-13	7.09	799	5		11	Dec-13	6.85	542	30	-
FMCU	Jun-13	7.17	306	83	Low	FMCU	Dec-13	6.6	337.0	6.0	Pond
FMCD	Jun-13	7.55	140	<5	Low	FMCD	Dec-13	7.27	187	<5	Mod
1	Jul-13	6.59	593	7		1	Jan-14	6.9	740.0	84.0	-
8	Jul-13	NF	NF	NF	NF	8	Jan-14	NF	NF	NF	NF
9	Jul-13	NS	NS	NS	NS	9	Jan-14	NS	NS	NS	NS
10	Jul-13	6.98	787	12		10	Jan-14	7.42	1270	6	-
11	Jul-13	6.84	392	5		11	Jan-14	7.32	896	66	-
FMCU	Jul-13	7.16	334	24	Low	FMCU	Jan-14	6.9	353.0	7.0	Pond
FMCD	Jul-13	7.6	142	<5	Low	FMCD	Jan-14	7.19	140	<5	Mod
1	Aug-13	6.81	955	9	-	1	Feb-14	7.3	865.0	10.0	-
8	Aug-13	NF	NF	NF	NF	8	Feb-14	NF	NF	NF	NF
9	Aug-13	NS	NS	NS	NS	9	Feb-14	NS	NS	NS	NS
10	Aug-13	7.44	1350	<5	-	10	Feb-14	7.66	1690	<5	-
11	Aug-13	7.16	569	31	-	11	Feb-14	0	0	0	Dry
FMCU	Aug-13	7	354	<5	Pond	FMCU	Feb-14	7.5	460.0	25.0	Pond
FMCD	Aug-13	7.5	132	<5	Mod	FMCD	Feb-14	7.65	146	<5	Low
1	Sep-13	7.32	1120	18	-	1	Mar-14	7.0	276.0	32.0	-
8	Sep-13	NF	NF	NF	NF	8	Mar-14	NF	NF	NF	NF
9	Sep-13	NS	NS	NS	NS	9	Mar-14	NS	NS	NS	NS
10	Sep-13	7.81	1500	9	-	10	Mar-14	7.4	815	14	-
11	Sep-13	7.74	1040	14	-	11	Mar-14	6.85	532	20	-
FMCU	Sep-13	7.21	377	<5	Pond	FMCU	Mar-14	6.9	169.0	18.0	Pond
FMCD	Sep-13	7.52	128	<5	Low	FMCD	Mar-14	7.23	139	11	Low
1	Oct-13	7.28	1090	9	-	1	Apr-14	6.9	166.0	24.0	-
8	Oct-13	NF	NF	NF	NF	8	Apr-14	NF	NF	NF	NF
9	Oct-13	NS	NS	NS	NS	9	Apr-14	NS	NS	NS	NS
10	Oct-13	7.64	1920	<5	-	10	Apr-14	7.32	533	28	-
11	Oct-13	8.03	1260	126	-	11	Apr-14	7.03	531	27	-
FMCU	Oct-13	7.31	428	12	Pond	FMCU	Apr-14	6.6	140.0	11.0	Pond
FMCD	Oct-13	7.33	132	<5	Low	FMCD	Apr-14	7.18	134	21	Mod
1	Nov-13	7.21	1060	5	-	1	May-14	6.7	502.0	6.0	-
8	Nov-13	NF	NF	NF	NF	8	May-14	NF	NF	NF	NF
9	Nov-13	NS	NS	NS	NS	9	May-14	NS	NS	NS	NS
10	Nov-13	7.6	2060	34		10	May-14	7.16	730	<5	-
11	Nov-13	7.05	585	16		11	May-14	6.77	513	<5	
FMCU	Nov-13	6.85	202	6	Pond	FMCU	May-14	6.8	209.0	9.0	Pond
FMCD	Nov-13	6.88	274	5	Mod	FMCD	May-14	7.44	131	<5	Mod

					- -	onitoring					e 7 of 12
Sample			EC	TSS		Sample			EC	TSS	
Site	Date	рН	(uS/cm)	(mg/L)	Flow	Site	Date	рН	(uS/cm)	e è e e e e e e e e e e	
1	Jun-14	7.11	481	10	Low	1	Dec-14	0.0	0.0	0.0	No
8	Jun-14	0	0	0	Dry	8	Dec-14	0	0	0	0
9	Jun-14	0	0	0	Not	9	Dec-14	0	0	0	0
10	Jun-14	0	936	8	Low	10	Dec-14	0	0	0	No
11	Jun-14	6.99	352	290	Low	11	Dec-14	0	0	0	No
FMCU	Jun-14	7.05	185	7	Low	FMCU	Dec-14	0.0	0.0	0.0	No
FMCD	Jun-14	7.19	119	25	Mod	FMCD	Dec-14	7.43	189	<5	Low
1	Jul-14	7.01	530	<5	0						
8	Jul-14	0	0	0	Dry						
9	Jul-14	0	0	0	Not						
10	Jul-14	0	1490	<5	Low						
11	Jul-14	7.07	756	<5	0						
FMCU	Jul-14	7.35	223	6	Poole						
FMCD	Jul-14	7.74	129	<5	Low						
1	Aug-14	6.73	200	26	No						
8	Aug-14	0	0	0	Dry						
9	Aug-14	0	0	0	No						
10	Aug-14	0	931	40	Low						
11	Aug-14	6.8	860	8	Low						
FMCU	Aug-14	6.8	151	<5	Low						
FMCD	Aug-14	7.09	140	<5	Low						
1	Sep-14	7.03	497	<5	Low						
8	Sep-14	0	0	0	Dry						
9	Sep-14	0	0	0	0						
10	Sep-14	0	1120	<5	Low						
11	Sep-14	7.1	512	<5	Low						
FMCU	Sep-14	0	0	0	No						
FMCD	Sep-14	7.53	144	<5	Low						
1	Oct-14	7.01	420	18	Low						
8	Oct-14	0	0	0	No						
9	Oct-14	0	0	0	0						
10	Oct-14	0	1410	22	Low						
11	Oct-14	7.29	585	24	Low						
FMCU	Oct-14	0	0	0	No						
FMCD	Oct-14	7.54	127	<5	Low						
1	Nov-14	0	0	0	No						
8	Nov-14	0	0	0	No						
9	Nov-14	0	0	0	0						
10	Nov-14	0	1120	7	Low				<u> </u>		
11	Nov-14	6.9	670	87	Low						
FMCU	Nov-14	0	0	0	No						
FMCD	Nov-14	7.42	203	<5	Low						

											ge 8 of 1
Sample Site	Date	pН	EC (uS/cm)	TSS (mg/L)	Flow	Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	Flow
1	Jan-15	6.52	218	64	Low	1	Jul-15	7.0	872.0	<5	Low
8	Jan-15	5.55	116.3	17	Low	8	Jul-15	6.56	642	<5	Low
9	Jan-15	NS	NS	NS	NS	9	Jul-15	NS	NS	NS	NS
10	Jan-15	7.02	673	104	Mod	10	Jul-15	7.03	1364	<5	Low
11	Jan-15	6.17	229	51	Mod	11	Jul-15	7.22	1492	<5	Low
FMCU	Jan-15	6.49	204	13		FMCU	Jul-15	NS	NS	NS	N
FMCD	Jan-15	6.97	201	10		FMCD	Jul-15	7.27	223	<5	Low
1	Feb-15	6.44	2910	14	Low	1	Aug-15	5.8	762.0	<5	Low
8	Feb-15	NS	NS	NS	No	8	Aug-15	7.62	533	7	N
9	Feb-15	NS	NS	NS	NS	9	Aug-15	NS	NS	NS	NS
10	Feb-15	6.95	766	<5	Low	10	Aug-15	7.52	1315	<5	Low
11	Feb-15	6.75	545	19	Low	11	Aug-15	7.67	1072	7	N
FMCU	Feb-15	NS	NS	NS	N	FMCU	Aug-15	7.9	267.0	<5	N
FMCD	Feb-15	7.12	164.5	<5	Low	FMCD	Aug-15	7.92	145.7	17	Low
1	Mar-15	NS	NS	NS	N	1	Sep-15	7.3	698.0	15.0	No
8	Mar-15	NS	NS	NS	N	8	Sep-15	7.25	499	<5	No
9	Mar-15	NS	NS	NS	NS	9	Sep-15	NS	NS	NS	NS
10	Mar-15	6.89	1107	<5	Low	10	Sep-15	7.7	1237	<5	Low
11	Mar-15	NS	NS	NS	N	11	Sep-15	6.72	714	8	N
FMCU	Mar-15	NS	NS	NS	N	FMCU	Sep-15	7.2	252.0	8.0	N
FMCD	Mar-15	7.53	170	<5	Low	FMCD	Sep-15	8	135.4	<5	Low
1	Apr-15	6.67	382	22	Low	1	Oct-15	7.0	578.0	13.0	N
8	Apr-15	6.45	506	<5	Low	8	Oct-15	7.04	459	9	N
9	Apr-15	NS	NS	NS	NS	9	Oct-15	NS	NS	NS	NS
10	Apr-15	6.69	803	<5	Low	10	Oct-15	7.57	1332	8	Low
11	Apr-15	6.62	1334	53	Low	11	Oct-15	6.92	822	18	No
FMCU	Apr-15	7.11	307	14	Low	FMCU	Oct-15	7.0	226.9	<5	No
FMCD	Apr-15	6.13	372	9	Low	FMCD	Oct-15	7.6	134.9	<5	Low
1	May-15	6.28	838	6	Low	1	Nov-15	7.3	442.0	<5	Low
8	May-15	6.15	478	<5	Low	8	Nov-15	6.99	452	<5	N
9	May-15	NS	NS	NS	NS	9	Nov-15	NS	NS	NS	NS
10	May-15	6.46	977	<5	Low	10	Nov-15	7.38	1022	<5	Low
11	May-15		1140	23	Low	11	Nov-15	7.13	1945	40	Low
FMCU	May-15	7.04	214	13	Mod	FMCU	Nov-15	7.5	232.5	<5	N
FMCD	May-15	6.71	217	9	Mod	FMCD	Nov-15	7.4	148.9	<5	Low
1	Jun-15	6.02	599	<5	Low	1	Dec-15	7.1	286.0	30.0	N
8	Jun-15	5.97	482	<5	Low	8	Dec-15	7.07	294	<5	Low
9	Jun-15	NS	NS	NS	NS	9	Dec-15	NS	NS	NS	NS
10	Jun-15	6.35	834	<5	Low	10	Dec-15	7.28	901	6	Low
11	Jun-15	6.15	1426	<5	Low	11	Dec-15		626	10	N
FMCU	Jun-15	6.33	202	6	Low	FMCU	Dec-15	7.2	208.3	14.0	N
FMCD	Jun-15	6.08	200	<5	Mod	FMCD	Dec-15	7.58	175.1	<5	Low

Comela			E0	TOO		Commite			E0		e 9 of 1
Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	Flow	Sample Site	Date	рН	EC (uS/cm)	TSS	Flow
		рп 6.85	765	·	N		Jul-16	<u>рп</u> 7.4	238.0	12.0	N
0	Jan-16	7.22	545	6 5	N	1	Jul-16	6.96	427		N
8	Jan-16					8				5	
9	Jan-16	NS	NS	NS	NS	9	Jul-16	NS	NS 1067	NS	NS
10	Jan-16	7.2	1215	6	N	10	Jul-16	7.34	1267	<5	L
11	Jan-16	6.87	828	6	L	11	Jul-16	7.08	1245	14	N
FMCU	Jan-16	6.65	200.9	5		FMCU	Jul-16	7.3	169.7	5.0	
FMCD	Jan-16	7.08	208.2	5	N	FMCD	Jul-16	7.67	158.1	10	
1	Feb-16	7.09	1004	5	N	1	Aug-16	7.1	432.0	5.0	N
8	Feb-16	7.04	541	5	L	8	Aug-16	6.95	408	5	N
9	Feb-16	NS	NS	NS	NS	9	Aug-16	NS	NS	NS	NS
10	Feb-16	7.24	1230	<5	N	10	Aug-16	7.22	1569	<5	L
11	Feb-16	7.07	1091	16	L	11	Aug-16	7.34	972	7	N
FMCU	Feb-16	7.19	259	5	N	FMCU	Aug-16	7.5	173.2	5.0	
FMCD	Feb-16	7.3	193.6	5	N	FMCD	Aug-16	8.06	148.8	5	
1	Mar-16	7.4	1060	5	Ν	1	Sep-16	7.3	374.0	10.0	N
8	Mar-16	7.34	556	5	N	8	Sep-16	6.91	374	5	Ν
9	Mar-16	NS	NS	NS	NS	9	Sep-16	NS	NS	NS	NS
10	Mar-16	7.5	1421	5	L	10	Sep-16	7.27	1303	<5	Ν
11	Mar-16	7.39	1388	16	Ν	11	Sep-16	7.07	321	8	Ν
FMCU	Mar-16	7.17	289	18	Ν	FMCU	Sep-16	7.3	197.4	5.0	
FMCD	Mar-16	7.8	183.2	5	Ν	FMCD	Sep-16	0	134.5	17	
1	Apr-16	7.81	498	151	Ν	1	Oct-16	7.3	400.0	10.0	Ν
8	Apr-16	7.34	270	10	Ν	8	Oct-16	7.21	394	7	Ν
9	Apr-16	NS	NS	NS	NS	9	Oct-16	NS	NS	NS	NS
10	Apr-16	7.42	1484	6	L	10	Oct-16	7.39	1653	8	Ν
11	Apr-16	7.69	1105	15	Ν	11	Oct-16	7.29	152.1	10	N
FMCU	Apr-16	7.36	229.5	5	N	FMCU	Oct-16	7.4	194.9	5.0	N
FMCD	Apr-16	8.07	133.8	5	N	FMCD	Oct-16	7.8	172.8	5	N
1	May-16	7.35	487	22	N	1	Nov-16	7.3	403.0	10.0	N
8	May-16	7.3	479	5	N	8	Nov-16	7.13	398	5	N
9	May-16	NS	NS	NS	NS	9	Nov-16	NS	NS	NS	NS
10	May-16	7.35	1701	<5	М	10	Nov-16	7.18	1893	11	N
11	May-16		1421	22	N	11	Nov-16	7.16	154.2	5	N
FMCU	May-16		226	5		FMCU	Nov-16	7.2	175.1	8.0	
FMCD	May-16		133.6	5		FMCD	Nov-16	7.62	145.2	5	
1	Jun-16	7.19	226	32	N	1	Dec-16	7.0	378.0	63.0	N
8	Jun-16	6.92	437	5	N	8	Dec-16	6.86	328	11	N
9	Jun-16	NS	NS	NS	NS	9	Dec-16	NS	NS	NS	NS
<u>9</u> 10	Jun-16	7.23	1044	<5	L	10	Dec-16	7.28	1946	12	N
11	Jun-16	7.25	901	6	N	11	Dec-16	0	0	0	N
FMCU	Jun-16	6.8	176.3	5		FMCU	Dec-16	7.1	213.9	30.0	N
FMCD	Jun-16	0.0 7.6	142.9	5 18		FMCD	Dec-16 Dec-16	7.1	176.6	<u> </u>	N

			Ouna		i scuu	iity	wonitorin	ig nesults	- 201		Page 10) of 12
Sample			EC	TSS			Sample			EC	TSS	
Site	Date	рΗ	(uS/cm)	(mg/L)	Flow		Site	Date	рΗ	(uS/cm)	(mg/L)	Flow
1	Jan-17	6.91	259	113	NF		1	Jul-17	7.8	565.0	5.0	NF
8	Jan-17	NS	NS	NS	NF		8	Jul-17	7.04	506	<5	NF
9	Jan-17	NS	NS	NS			9	Jul-17	NS	NS	NS	
10	Jan-17	NS	NS	NS	NF		10	Jul-17	7	1438	<5	NF
11	Jan-17	6.51	142.1	9	NF		11	Jul-17	7.37	387	14	NF
FMCU	Jan-17	7.05	181.7	22			FMCU	Jul-17	7.5	298.0	14.0	Light brown
FMCD	Jan-17	7.19	164.4	9			FMCD	Jul-17	8.15	110.1	<5	
1	Feb-17	6.93	443	16	NF		1	Aug-17	8.1	494.0	5.0	NF
8	Feb-17	NS	NS	NS	NF		8	Aug-17	7.33	536	<5	NF
9	Feb-17	NS	NS	NS			9	Aug-17	NS	NS	NS	
10	Feb-17	NS	NS	NS	NF		10	Aug-17	7.27	1361	<5	NF
11	Feb-17	6.6	171.9	22	NF		11	Aug-17	7.31	476	176	NF
FMCU	Feb-17	6.98	198.3	23			FMCU	Aug-17	6.7	303.0	122.0	
FMCD	Feb-17	7.49	173.2	5			FMCD	Aug-17	6.83	110.8	86	
1	Mar-17	6.34	404	5	LF		1	Sep-17	7.4	586.0	37.0	NF
8	Mar-17	5.89	580	<5	LF		8	Sep-17	7.21	581	28	NF
9	Mar-17	NS	NS	NS			9	Sep-17	NS	NS	NS	
10	Mar-17	6.76	1092	9	LF		10	Sep-17	6.89	2071	30	NF
11	Mar-17	6.5	904	10	NF		11	Sep-17	7.64	222	24	NF
FMCU	Mar-17	6.09	252.9	8			FMCU	Sep-17	7.4	340.0	<5	
FMCD	Mar-17	7.45	241	9			FMCD	Sep-17	7.22	202.3	<5	
1	Apr-17	6.92	592	11	NF		1	Oct-17	NS	NS	NS	NF
8	Apr-17	6.33	521	<5	LF		8	Oct-17	NS	NS	NS	NF
9	Apr-17	NS	NS	NS			9	Oct-17	NS	NS	NS	
10	Apr-17	6.85	1044	<5	LF		10	Oct-17	7.07	2240	111	NF
11	Apr-17	6.94	978	10	NF		11	Oct-17	NS	NS	NS	NF
FMCU	Apr-17	6.55	289	6			FMCU	Oct-17	6.2	468.0	23.0	Pooled
FMCD	Apr-17	7.29	186.6	<5			FMCD	Oct-17	8.15	225	<5	
1	May-17	6.93	603	17	NF		1	Nov-17	7.3	202.1	33.0	NF
8	May-17	6.7	685	16	NF		8	Nov-17	6.28	348	<5	NF
9	May-17	NS	NS	NS			9	Nov-17	NS	NS	NS	
10	May-17	7.34	1493	30	NF		10	Nov-17	7	456	21	NF
11	May-17	5.88	348	14	NF	ĺ	11	Nov-17	NS	NS	NS	NF
FMCU	May-17		291	<5		ĺĺ	FMCU	Nov-17	6.5	163.5	10.0	
FMCD	May-17		168.6	<5		1	FMCD	Nov-17	7.53	149.2	5	
1	Jun-17		450	6	LF	1	1	Dec-17	6.4	242.0	24.0	NF
8	Jun-17		455	<5	NF		8	Dec-17	NS	NS	NS	NF
9	Jun-17		NS	NS			9	Dec-17	NS	NS	NS	
10		6.68	811	8	NF	1	10	Dec-17	6.43	1185	41	NF
11		6.75	1278	15	NF		11	Dec-17	NS	NS	NS	NF
FMCU	Jun-17	7.38	267	8			FMCU	Dec-17	6.5	190.8	16.0	
FMCD	Jun-17		186	5			FMCD	Dec-17	7.75	170.9	<5	
	•		•			ا ، الم	m Flow H					

			Surface				T	-		Page	11 of 12
Sample			EC	TSS		Sample			EC	TSS	
Site	Date	рН	(uS/cm)	(mg/L)	Flow	Site	Date	рН	(uS/cm)	(mg/L)	Flow
1	Jan-18	NS	NS	NS	N	1	Jul-18	NS	NS	NS	N
8	Jan-18	NS	NS	NS	N	8	Jul-18	7.13	630	24	
9	Jan-18	NS	NS	NS	N	9	Jul-18	NS	NS	NS	
10	Jan-18	NS	NS	NS		10	Jul-18	7.19	1776	11	
11	Jan-18	6.69	178.2	16		11	Jul-18	7	276	5	
FMCU	Jan-18	NS	NS	NS	L	FMCU	Jul-18	6.8	210.0	5.0	
FMCD	Jan-18	7.2	190.9	5		FMCD	Jul-18	8.02	255	5	
1	Feb-18	NS	NS	NS	N	1	Aug-18	7.3	253.0	31.0	
8	Feb-18	NS	NS	NS	Ν	8	Aug-18	NS	NS	NS	N
9	Feb-18	NS	NS	NS	Ν	9	Aug-18	NS	NS	NS	
10	Feb-18	NS	NS	NS		10	Aug-18	7.25	1343	5	
11	Feb-18	6.59	158.9	13		11	Aug-18		134.4	5	
FMCU	Feb-18	5.42	313	16		FMCU	Aug-18	6.3	239.0	13.0	
FMCD	Feb-18	7.98	208.2	10		FMCD	Aug-18	7.35	149.5	7	
1	Mar-18	NS	NS	NS	Ν	1	Sep-18	6.9	225.6	57.0	
8	Mar-18	6.87	389	7		8	Sep-18	NS	NS	NS	Ν
9	Mar-18	NS	NS	NS		9	Sep-18	NS	NS	NS	
10	Mar-18	6.91	1071	235		10	Sep-18	6.9	1469	5	
11	Mar-18	7.03	275	5		11	Sep-18	6.85	139.9	5	
FMCU	Mar-18	6.67	245	6		FMCU	Sep-18	6.8	193.9	10.0	
FMCD	Mar-18	7.89	151.8	8		FMCD	Sep-18	7.76	126.6	6	
1	Apr-18	7.14	580	10		1	Oct-18	6.7	486.0	5.0	
8	Apr-18	6.85	583	8		8	Oct-18	6.58	367	5	
9	Apr-18	NS	NS	NS		9	Oct-18	NS	NS	NS	
10	Apr-18	6.82	1121	16		10	Oct-18	6.98	1077	5	
11	Apr-18	7.4	311	5		11	Oct-18	6.74	272	5	
FMCU	Apr-18	6.06	291	7		FMCU	Oct-18	6.5	434.0	10.0	
FMCD	Apr-18	7.12	157.1	5		FMCD	Oct-18	8.03	148.4	11	
1	May-18	7.08	625	10		1	Nov-18	6.7	324.0	10.0	
8	May-18	6.8	650	9		8	Nov-18	6.89	441	12	
9	May-18	NS	NS	NS		9	Nov-18	NS	NS	NS	
10	May-18		1436	5		10	Nov-18	6.94	1437	12	
11	May-18		182.8	5		11	Nov-18	6.74	182.9	22	
FMCU	May-18		288	6		FMCU	Nov-18	6.9	440.0	15.0	
FMCD	May-18		154.8	5		FMCD	Nov-18		166.9	5	
1	Jun-18	6.96	302	9		1	Dec-18	6.4	294.0	15.0	
8	Jun-18	6.15	410	5		8	Dec-18		326	6	
9	Jun-18	NS	NS	NS		9	Dec-18		NS	NS	
10	Jun-18	6.96	1157	8		10	Dec-18		523	23	
11	Jun-18	6.85	359	5		11	Dec-18		204	14	
FMCU	Jun-18	6.63	193.9	5		FMCU	Dec-18		239.0	5.0	
FMCD	Jun-18	7.8	147.7	26		FMCD	Dec-18		240	26	

Sample			EC	TSS		Sample			EC	TSS	2 of 12
Site	Date	pН	(uS/cm)		Flow	Site	Date	рН	(uS/cm)	(mg/L)	Flow
1	Jan-19	6.92	350	15	N	1	Jul-19	7.0	296.6	15.0	N
8	Jan-19	NS	NS	NS	N	8	Jul-19	7.2	451.3	11	N
9	Jan-19	NS	NS	NS	N	9	Jul-19	NS	NS	NS	N
10	Jan-19	6.78	1676	9	N	10	Jul-19	7.36	751.6	5	N
11	Jan-19	7.26	163.5	5	N	11	Jul-19	7.37	183.9	5	N
FMCU	Jan-19	6.95	314	28	N	FMCU	Jul-19	6.7	219.3	5.0	N
FMCD	Jan-19	7.44	190.3	5	M	FMCD	Jul-19	7.69	237	5	L
1	Feb-19	6.98	443	26	N	1	Aug-19	NS	NS	NS	N
8	Feb-19	NS	NS	NS	N	8	Aug-19	NS	NS	NS	N
9	Feb-19	NS	NS	NS	N	9	Aug-19	NS	NS	NS	N
10	Feb-19	NS	NS	NS	N	10	Aug-19	7.19	1004	9	N
11	Feb-19	7.26	196.6	10	N	11	Aug-19	7.47	257	5	L
FMCU	Feb-19	NS	NS	NS	N	FMCU	Aug-19	NS	NS	NS	<u>–</u> N
FMCD	Feb-19	7.84	147.9	5	M	FMCD	Aug-19	7.88	256	5	L
1	Mar-19	6.55	193.9	50	N	1	Sep-19	6.8	315.0	20.0	N
8	Mar-19	6.41	498	26	N	8	Sep-19	NS	NS	NS	N
9	Mar-19	NS	NS	NS	N	9	Sep-19	NS	NS	NS	N
10	Mar-19	6.54	410	28	N	10	Sep-19	7	666	10	N
11	Mar-19	6.94	214	5	N	11	Sep-19	7.27	588	10	N
FMCU	Mar-19	7.09	163	10	N	FMCU	Sep-19	6.9	162.9	18.0	N
FMCD	Mar-19	7.64	224	26	L	FMCD	Sep-19	7.57	225	5	L
1	Apr-19	5.73	329	27	N	1	Oct-19	7.1	341.0	5.0	N
8	Apr-19	6.3	275.2	10	N	8	Oct-19	NS	NS	NS	N
9	Apr-19	NS	NS	NS	N	9	Oct-19	NS	NS	NS	N
10	Apr-19	6.64	673.7	22	N	10	Oct-19	7.7	931	8	N
11	Apr-19	7.25	241	5	N	11	Oct-19	7.68	160.3	5	N
FMCU	Apr-19	6.87	189	5	N	FMCU	Oct-19	6.9	210.6	21.0	N
FMCD	Apr-19	7.45	283	5	L	FMCD	Oct-19	7.68	232.7	5	L
1	May-19	6.83	330	48	N	1	Nov-19	6.7	369.0	44.0	N
8	May-19	NS	NS	NS	N	8	Nov-19	NS	NS	NS	N
9	May-19	NS	NS	NS	N	9	Nov-19	NS	NS	NS	N
10	May-19	6.85	961	10	N	10	Nov-19	7.28	1100	6	N
11	May-19		249	5	N	11	Nov-19	6.65	314	24	N
FMCU	May-19		178.9	12	Ν	FMCU	Nov-19	NS	NS	NS	D
FMCD	May-19		241	5	L	FMCD	Nov-19	7.86	274	10	 L
1	Jun-19	7.1	294	NS	N	1	Dec-19	NS	NS	NS	N
	Jun-19	NS	NS	NS	N	8	Dec-19	NS	NS	NS	N
9	Jun-19	NS	NS	NS	N	9	Dec-19	NS	NS	NS	N
10	Jun-19	6.82	1027	NS	N	10	Dec-19	7.23	1285	12	N
11	Jun-19	7.09	238	NS	N	10	Dec-19	6.65	366	38	N
FMCU		7.22	151.8	10	N	FMCU	Dec-19	NS	NS	NS	D
FMCD	Jun-19	8.1	219	6	L	FMCD	Dec-19	7.79	332	68	N

Groundwater 2008 to 2019

					nitoring Rest				Page 1 of 1
Sample			EC	TSS	Sample			EC	TSS
Site	Date	рН	(uS/cm)	(mg/L)	Site	Date	рН	(uS/cm)	(mg/L)
6	Jun-08	6.1	3740	362	6	Dec-08	6.1	3750	356
7	Jun-08	6.8	2200	1130	7	Dec-08	6.8	2490	416
12	Jun-08	6.1	4640	148	12	Dec-08	6.9	11300	173
13	Jun-08	6.8	12830	32	13	Dec-08	7	13280	11
JRD1	Jun-08	7	2660	132	JRD1	Dec-08	6.9	3800	28
JRD2	Jun-08	6.7	600	130	JRD2	Dec-08	6.4	410	180
6	Jul-08	6.1	3970	174	6	Jan-09	6.6	4260	1160
7	Jul-08	7.1	2590	616	7	Jan-09	6.5	2250	160
12	Jul-08	6.7	6720	121	12	Jan-09	6.8	12440	1550
13	Jul-08	6.7	14710	6	13	Jan-09	6.8	14450	7
JRD1	Jul-08	6.8	3210	28	JRD1	Jan-09	6.8	3830	13
JRD2	Jul-08	7	3040	15	JRD2	Jan-09	7.1	3080	16
6	Aug-08	6.1	3930	804	6	Feb-09	6.3	3090	165
7	Aug-08	6.7	2350	98	7	Feb-09	6.6	2070	177
12	Aug-08	6.8	10130	216	12	Feb-09			
13	Aug-08	7	13610	15	13	Feb-09	6.9	13090	18
JRD1	Aug-08	7.0	3220	35	JRD1	Feb-09	6.9	3790	59
JRD2	Aug-08	7.2	2980	57	JRD2	Feb-09	6.7	500	63
6	Sep-08	6.2	2860	261	6	Mar-09	6.3	3820	204
7	Sep-08	6.9	2300	130	7	Mar-09	6.5	2090	534
12	Sep-08	6.6	1630	152	12	Mar-09	6.3	2390	106
13	Sep-08	6.8	13580	30	13	Mar-09	7	13250	9
JRD1	Sep-08	7.3	3230	71	JRD1	Mar-09	6.8	3870	14
JRD2	Sep-08	6.5	220	78	JRD2	Mar-09	6.7	490	27
6	Oct-08	6.4	3950	14	6	Apr-09	6.7	3340	192
7	Oct-08	6.6	2260	878	7	Apr-09	6.3	2060	196
12	Oct-08	6.8	11530	407	12	Apr-09	6.8	7970	727
13	Oct-08	6.8	13910	9	13	Apr-09	6.8	14680	2
JRD1	Oct-08	6.8	3650	28	JRD1	Apr-09	6.6	3770	11
JRD2	Oct-08	6	220	125	JRD2	Apr-09	7	2620	15
6	Nov-08	6	3750	550	6	May-09	6.8	4250	136
7	Nov-08	6.9	2250	670	7	May-09	7	2530	264
12	Nov-08	6.7	8880	182	12	May-09	6.7	11550	454
13	Nov-08	7	13180	3	13	May-09	6.9	13410	18
JRD1	Nov-08	6.7	3830	12	JRD1	May-09	6.7	3260	23
JRD2	Nov-08	6.9	240	178	JRD2	May-09	6.9	560	25

Groundwater Quality Monitoring Results - 2008/2009

Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	San Si
6	Jun-09	6.5	4460	459	(
7	Jun-09	6.5	2140	551	-
12	Jun-09	NS	NS	NS	1
13	Jun-09	7.1	11920	15	1
JRD1	Jun-09	6.8	2250	29	JR
JRD2	Jun-09	7.4	730	91	JR
6	Jul-09	6.6	4290	945	(
7	Jul-09	6.8	2260	103	
12	Jul-09	6.7	5330	1380	1
13	Jul-09	6.8	14850	25	1
JRD1	Jul-09	6.6	3720	21	JR
JRD2	Jul-09	7	2660	15	JR
6	Aug-09	6.7	4580	807	(
7	Aug-09	6.8	2380	16	•
12	Aug-09	6.9	8730	15	1
13	Aug-09	7.1	12600	20	1
JRD1	Aug-09	6.8	3090.0	52.0	JR
JRD2	Aug-09	7	1160	97	JR
6	Sep-09	6.6	4380	119	(
7	Sep-09	6.6	2460	12	
12	Sep-09	NS	NS	NS	1
13	Sep-09	6.6	13490	14	1
JRD1	Sep-09	6.8	3130	66	JR
JRD2	Sep-09	7.9	1230	61	JR
6	Oct-09	6.9	3940	51	
7	Oct-09	6.8	2000	147	
12	Oct-09	NS	NS	NS	1
13	Oct-09	7.2	11610	12	1
JRD1	Oct-09	7.1	3250	106	JR
JRD2	Oct-09	7.6	1770	61	JR
6	Nov-09	7.2	8400	266	(
7	Nov-09	6.8	3590	246	
12	Nov-09	NS	NS	NS	1
13	Nov-09	7.3	260	14	1
JRD1	Nov-09	6.9	10230	47	JR
JRD2	Nov-09	7.1	350.0	47.0	JR

		-		Page 2 of 1
Sample			EC	TSS
Site	Date	рН	(uS/cm)	(mg/L)
6	Dec-09	6.9	4270.0	193.0
7	Dec-09	6.9	2390	14
12	Dec-09	NS	NS	NS
13	Dec-09	7	12390	26
JRD1	Dec-09	6.7	3650	63
JRD2	Dec-09	7.3	1920.0	87.0
6	Jan-10	6.7	5310	173
7	Jan-10	NS	NS	NS
12	Jan-10	6.7	13200.0	37.0
13	Jan-10	6.5	12990	31
JRD1	Jan-10	6.8	3580	22
JRD2	Jan-10	7.3	2050.0	44.0
6	Feb-10	6.9	4570	193
7	Feb-10	NS	NS	NS
12	Feb-10	6.9	12280	46
13	Feb-10	7.1	11560	28
JRD1	Feb-10	6.9	3750	40
JRD2	Feb-10	7.3	960	139
6	Mar-10	6.7	4180	394
7	Mar-10	NS	NS	NS
12	Mar-10	6.5	6880	30
13	Mar-10	7	11430	32
JRD1	Mar-10	6.8	4040	38
JRD2	Mar-10	7.4	1220	100
6	Apr-10	6.4	3900.0	397.0
7	Apr-10	NS	NS	NS
12	Apr-10	8.2	8440	67
13	Apr-10	7	11430	32
JRD1	Apr-10	6.7	3930	52
JRD2	Apr-10	6.3	1990	101
6	May-10	6.89	1590	268
7	May-10	NS	NS	NS
12	May-10	6.75	8310	34
13	May-10	NS	NS	NS
JRD1	May-10	6.73	3780	23
JRD2	May-10	7.41	1590	136

		Grou	Indwater		nitoring Res	suns – 20	10/2011	1	Page 3 of 11
Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)
6	Jun-10	6.9	3320	206	6	Dec-10	6.5	1410.0	244.0
7	Jun-10	NS	NS	NS	7	Dec-10	7.01	2670	232
12	Jun-10	7.3	3200	63	12	Dec-10	6.31	2390	71
13	Jun-10	7.6	10300	12	13	Dec-10	6.84	11000	5
JRD1	Jun-10	7.5	3780	43	JRD1	Dec-10	8.31	4460	229
JRD2	Jun-10	7.2	315	14	JRD2	Dec-10	7.0	1120.0	99.0
6	Jul-10	7.23	3920	194	6	Jan-11	6.51	3020	708
7	Jul-10	6.81	2630	22	7	Jan-11	6.92	2800	68
12	Jul-10	6.41	7790	50	12	Jan-11	6.4	7560.0	40.0
13	Jul-10	6.64	13100	6	13	Jan-11	6.86	12400	30
JRD1	Jul-10	6.65	3520	22	JRD1	Jan-11	7.87	4990	51
JRD2	Jul-10	7.1	338	52	JRD2	Jan-11	7.2	2110.0	222.0
6	Aug-10	6.37	4020	234	6	Feb-11	6.47	2850	173
7	Aug-10	6.8	2680	62	7	Feb-11	6.8	2760.0	147.0
12	Aug-10	6.85	7840	12	12	Feb-11	6.35	7480	94
13	Aug-10	6.65	13400	16	13	Feb-11	6.6	12400	25
JRD1	Aug-10	7.2	3960.0	22.0	JRD1	Feb-11	7.93	4660	69
JRD2	Aug-10	7.2	2380	48	JRD2	Feb-11	7.03	2500	62
6	Sep-10	7.05	3700	412	6	Mar-11	6.68	2590	380
7	Sep-10	4.76	2580	36	7	Mar-11	7.04	2560	39
12	Sep-10	6.78	7800	22	12	Mar-11	6.58	13800	12
13	Sep-10	6.78	11800	5	13	Mar-11	6.86	12200	24
JRD1	Sep-10	8.03	3840	16	JRD1	Mar-11	8.23	4710	32
JRD2	Sep-10	7.05	2460	34	JRD2	Mar-11	7.68	2080	69
6	Oct-10	6.58	2320	152	6	Apr-11	7.4	3950.0	287.0
7	Oct-10	7.03	2660	86	7	Apr-11	7.69	2780	150
12	Oct-10	6.6	10800	17	12	Apr-11	7.46	14200	82
13	Oct-10	6.99	12000	9	13	Apr-11	6.86	12200	24
JRD1	Oct-10	8.05	4380	76	JRD1	Apr-11	8.38	4840	24
JRD2	Oct-10	7.27	2500	17	JRD2	Apr-11	7.77	2520	50
6	Nov-10	6.64	1090	141	6	May-11	6.7	4140	84
7	Nov-10	7.21	2870	65	7	May-11	7.01	2860	18
12	Nov-10	6.44	3260	30	12	May-11	6.5	9230	24
13	Nov-10	6.97	13100	10	13	May-11	6.88	12600	42
JRD1	Nov-10	8.34	4720	57	JRD1	May-11	8.2	4970	76
JRD2	Nov-10	7.2	2520.0	58.0	JRD2	May-11	7.15	2080	70

Sample			EC	TSS	Sample			EC	Page 4 of 1 TSS
Site	Date	рН	(uS/cm)	(mg/L)	Sample	Date	рН	(uS/cm)	(mg/L)
6	Jun-11	6.72	4020	143	6	Dec-11	7.0	2680.0	262.0
7	Jun-11	6.84	2720	18	7	Dec-11	6.78	2050	142
 12	Jun-11	6.46	6820	18	12	Dec-11	6.18	2720	80
13	Jun-11	6.99	8970	16	13	Dec-11 Dec-11	7.28	9180	66
JRD1	Jun-11	8.18	4750	26	JRD1	Dec-11 Dec-11	NS	NS	NS
JRD2	Jun-11	7.08	2280	94	JRD1	Dec-11 Dec-11	6.8	313.0	76.0
6	Jul-11	7.17	4120	123	6	Jan-12	7.08	2740	542
7	Jul-11	7.2	2380	40	7	Jan-12	7.18	2190	240
, 12	Jul-11	6.7	1840	210	12	Jan-12	6.4	9120.0	22.0
12	Jul-11	7.37	11000	14	13	Jan-12	7.24	11000	22.0
JRD1	Jul-11	8.18	4720	14	JRD1	Jan-12	8.17	4120	36
JRD1 JRD2	Jul-11	6.32	441	32		Jan-12		389.0	28.0
		6.78	3530	- 32	JRD2 6	Feb-12	7.1 7.1	3260	66
6 7	Aug-11 Aug-11	6.47	2160	- 258	7	Feb-12 Feb-12	7.1	2180.0	40.0
	¥			230					
12	Aug-11	7.33	1540	-	12	Feb-12	6.12	1460	27
13	Aug-11	6.98	3770	-	13	Feb-12	7.21	8210	22
JRD1	Aug-11	8.3	4640.0	-	JRD1	Feb-12	8.26	4260	14
JRD2	Aug-11	7.04	337	-	JRD2	Feb-12	8.06	471	18
6	Sep-11	6.77	3890	144	6	Mar-12	7.11	3140	35
7	Sep-11	6.56	2190	154	7	Mar-12	7.04	2190	124
12	Sep-11	6.29	4560	40	12	Mar-12	6.17	517	46
13	Sep-11	6.89	11000	17	13	Mar-12	7.03	3710	14
JRD1	Sep-11	NS	NS	NS	JRD1	Mar-12	8.05	4170	40
JRD2	Sep-11	6.25	351	48	JRD2	Mar-12	7.26	390	48
6	Oct-11	6.69	2370	94	6	Apr-12	7.3	3120.0	222.0
7	Oct-11	6.31	1540	113	7	Apr-12	7.55	2740	105
12	Oct-11	6.01	1080	108	12	Apr-12	6.5	2170	161
13	Oct-11	6.88	10200	36	13	Apr-12	7.03	3710	14
JRD1	Oct-11	NS	NS	NS	JRD1	Apr-12	8.18	4500	57
JRD2	Oct-11	6.21	408	45	JRD2	Apr-12	8	506	50
6	Nov-11	7.28	3730	194	6	May-12	7.16	3170	174
7	Nov-11	7.06	2010	15	7	May-12	7.49	2720	106
12	Nov-11	6.83	4290	101	12	May-12	6.37	1250	130
13	Nov-11	7.34	11400	15	13	May-12	7.34	11200	80
JRD1	Nov-11	8.25	4620	52	JRD1	May-12	8.17	4380	26
JRD2	Nov-11	7.1	386.0	54.0	JRD2	May-12	6.57	315	69

		Grou	ndwater Q	uality wo	nitoring Resu	tS - 2012	/2013		Page 5 of 1
Sample			EC	TSS	Sample			EC	TSS
Site	Date	рН	(uS/cm)	(mg/L)	Site	Date	pН	(uS/cm)	(mg/L)
6	Jun-12	7.04	662	6400	6	Dec-12	NS	NS	NS
7	Jun-12	7.14	2340	78	7	Dec-12	7.1	1190	90
12	Jun-12	6.28	452	40	12	Dec-12	7.42	4340	93
13	Jun-12	7.3	7560	87	13	Dec-12	7.56	11600	66
JRD1	Jun-12	8.36	4280	40	JRD1	Dec-12	8.41	4480	22
JRD2	Jun-12	6.78	256	88	JRD2	Dec-12	8.0	474.0	50.0
6	Jul-12	7.15	3320	384	6	Jan-13	NS	NS	NS
7	Jul-12	7.47	2750	94	7	Jan-13	6.78	2170	34
12	Jul-12	6.44	1980	84	12	Jan-13	7.0	5770.0	130.0
13	Jul-12	7.25	11200	57	13	Jan-13	7.45	12100	158
JRD1	Jul-12	8.63	4590	54	JRD1	Jan-13	8.3	4590	22
JRD2	Jul-12	6.9	317	72	JRD2	Jan-13	7.6	483.0	25.0
6	Aug-12	0	NS	NS	6	Feb-13	NS	NS	NS
7	Aug-12	7.41	2760	78	7	Feb-13	7.4	2760.0	16.0
12	Aug-12	6.39	1030	63	12	Feb-13	6.45	1010	27
13	Aug-12	7.48	9580	63	13	Feb-13	7.4	8840	69
JRD1	Aug-12	8.4	4530.0	17.0	JRD1	Feb-13	8.26	4810	31
JRD2	Aug-12	6.93	336	118	JRD2	Feb-13	6.66	351	28
6	Sep-12	NS	NS	NS	6	Mar-13	NS	NS	NS
7	Sep-12	7.53	2820	166	7	Mar-13	7.19	2550	18
12	Sep-12	6.57	1400	99	12	Mar-13	6.31	636	73
13	Sep-12	7.37	11500	19	13	Mar-13	7.26	6050	328
JRD1	Sep-12	8.42	4550	22	JRD1	Mar-13	8.33	4460	38
JRD2	Sep-12	7.22	421	53	JRD2	Mar-13	6.66	242	120
6	Oct-12	NS	NS	NS	6	Apr-13	NS	NS	NS
7	Oct-12	7.08	2410	61	7	Apr-13	6.79	1280	72
12	Oct-12	6.59	1910	118	12	Apr-13	6.73	1800	61
13	Oct-12	7.29	12400	11	13	Apr-13	7.26	6050	328
JRD1	Oct-12	8.44	4660	12	JRD1	Apr-13	8.31	4540	32
JRD2	Oct-12	7.24	404	37	JRD2	Apr-13	6.77	255	67
6	Nov-12	NS	NS	NS	6	May-13	NS	NS	NS
7	Nov-12	7.07	2490	232	7	May-13	7.12	2160	136
12	Nov-12	6.78	3060	96	12	May-13	6.78	2520	81
13	Nov-12	7.09	12400	44	13	May-13	7.46	6660	130
JRD1	Nov-12	8.31	4730	8	JRD1	May-13	8.37	4610	37
JRD2	Nov-12	7.0	434.0	25.0	JRD2	May-13	7.31	407	656

				-	1					Page 6 of 1
Sample	_		EC	TSS		Sample	_		EC	TSS
Site	Date	рН	(uS/cm)	(mg/L)		Site	Date	рН	(uS/cm)	(mg/L)
6	Jun-13	NS	NS	NS		6	Dec-13	6.8	967	44.0
7	Jun-13	6.98	2910	<5		7	Dec-13	NS	NS	NS
12	Jun-13	6.92	3750	664		12	Dec-13	6.07	1940	14
13	Jun-13	7.62	6280	136		13	Dec-13	7.42	5670	118
JRD1	Jun-13	8.28	4560	94		JRD1	Dec-13	NS	NS	NS
JRD2	Jun-13	7.16	372	201		JRD2	Dec-13	6.2	282	<5
6	Jul-13	6.45	807	11600		6	Jan-14	6.86	2260	655
7	Jul-13	7.26	2530	1620		7	Jan-14	NS	NS	NS
12	Jul-13	6.85	4200	3530		12	Jan-14	6.7	8240	120.0
13	Jul-13	7.2	6910	1520		13	Jan-14	7.28	6170	135
JRD1	Jul-13	8.46	4350	68		JRD1	Jan-14	8.39	4440	45
JRD2	Jul-13	7.22	1870	795		JRD2	Jan-14	7.4	2140	371.0
6	Aug-13	6.86	2590	6840		6	Feb-14	7.12	2350	1950
7	Aug-13	NS	NS	NS		7	Feb-14	NS	NS	NS
12	Aug-13	7.02	5310	3070		12	Feb-14	NS	NS	NS
13	Aug-13	7.82	10200	820		13	Feb-14	7.51	6430	78
JRD1	Aug-13	8.3	4320	150.0		JRD1	Feb-14	8.35	4520	28
JRD2	Aug-13	7.43	2500	402		JRD2	Feb-14	7.48	2390	497
6	Sep-13	7.04	2410	4800		6	Mar-14	6.98	2240	512
7	Sep-13	NS	NS	NS		7	Mar-14	NS	NS	NS
12	Sep-13	6.9	6590	892		12	Mar-14	NS	NS	NS
13	Sep-13	7.42	5950	180		13	Mar-14	7.47	5480	133
JRD1	Sep-13	8.04	4390	30		JRD1	Mar-14	8.35	4220	70
JRD2	Sep-13	7.55	2350	178		JRD2	Mar-14	7.4	1800	932
6	Oct-13	6.69	2350	2560		6	Apr-14	7.2	2400	790.0
7	Oct-13	NS	NS	NS		7	Apr-14	NS	NS	NS
12	Oct-13	7.12	9590	157		12	Apr-14	NS	NS	NS
13	Oct-13	7.49	5320	43		13	Apr-14	7.47	5480	133
JRD1	Oct-13	8.31	4350	9		JRD1	Apr-14	8.36	4330	121
JRD2	Oct-13	7.54	2400	271		JRD2	Apr-14	7.4	2150	364
6	Nov-13	7.06	2300	207		6	May-14	7.04	2350	3590
7	Nov-13	NS	NS	NS		7	May-14	NS	NS	NS
12	Nov-13	6.94	11100	332		12	May-14	NS	NS	NS
13	Nov-13	7.64	5950	22	1	13	May-14	7.3	5260	36
JRD1	Nov-13	8.39	4560	18		JRD1	May-14	8.35	4200	57
JRD2	Nov-13	7.5	2530	100.0		JRD2	May-14	7.55	1440	230

Groundwater Quality Monitoring Results - 2013/2014

		GI	ounuwalei	Quality M	onitoring Re	-suits - 20	/14		Page 7 of 1
Sample			EC	TSS	Sample			EC	TSS
Site	Date	pН	(uS/cm)	(mg/L)	Site	Date	pН	(uS/cm)	(mg/L)
6	Jun-14	0	0	0	6	Dec-14	6.8	2280	234.0
7	Jun-14	0	0	0	7	Dec-14	0	0	0
12	Jun-14	0	0	0	12	Dec-14	0	0	0
13	Jun-14	0	0	0	13	Dec-14	7.15	4910	75
JRD1	Jun-14	0	0	0	JRD1	Dec-14	0	0	0
JRD2	Jun-14	0	0	0	JRD2	Dec-14	6.6	439	102.0
6	Jul-14	7.04	2110	872					
7	Jul-14	0	0	0					
12	Jul-14	0	0	0					
13	Jul-14	7.43	5380	415					
JRD1	Jul-14	8.35	4100	18					
JRD2	Jul-14	7.36	2380	242					
6	Aug-14	6.64	174	2220					
7	Aug-14	0	0	0					
12	Aug-14	0	0	0					
13	Aug-14	6.48	4350	0					
JRD1	Aug-14	8.5	3990	6.3					
JRD2	Aug-14	7.8	2280	693					
6	Sep-14	7.29	2370	1300					
7	Sep-14	0	0	0					
12	Sep-14	0	0	0					
13	Sep-14	0	0	0					
JRD1	Sep-14	0	0	0					
JRD2	Sep-14	7.67	2290	71					
6	Oct-14	7.58	2400	342					
7	Oct-14	0	0	0					
12	Oct-14	0	0	0				1	
13	Oct-14	7.33	5280	22					
JRD1	Oct-14	0	0	0					
JRD2	Oct-14	7.36	690	92				[
6	Nov-14	7.29	2500	63					
7	Nov-14	0	0	0					
12	Nov-14	0	0	0					
13	Nov-14	7.35	6130	88				1	
JRD1	Nov-14	0	0	0					
JRD2	Nov-14	7.4	2160	93.0					

0			1	-	coring Res			50	Page 8 of 1
Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)
6	Jan-15	6.64	2190	550	6	Jul-15	6.9	2099	90.0
7	Jan-15	0	0	0	7	Jul-15	0	0	0
	Jan-15	0	0	0		Jul-15	0	0	0
13	Jan-15	7.06	5490	75	13	Jul-15	7.28	2540	94
JRD1	Jan-15	NS	NS	NS	JRD1	Jul-15	NS	NS	NS
JRD2	Jan-15	6.6	1784	171	JRD2	Jul-15	7.3	914	9.0
6	Feb-15	6.74	2310	38	6	Aug-15	7.4	2260	62
7	Feb-15	0	0	0	7	Aug-15	0	0	0
	Feb-15	0	0	0		Aug-15	0.0	0	0.0
13	Feb-15	6.97	5480	40	13	Aug-15	7.45	4780	122
JRD1	Feb-15	NS	NS	NS	JRD1	Aug-15	NS	NS	NS
JRD2	Feb-15	6.58	446	24	JRD2	Aug-15	7.7	2168	24.0
6	Mar-15	6.78	2350	424	6	Sep-15	6.65	2399	31
7	Mar-15	0	0	0	7	Sep-15	0.0	0	0.0
12	Mar-15	0	0	0	12	Sep-15	0	0	0
13	Mar-15	6.91	5890	76	13	Sep-15	7.1	4810	62
JRD1	Mar-15	NS	NS	NS	JRD1	Sep-15	NS	NS	NS
JRD2	Mar-15	6.68	788	110	JRD2	Sep-15	6.94	2580	38
6	Apr-15	6.45	2440	626	6	Oct-15	6.74	2267	68
7	Apr-15	0	0	0	7	Oct-15	0	0	0
12	Apr-15	0	0	0		Oct-15	0	0	0
13	Apr-15	6.68	3220	86	13	Oct-15	7.01	4040	23
JRD1	Apr-15	NS	NS	NS	JRD1	Oct-15	NS	NS	NS
JRD2	Apr-15	6.74	2080	130	JRD2	Oct-15	7.13	1961	100
6	May-15	6.53	2270	44	6	Nov-15	6.8	2450	103.0
7	May-15	0	0	0	7	Nov-15	0	0	0
12	May-15	0	0	0	12	Nov-15	0	0	0
13	May-15	6.95	4030	27	13	Nov-15	7.01	4040	23
JRD1	May-15	NS	NS	NS	JRD1	Nov-15	NS	NS	NS
JRD2	May-15	6.83	1910	41	JRD2	Nov-15	7.12	2335	196
6	Jun-15	6.47	2290	38	6	Dec-15	6.81	2417	342
7	Jun-15	0	0	0	7	Dec-15	0	0	0
12	Jun-15	0	0	0	12	Dec-15	0	0	0
13	Jun-15	6.92	4250	71	13	Dec-15	7.15	5290	30
JRD1	Jun-15	NS	NS	NS	JRD1	Dec-15	NS	NS	NS
JRD2	Jun-15	6.7	2030	37.0	JRD2	Dec-15	7.13	2160	108

		GIC			onitoring Res	ounto – 201	0		Page 9 of 1
Sample			EC	TSS	Sample			EC	TSS
Site	Date	рН	(uS/cm)	(mg/L)	Site	Date	рΗ	(uS/cm)	(mg/L)
6	Jan-16	6.72	2425	128	6	Jul-16	6.7	2390	47.0
12	Jan-16	0	0	0	12	Jul-16	0	0	0
13	Jan-16	7.03	3060	584	13	Jul-16	7.09	5310	146
JRD1	Jan-16	NS	NS	NS	JRD1	Jul-16	NS	NS	NS
JRD2	Jan-16	6.29	527	142	JRD2	Jul-16	7.1	2660	75.0
6	Feb-16	6.64	2580	63	6	Aug-16	6.68	2560	10
12	Feb-16	0	0	0	12	Aug-16	0.0	0	0.0
13	Feb-16	6.89	3670	20	13	Aug-16	6.98	4200	9
JRD1	Feb-16	NS	NS	NS	JRD1	Aug-16	NS	NS	NS
JRD2	Feb-16	6.96	2113	15	JRD2	Aug-16	7.0	2120	106.0
6	Mar-16	6.67	2650	25	6	Sep-16	6.73	2480	65
12	Mar-16	0	0	0	12	Sep-16	0	0	0
13	Mar-16	6.99	4410	33	13	Sep-16	7.06	4040	10
JRD1	Mar-16	NS	NS	NS	JRD1	Sep-16	NS	NS	NS
JRD2	Mar-16	7.05	2436	38	JRD2	Sep-16	7.04	2330	12
6	Apr-16	6.72	2194	50	6	Oct-16	6.9	2560	148
12	Apr-16	0	0	0	12	Oct-16	0	0	0
13	Apr-16	7.13	4240	31	13	Oct-16	7.06	4240	18
JRD1	Apr-16	NS	NS	NS	JRD1	Oct-16	NS	NS	NS
JRD2	Apr-16	7.14	2360	36	JRD2	Oct-16	6.98	2550	28
6	May-16	6.8	2550	154	6	Nov-16	6.8	2550	160.0
12	May-16	0	0	0	12	Nov-16	0	0	0
13	May-16	6.99	4840	45	13	Nov-16	7.06	4240	18
JRD1	May-16	NS	NS	NS	JRD1	Nov-16	NS	NS	NS
JRD2	May-16	7.12	2650	21	JRD2	Nov-16	6.91	1015	42
6	Jun-16	6.7	2230	148	6	Dec-16	6.57	2502	47
12	Jun-16	0	0	0	12	Dec-16	0	0	0
13	Jun-16	6.99	4540	19	13	Dec-16	6.98	4520	30
JRD1	Jun-16	NS	NS	NS	JRD1	Dec-16	NS	NS	NS
JRD2	Jun-16	7.1	2470	24.0	JRD2	Dec-16	6.96	2515	30

Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)	S
6	Jan-17	6.93	2469	152	
13	Jan-17	NS	NS	NS	
JRD2	Jan-17	7.05	2522	32	
6	Feb-17	6.68	2163	89	
13	Feb-17	NS	NS	NS	
JRD2	Feb-17	6.81	2202	44	
6	Mar-17	6.62	2470	100	
13	Mar-17	NS	NS	NS	
JRD2	Mar-17	5.99	304	252	
6	Apr-17	6.6	2219	104	
13	Apr-17	NS	NS	NS	
JRD2	Apr-17	6.26	506	33	
6	May-17	6.69	2350	98	
13	May-17	NS	NS	NS	
JRD2	May-17	7.26	583	32	
6	Jun-17	6.54	1720	30	
13	Jun-17	NS	NS	NS	
JRD2	Jun-17	5.8	330	152.0	

ioning ives	uits – 201	<i>i</i>	P	age 10 of 11
Sample Site	Date	рН	EC (uS/cm)	TSS (mg/L)
6	Jul-17	6.5	2230	92.0
13	Jul-17	NS	NS	NS
JRD2	Jul-17	6.9	1661	62.0
6	Aug-17	6.75	2130	611
13	Aug-17	NS	NS	NS
JRD2	Aug-17	7.1	1533	28.0
6	Sep-17	6.63	2250	183
13	Sep-17	NS	NS	NS
JRD2	Sep-17	6.85	2410	11
6	Oct-17	6.51	2340	55
13	Oct-17	NS	NS	NS
JRD2	Oct-17	6.98	2480	27
6	Nov-17	5.4	363	658.0
13	Nov-17	NS	NS	NS
JRD2	Nov-17	6.6	425	146
6	Dec-17	5.93	1875	378
13	Dec-17	NS	NS	NS
JRD2	Dec-17	6.41	1330	28

Groundwater Quality Monitoring Results - 2018

Commute						U U	uns – 2010	-	50	TOO
Sample			EC	TSS		Sample			EC	TSS
Site	Date	рН	(uS/cm)	(mg/L)		Site	Date	рН	(uS/cm)	(mg/L)
6	Jan-18	NS	NS	NS		6	Jul-18	6.7	2310	34.0
13	Jan-18	NS	NS	NS		13	Jul-18	NS	NS	NS
JRD2	Jan-18	7.11	1432	51		JRD2	Jul-18	6.7	1252	29.0
6	Feb-18	5.87	203	190		6	Aug-18	6.26	2036	161
13	Feb-18	NS	NS	NS		13	Aug-18	NS	NS	NS
JRD2	Feb-18	6.81	1373	98		JRD2	Aug-18	6.4	1770	44.0
6	Mar-18	5.98	171	27		6	Sep-18	6.64	2280	37
13	Mar-18	NS	NS	NS		13	Sep-18	NS	NS	NS
JRD2	Mar-18	6.91	1100	12		JRD2	Sep-18	7.24	1182	78
6	Apr-18	6.59	2220	114		6	Oct-18	6.63	2240	72
13	Apr-18	NS	NS	NS		13	Oct-18	NS	NS	NS
JRD2	Apr-18	6.79	2230	5		JRD2	Oct-18	6.86	1198	81
6	May-18	6.8	2180	108		6	Nov-18	6.8	2360	27.0
13	May-18	NS	NS	NS		13	Nov-18	NS	NS	NS
JRD2	May-18	7.02	2060	60		JRD2	Nov-18	6.97	961	52
6	Jun-18	6.67	2400	38		6	Dec-18	6.26	1177	616
13	Jun-18	NS	NS	NS		13	Dec-18	NS	NS	NS
JRD2	Jun-18	7.0	2350	18.0		JRD2	Dec-18	5.88	178	158

Sample			EC	TSS	Ī	Sample			EC	TSS
-	Dete					-	Dete			
Site	Date	рН	(uS/cm)	(mg/L)	ł	Site	Date	рН	(uS/cm)	(mg/L)
6	Jan-19	6.59	2420	77	Į	6	Jul-19	6.8	1997	90.0
13	Jan-19	NS	NS	NS	Į	13	Jul-19	NS	NS	NS
JRD2	Jan-19	6.27	146	68	Į	JRD2	Jul-19	7.1	2540	6.0
6	Feb-19	6.82	2310	60		6	Aug-19	6.88	2350	26
13	Feb-19	NS	NS	NS		13	Aug-19	NS	NS	NS
JRD2	Feb-19	6.66	1103	119		JRD2	Aug-19	7.1	2500	28.0
6	Mar-19	6.65	2170	134		6	Sep-19	6.66	2080	26
13	Mar-19	NS	NS	NS		13	Sep-19	NS	NS	NS
JRD2	Mar-19	6.87	2290	98		JRD2	Sep-19	6.68	2100	136
6	Apr-19	6.7	2340	74		6	Oct-19	6.89	2404	23
13	Apr-19	NS	NS	NS		13	Oct-19	NS	NS	NS
JRD2	Apr-19	7.19	2550	34		JRD2	Oct-19	7.16	2548	24
6	May-19	6.84	2360	55		6	Nov-19	7.0	2370	28.0
13	May-19	NS	NS	NS		13	Nov-19	NS	NS	NS
JRD2	May-19	7.03	2460	5		JRD2	Nov-19	7.28	2490	13
6	Jun-19	6.7	1960	28		6	Dec-19	6.93	2410	18
13	Jun-19	NS	NS	NS]	13	Dec-19	NS	NS	NS
JRD2	Jun-19	7.1	2410	27.0]	JRD2	Dec-19	7.22	2470	5

This page has intentionally been left blank

Appendix 3

2018/2019 Annual Monitoring Report Pambalong Nature Reserve

(No. of pages including blank pages = 110)

This page has intentionally been left blank

2018 / 19 Annual Monitoring Report

Yancoal Australia Pty Ltd

Pambalong Nature Reserve Abel Underground Coal Mine, Beresfield NSW

03 February 2020

This page has intentionally been left blank

2018 / 19 Annual Monitoring Report

Pambalong Nature Reserve

Abel Underground Coal Mine, Beresfield NSW

Kleinfelder Document Number: NCA19R92101 Project No: 20192319 All Rights Reserved

Prepared for:

Yancoal Australia Pty Ltd 1132 JOHN RENSHAW DRIVE BLACK HILL NSW 2322

Only Yancoal Australia Pty Ltd, its designated representatives or relevant statutory authorities may use this document and only for the specific project for which this report was prepared. It should not be otherwise referenced without permission.

Document Control:

Version	Description	Date	Author/s	Reviewer
1.0	Interim draft to client	5 March 2019	M. Dean / N. Fisher	K, Peters
1.1	Draft to external reviewer	15 May 2019	D.O'Brien	K, Peters
2.0	Final to client	20 May 2019	D.O'Brien	C. Driscoll
2.1	Final to client	03 February 2020	B. Stewart	D. O'Brien

Kleinfelder Australia Pty Ltd 95 Mitchell Road Cardiff NSW 2285 Phone: (02) 4949 5200

ABN: 23 146 082 500

This page has intentionally been left blank

EXECUTIVE SUMMARY

Donaldson Coal Pty Ltd commenced operations at Abel Underground Coalmine at Beresfield in the lower Hunter Valley, New South Wales in 2008. A Flora and Fauna Management Plan, prepared by Kleinfelder (ecobiological 2007) in accordance with consent conditions, identified the need for ecological monitoring at Pambalong Nature Reserve, a 34 ha freshwater wetland located between the eastern extent of the Abel coal mine lease and the M1 Pacific Motorway.

Pambalong Nature Reserve provides critical habitat for wader and water bird species and is part of a chain of protected wetlands in the lower Hunter floodplains and estuary. The wetland at Pambalong depends on fresh water from Blue Gum Creek to maintain and replenish aquatic and terrestrial habitats in the reserve. Consequently, any changes to the quantity and quality of water delivered from the Blue Gum Creek catchment arising from mining activities or subsidence would compromise the ecological integrity of the wetland (ecobiological 2007).

A decline in the quantity of water could result in a reduction in the area of wetland and a subsequent loss of aquatic and terrestrial flora and fauna habitat. Increased sediment loads in Blue Gum Creek could affect macroinvertebrate numbers and change the depth of waterbodies within the wetland. Other related impacts to the wetland could also occur such as weed and/or feral animal invasion (ecobiological 2007).

The mine is currently in a state of care and maintenance and has not extended to the Blue Gum Creek catchment. Nevertheless, ecological monitoring has contributed to a robust dataset on baseline conditions at the wetland. It is important that data is collected over as many years as possible to determine what constitutes normal variation and enable valid comparisons with post-mining conditions.

This document reports on results of the 11th annual monitoring event at Pambalong Nature Reserve. Detected during this survey were 109 flora species; and, 104 fauna species comprising six frog, two reptile, 17 mammal (12 bat) and 79 bird species. Threatened species recorded included three bat and three bird species. Twenty-two flora species were recorded this survey that were not recorded in the 2017 survey (nine exotic species and 13 native species). No significant changes to the spatial extent of vegetation communities were observed. Two exotic weed species, Lantana camara and Ambrosia tenufolia were recorded as having increased in extent.

This page has intentionally been left blank

Contents

1.	INTR	ODUCT	ION	1					
	1.1	LOCA	TION	2					
2.	MET	HODOL	OGY	5					
	2.1	FLOR	A	5					
	2.2	FAUN	A	7					
		2.2.1	Arboreal Mammals	8					
		2.2.2	Terrestrial Mammals	8					
		2.2.3	Bats	8					
		2.2.4	Birds	9					
		2.2.5	Amphibians	9					
		2.2.6	Introduced Fauna	10					
3.	RES			11					
	3.1	WEAT	THER CONDITIONS AND SURVEY ACTIVITIES	11					
	3.2	GENE	RAL ENVIRONMENTAL MONITORING	12					
		3.2.1	Historical Rainfall	12					
		3.2.2	Water Quality and Water Level Monitoring	13					
	3.3	FLOR	A RESULTS	16					
	3.4	3.4 WEED SPECIES							
		3.4.1	Eichhornia crassipes (Water Hyacinth)	25					
		3.4.2	Alternanthera philoxeroides (Alligator Weed)	32					
		3.4.3	Cenchrus clandestinus (Kikuyu)	32					
		3.4.4	Rubus fruticosus sp. aggregate. (Blackberry)	34					
		3.4.5	<i>Lantana camara</i> (Lantana)	35					
		3.4.6	Environmental Weeds	35					
	3.5	VEGE	TATION COMMUNITIES	38					
		3.5.1 Fores		38					
		3.5.2	Paperbark Swamp Forest (Swamp Sclerophyll Forest)	38					
		3.5.3	Freshwater Wetland Complex (Freshwater Wetland)	39					
		3.5.4	Altered Vegetation - Swamp Oak Forest (planted)	40					
		3.5.5	Altered Vegetation - Disturbed/Kikuyu Grassland	40					
		3.5.6	Endangered Ecological Communities	41					
	3.6	FAUN	A	43					
		3.6.1	Amphibians	45					
		3.6.2	Birds	45					
		3.6.3	Mammals	51					

	6.4 Reptiles6.5 Introduced Fauna	52
CONCLUSION AND RECOMMENDATIONS		53
REFERE	NCES	56

Tables

4.

5.

Table 1:	Trapping effort for the subject site	7
Table 2:	Fauna survey effort for the subject site	7
Table 3:	Weather conditions and survey activities undertaken during the sample period	11
Table 4:	Monthly rainfall (mm) recorded at Maitland Visitors Centre (1995-2015, 2018) weather station (long term mean includes East Maitland Bowling Club 1903 to 1994) and at Maitland Belmore Bridge (Hunter River) (2016-17)	12
Table 5:	Water quality monitoring data from Main Swamp during late 2016 – early 2017	14
Table 6:	Threatened fauna species recorded in 2018/19	44
Table 7:	Flora species identified from the 2018 survey	58

Figures

Figure 1:	Locality Map	3
Figure 2:	Pambalong Nature Reserve	4
Figure 3:	Flora and Fauna Survey Sites	6
Figure 4:	Monthly rainfall for 2017/18 survey period compared to historical monthly average (1903-2017)	13
Figure 5:	Water levels at Pambalong recorded monthly from the Main Swamp in 2017/18	14
Figure 6:	Flora species richness within Q1 from 2008 to 2018	17
Figure 7:	Flora species richness within Q2 from 2008 to 2017	19
Figure 8:	Flora species richness within Q3 from 2008 to 2018	21
Figure 9:	Flora species richness within Q4 from 2008 to 2018	22
Figure 10:	Species richness within the flora transect from 2008 to 2018	24
Figure 11:	Weed Species Mapping	37
Figure 12:	Vegetation Community Mapping	42
Figure 13:	Fauna species richness recorded from 2008/09 to 2017/18	43
Figure 14:	Fauna species richness by taxon from 2008/09 to 2018/19 (excluding birds)	45
Figure 15:	Bird species richness recorded at Pambalong Reserve from 2008 to 2018	47

Figure 16:	Wetland-specialist bird species recorded at Pambalong Reserve from 2008 to 2018	48
Figure 17:	Waterbird species recorded at Pambalong Reserve from 2008 to 2018	49
Figure 18:	Wading bird species recorded at Pambalong Reserve from 2008 to 2018	50
Figure 19:	Number of birds recorded roosting in the Melaleuca Swamp Forest of the Main Swamp.	51

Plates

Plate	1:	Flora quadrat 1 (Q1) located in Coastal Foothills Spotted Gum - Ironbark Forest (Photograph taken in 2018)	17
Plate	2:	Flora quadrat 2 (Q2) located in Freshwater Wetland Complex dominated by Typha (Photograph taken in 2018)	19
Plate	3:	Flora quadrat 3 (Q3) located in Paperbark Swamp Forest (Photograph taken in 2018)	20
Plate	4:	Flora quadrat 4 located in Paperbark Swamp Forest (Photograph taken in 2017). Alligator Weed dominates in the foreground	22
Plate	5:	Flora transect located in Freshwater Wetland Complex (Photograph taken in 2018). Note the extent of open water	23
Plate	6:	Flora transect located in Freshwater Wetland Complex (Photograph taken in 2017). Note the absence of open water.	24
Plate	7:	Water Hyacinth at the Northern Swamp inlet in 2008	26
Plate	8:	Water Hyacinth at the Northern Swamp inlet in 2009 showing the installation of a grate	26
Plate	9:	Water Hyacinth at the Northern Swamp inlet in 2010	27
Plate	10:	Water Hyacinth at the Northern Swamp inlet in 2011	27
Plate	11:	Water Hyacinth at the Northern Swamp inlet in 2012	28
Plate	12:	Water Hyacinth at the Northern Swamp inlet in 2013	28
Plate	13:	Water Hyacinth at the Northern Swamp inlet in 2014	29
Plate	14:	Water Hyacinth and Alligator Weed at the Northern Swamp inlet in 2015	29
Plate	15:	Water Hyacinth and Alligator Weed at the Northern Swamp inlet in 2016	30
Plate	16:	Water Hyacinth and Alligator Weed at the Northern Swamp inlet in 2017	30
Plate	17: A	lligator Weed (foreground) and Typha at the Northern Swamp inlet in 2018	31
Plate	18:	Aerial photography showing the extent of the Water Hyacinth on the north swamp in 2018.	31
Plate	19:	Cenchrus clandestinus (Kikuyu) in the north-west corner of the reserve	33
Plate	20:	Aerial view of transition (from top to bottom) from open water to Typha to Kikuyu to woodland. Kikuyu excludes all other vegetation	33
Plate	21:	<i>Rubus fruticosus</i> (Blackberry) – background in the north-west corner of the reserve. <i>Ambrosia tenuifolia</i> (Lacy Ragweed) in the foreground	34
Plate	22:	Stitched photograph of South Swamp taken in March 2012	91

Plate 23:	Stitched photograph of South Swamp taken in March 2015	92
Plate 24:	Stitched photograph of South Swamp taken in April 2018	92
Plate 25:	Stitched photograph of Main Swamp taken in March 2012	94
Plate 26:	Stitched photograph of Main Swamp taken in March 2014	94
Plate 27:	Stitched photograph of Main Swamp taken in April 2018	95
Plate 28:	Stitched photograph of North Swamp taken in March 2012	97
Plate 29:	Stitched photograph of North Swamp taken in March 2015	97
Plate 30:	Stitched photograph of North Swamp taken in April 2018.	98

Appendices

- Appendix 1. Flora Species List
- Appendix 2. Fauna Species lists (Excluding Birds)
- Appendix 3. Bird Species List Transects
- Appendix 4. Bird Species List North Swamp
- Appendix 5. Bird Species List Main Swamp
- Appendix 6. Bird Species List South Swamp
- Appendix 7. Roosting Bird Counts from the Main Swamp
- Appendix 8. Selection of Water Body Photographs
- Appendix 9. Staff Contributions
- Appendix 10. Licensing

1. INTRODUCTION

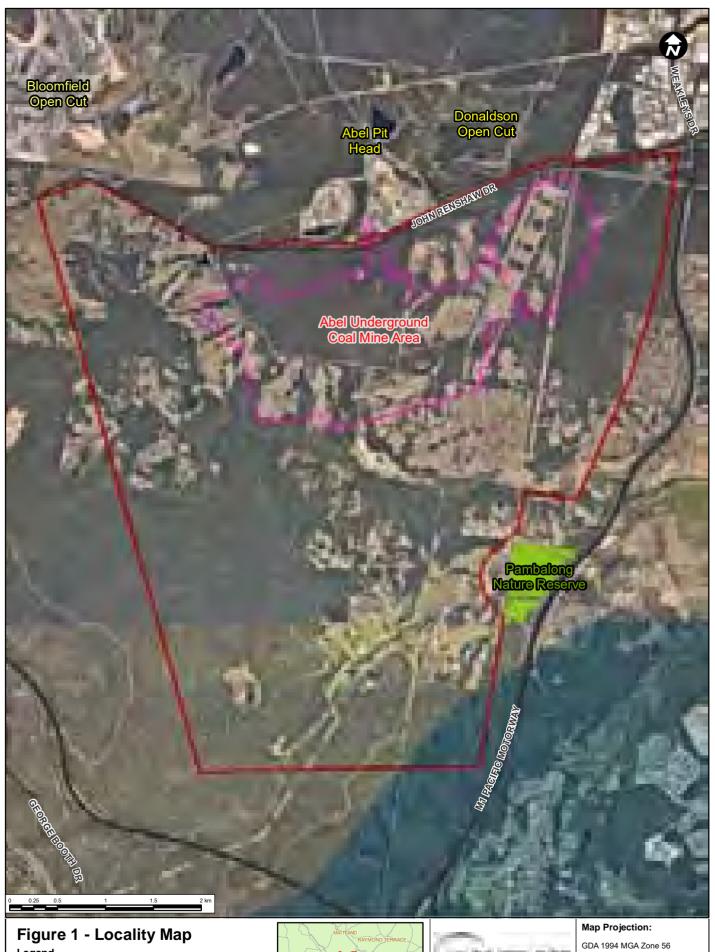
Donaldson Coal Pty Ltd (now owned by Yancoal Australia Pty Ltd) commenced mining at an underground coal mine (known as Abel Underground Coal Mine) in 2008, located approximately 23 kilometres north-west of Newcastle. The mine is currently in a state of care and maintenance, with no coal extraction at this time. Should the mine re-open in the future, the seams that would be mined are located under the rural residential and forested areas at Black Hill. Mine access and associated surface infrastructure is located within the existing open cut void at Beresfield, with transfer of coal to the existing Bloomfield Coal Handling and Preparation Plant (CHPP) immediately to the north for coal washing and rail transport to the Port of Newcastle.

Underground coal mining can cause land subsidence which may result in adverse environmental impacts such as loss of productive land, damage to underground pipelines and above-ground structures, decreased stability of slopes and escarpments, contamination of groundwater by acid drainage and dewatering of streams and groundwater supplies (Bell *et al.* 2000, Sidle *et al.* 2000). The main ecological concern arising from the Abel mine is the effect of subsidence on local and regional hydrology. Surface and sub-surface cracking associated with mining subsidence can alter and create preferential flow paths, causing dewatering and rerouting of surface water and groundwater (Sidle *et al.* 2000). Alterations in channel and drainage morphology may also affect channel erosion, sediment delivery, and routing in streams and riparian habitat.

Development approval for the Abel coal mine was granted with a number of conditions, including a requirement to prepare a Flora and Fauna Management Plan (F&FMP) (ecobiological 2007). The F&FMP is part of a comprehensive Environmental Management System (EMS) for Abel mine and sets out a strategy to monitor the effectiveness of the conservation measures identified in the Environmental Assessment (EA) Statement of Commitments. A Surface Ecological Monitoring Plan (SEMP) produced as part of the strategy focused monitoring effort on three discrete habitat areas:

- 1. Farm dams that form a belt across the mine site;
- 2. Subtropical rainforest areas of Long Gully Creek; and
- 3. Pambalong Nature Reserve.

Baseline and subsequent monitoring data are to be gathered in each of these areas to inform management and future change analysis. Results from the current period continue to contribute to a dataset that documents baseline ecological conditions at Pambalong Nature Reserve and contributes to the overall SEMP.


1.1 LOCATION

The Abel Underground Mine is located within Newcastle, Cessnock and Maitland Local Government Areas (LGAs). The majority of the underground mine and surface infrastructure area is within the Cessnock LGA. The seams to be mined, if mining is to recommence, are located under the Black Hill rural residential and adjoining forested areas. Mine access and associated surface infrastructure is located within the existing Donaldson Coal mine open cut void at Black Hill, with transfer of coal to the existing Bloomfield Coal Handling and Preparation Plant (CHPP) immediately to the north for coal washing and rail transport to the Port of Newcastle (Figure 1)

The Abel underground mine covers an area of approximately 2,750 ha that consists of low undulating forested hills with patches of cleared land supporting 110 rural/residential properties. A ridgeline associated with Black Hill runs east-west through the proposed underground mine area. Tributaries of Buttai Creek, Viney Creek, Weakley's Flat Creek and Four Mile Creek drain northwards from this ridgeline. A wide catchment containing Long Gully and Blue Gum Creek drains from the ridgeline providing water to the wet swamp at Pambalong Nature Reserve. Some cliff-lines and steeper gullies are located along sections of the Black Hill ridge.

The underground mine area is bounded on the eastern side by Pambalong Nature Reserve and the M1 Pacific Motorway; the western and southern sides by a tract of forest that extends south to the Central Coast and beyond to Hornsby, and the northern side by existing open cut coal mining activities within the Donaldson and Bloomfield mine leases (**Figure 2**).

Pambalong Nature Reserve consists of 34 ha of predominantly freshwater wetland on the western side of the M1 Pacific Motorway, approximately 20 km north-west of Newcastle (**Figure 2**). The reserve was gazetted in December 2000 over former farmland acquired by the Roads and Traffic Authority during construction of the M1 Pacific Motorway (former F3 Freeway) (DEC 2006).

Legend

Waterways Abel Underground Coalmine Boundary

Extent of Underground Mine

Pambalong Nature Reserve

ne	yna obe
Project Ref:	20192319
Plot Date:	2/20/2019 16:32
Revision:	001 (THawkins)

Data Sources: LPI - 2017 Nearmap - 2018

Disclaimer: This is not an official or a legal map but is for informational use only. All data was compiled from the best sources available. All boundaries, scale and geographi points are approximate.

L:\GIS FOLDER\00 CLIENT FILES\101_AbelUndergroundCoalMine\20192319_Pambalong_November2018Wlapping'20192319_Fig1_Locality.mxd

Figure 2: Pambalong Nature Reserve

Pambalong Nature Reserve
Abel Underground Coalmine Boundary

			Map Projection:	
	*LOWPELDOP		GDA 1994 MGA Zone 56	
			Data Sources: LPI - 2017 Nearmap - 2018	
	Project Ref:	20192319		
	Plot Date:	2/20/2019 16:33	Disclaimer: This is not an official or a legal map but is for informational use only.	
Revision: 001 (THawkins)		001 (THawkins)	All data was compiled from the best sourc available. All boundaries, scale and geogra points are approximate.	

L:\GIS FOLDER\00 CLIENT FILES\101_AbelUndergroundCoalMine\20192319_Pambalong_November2018\Mapping\20192319_Fig2_PambalongNatureReserve.mxd

2. METHODOLOGY

2.1 FLORA

Flora survey and vegetation mapping has been undertaken in accordance with the requirements of the F&FMP. The location of flora survey activities is shown in **Figure 3**.

A base vegetation map of the wetland was prepared for the 2008 annual monitoring report using a combination of aerial photograph interpretation and ground-truthing to delineate community boundaries. Communities were defined based on the type of habitat they formed as well as floristic content and structure. Vegetation community boundaries are monitored and mapped each year to identify any variation in extent.

Two standard 0.04 ha (20 m x 20 m) floristic quadrats (Q1 & Q3), two 0.1024 ha (32 m x 32m) floristic quadrats (Q2 & Q4) and a 50 m long x 2 m wide transect were established in representative areas of identifiable vegetation structure. Data collected in these quadrats each year include total floristic content and the cover abundance index for each species in the plots using the Braun-Blanquet scale (Poore 1995).

Targeted searches for threatened flora species (*Tetratheca juncea, Maundia triglochinoides, Persicaria elatior* and *Zannichellia palustris*) are also conducted each year in appropriate communities through random meandering. The location of any threatened flora species detected is recorded using a GPS.

Annual surveys also record the presence and distribution of weed species across the subject site. The dominant weed species, outbreak areas and recently treated areas are mapped.

Floristic identification and nomenclature is based on Harden (1992, 1993, 2000 and 2002) with subsequent revisions as published on PlantNET (http://plantnet.rbgsyd.nsw.gov.au). Plants listed under the ROTAP scheme (Briggs and Leigh 1995) were also considered in this assessment along with species and vegetation deemed to be of local conservation significance.

S FOLDER\00 CLIENT FILES\101_AbelUndergroundCoalMine\20192319_Pambalong_November2018Wapping\20192319_Fig3_FloraFaunaSurveyEffort.mxd

Owl Call Playback

lacksquare

Disclaimer: This is not an official or a legal map but is for informational use only. All data was compiled from the best sources available. All boundaries, scale and geographic points are approximate.

001 (THawkins)

Revision:

2.2 FAUNA

The position of observation points and transects has been recorded to ensure that sampling occurs at the same location each year. Systematic fauna monitoring is centred on two transects, one situated in the Spotted Gum – Ironbark open forest fringing the South Swamp and the other situated in the Melaleuca Swamp Forest fringing the Main Swamp.

 Table 1 depicts trapping effort at transects, while Table 2 details other fauna survey effort across the subject site. The location of fauna survey activities is shown in Figure 3.

Trap type	Traps	Nights	Trap nights		
Elliott A	40	4	160		
Elliott B Tree	3	4	12		
Elliott B Ground	6	4	24		
Cage Trap	4	4	16		
Harp Trap	2	4	8		
Hair Tubes	8	4	32		

Table 1:Trapping effort for the subject site

Survey method	Days/nights	Locations
Anabat recording	2	4
Spotlighting	2	2
Owl call playback	2	3
Frog transect survey	2	3
Bird transect survey	2	2
Bird water body survey	8	3
Roosting bird abundance estimate	2	1
Opportunistic fauna observations	15	Across entire site

2.2.1 Arboreal Mammals

Three Elliott B traps and eight hair tubes were placed in trees at heights of 3 m or above, along transects and baited with a mixture of rolled oats, honey, peanut butter and treacle. The trunks of trees containing the traps were sprayed with a mixture of honey and water. Traps were checked daily for arboreal species. After 4 nights the sticky wafers from hair tubes were collected and checked for the presence of hair samples. Hair identification methods follow those of Brunner *et al.* (2002). If any hair sample was from a vulnerable or endangered species, the sample was sent to an expert in hair identification for confirmation. Spotlighting was undertaken along each transect for one hour per night on two separate nights.

2.2.2 Terrestrial Mammals

Forty Elliott A, six Elliott B and four cage traps were placed along two transects at regular intervals to capture terrestrial mammal species. Traps were baited with a mix of rolled oats, honey, peanut butter and treacle and set for four consecutive nights with checks for captures occurring each morning.

Opportunistic daytime observations of the signs of recent terrestrial mammal activity such as diggings, droppings or scratch marks were noted.

2.2.3 Bats

Two harp traps were erected on transects at South Swamp and Main Swamp. To increase the likelihood of captures traps were positioned in potential bat 'flyways' such as on tracks or in natural forest openings. Traps were set in position for four consecutive nights and checked each morning. Captured bats were identified in the field and placed in 'soft release' boxes tethered to nearby trees to enable the bats to shelter during the day and exit at nightfall.

Anabat[™] bat-call detectors were used passively to record the calls of passing Microchiropteran bats. Two units were set up at dusk and recording occurred for one hour on two separate nights (four hours total). Nocturnal searches of blossoming trees were also undertaken during spotlighting to detect Megachiropteran bats.

2.2.4 Birds

Surveys to detect birds were conducted at two transects in native vegetation fringing wetlands, and three permanent monitoring points overlooking the North, South and Main waterbodies (**Figure 3**).

Transects were surveyed for a period of 20 minutes on two separate days. Species were identified visually with the aid of binoculars or aurally from call identification. Bird surveys were conducted in the morning or late afternoon when bird activity is maximised (Bibby *et al.* 2000). After dark the calls of threatened owl species (Powerful, Masked, Sooty, Barking and Grass Owls) were broadcast over a megaphone at transects on two separate nights in an attempt to encourage a call back response.

Water bird surveys were conducted at permanent monitoring points in spring and autumn. During one season monitoring points are surveyed four times, at dawn and dusk in one week and again approximately 1 week later. All birds detected within a viewing arc overlooking open water bodies in a 20-minute period were recorded. Birds were identified by sight, with the aid of binoculars or a spotting scope, and by their calls.

At the completion of one of the dusk surveys, a count of birds roosting in the Melaleuca Swamp Forest within the Main Swamp was undertaken. This method is repeated at approximately the same time (on nightfall) each year to enable comparison of the composition and abundance of bird species using the roost.

2.2.5 Amphibians

Amphibian surveys were carried out at each of the three main water bodies over four days and nights. Diurnal surveys involved dip netting and visual searches to detect tadpoles in water bodies. Nocturnal surveys involved aural detection of characteristic calls or visual detection of animals with a spotlight or head torch. Call playback for the endangered Green and Golden Bell Frog was carried out due to the species' historical occurrence at the site and the presence of suitable habitat.

Adult frogs encountered were identified by visual confirmation or by their distinct advertisement calls. Tadpoles were identified using diagnostic features including mouthparts (tooth rows, jaw sheaths and papillae), pigmentation, body size, tail structure (musculature, fin depth, fin shape, tip shape), eye direction and spacing, pupil pigmentation, nare shape and spacing, spiracle

height and direction, vent length and direction, and tadpole behaviour according to Anstis (2002).

2.2.6 Introduced Fauna

Introduced species detected during annual field surveys are reported to the NSW National Parks and Wildlife Service to assist with their management.

3. RESULTS

3.1 WEATHER CONDITIONS AND SURVEY ACTIVITIES

Prevailing weather conditions during the spring survey were warm to hot days and cool to mild nights with a light breeze, and clear to partly cloudy skies. Conditions during the autumn bird surveys were mild to warm, little to no breeze and some brief showers (**Table 3**).

	Min	Max		Flora survey	Fauna survey methods							
Date	Temp (°C)	Temp (°C)	Rain (mm)	Transect and plot surveys & vegetation mapping	Threatened species & weed search	Trapping	Amphibian survey	Nocturnal spotlighting, call playback, & Anabat	Bird survey (Transects)	Dawn Water Bird survey	Dusk Water Bird survey	Roosting Bird count
22/10/18	16.5	20.1	11.2			+						
23/10/18	12.7	32.0	0.2			+		+				
24/10/18	15.6	22.6	0.2			+		+				
25/10/18	15.5	23.8	0			+						
26/10/18	12.1	25.1	0			+						
14/11/18	15.0	25.6	0						+	+		
20/11/18	12.9	30.6	0	+			+				+	
27/11/18	11.2	27.6	0						+	+		
6/12/18	15.0	27.0	0				+				+	
7/12/18	12.5	29.8	0	+	+							
3/04/19	11.5	26.1	1.2							+	+	
10/04/19	13.4	21.7	0.8							+		
11/04/19	9.2	23.4	0								+	+

Table 3:	Weather conditions and survey activities undertaken during the sample period
----------	--

Source: Australian Government Bureau of Meteorology, Maitland Airport 061428.

3.2 GENERAL ENVIRONMENTAL MONITORING

Changes in species composition, abundance or distribution within the wetland can result from a variety of external factors not associated with mining. Rainfall, bushfire and nearby development are examples of such factors (ecobiological 2007). During 2018/19 there was no high intensity bushfire events or development activity in the vicinity of the wetland that would impact water flow or quality.

3.2.1 Historical Rainfall

Nearby Bureau of Meteorology (BoM) weather stations at East Maitland Bowling Club (1903 - 1994), and the Maitland Visitors Centre (1995-2015), Maitland Belmore Bridge (2016-2018) provide historical rainfall data for a 114 year period (1903 – 2017). Historical mean monthly rainfall (mm) from 1903 – 2007 and monthly rainfall (mm) from 2008 – 2019 are presented in **Table 4**. Monthly rainfall for the 2018/19 survey period compared to the historical monthly average (1903-2019) is presented in **Figure 4**.

Year	J	F	М	А	М	J	J	Α	S	0	Ν	D	Total
2008	182	174	45	224	7	123	42	22	183	76	89	74	1241
2009	12	267	53	125	73	75	24	2	24	67	44	58	824
2010	65	53	86	22	73	111	62	32	20	60	192	63	839
2011	36	37	47	140	91	162	86	57	75	104	141	67	1043
2012	84	174	102	79	12	125	45	14	22	7	46	45	753
2013	140	134	79	66	51	79	30	11	17	51	279	16	953
2014	21	113	66	81	30	45	22	111	31	50	22	164	756
2015	155	41	35	358	80	42	15	38	55	44	102	135	1100
2016	380.5	35	48	20.5	5.5	122.5	30	55.5	57.5	43	43	106.5	947.5
2017	58	60	216	75	22.2	94.6	0.6	7.0	10.6	93.2	28.4	29.4	695
2018	9.6	102.6	181.6	35.2	6	78.4	1.2	14.6	49.4	107.6	78.4	96.4	761
2019	9	31	149.5	22.5									
Mean 1903-2019	88	97	95	89	67	86	56	49	54	63	66	79	877

Table 4:Monthly rainfall (mm) recorded at Maitland Visitors Centre (1995-2015) weather
station (long term mean includes East Maitland Bowling Club 1903 to 1994) and
at Maitland Belmore Bridge (Hunter River) (2016-19)

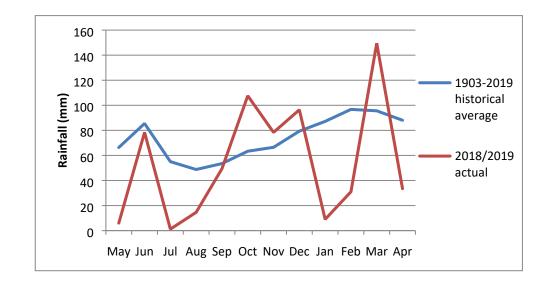
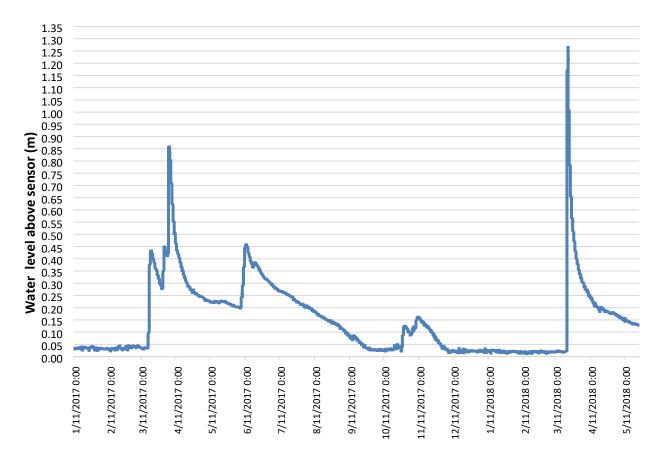


Figure 4: Monthly rainfall for 2018/19 survey period compared to historical monthly average (1903-2017)

Above average rainfall was recorded in October, November and December 2018 with the three months recording well below average rainfall. Above average rainfall was also observed in March 2019 which with 149.5 mm being recorded. However monthly totals were well below the average in May, July, August 2018 and January, February and April of 2019.


3.2.2 Water Quality and Water Level Monitoring

Funding was provided by the Donaldson Conservation Trust to The Tom Farrell Institute for the Environment for the installation of a water quality and water level monitoring station at Pambalong that records a range of data such as pH, electrical conductivity, temperature, dissolved oxygen, turbidity and water level within 15 minute intervals. Water quality monitoring in the Main Swamp commenced in October 2016, however, due to dry to very low water levels and access restrictions, no additional water quality data level is available (**Table 5**). Water level data is available for the period mid January 2017 – mid May 2018 (**Figure 5**). Data generated by this station will be immensely valuable in interpreting the results of future ecological monitoring.

Table 5:	Water quality monitoring data from Main Swamp during late 2016 – early	y 2017
----------	--	--------

		Temp.	рН	Electrical Conductivity	Dissolved Oxygen	Turbidity
Date	Time	oC	-	μS/cm	mg/L	NTU
18-10-16	10:00	16.4	6.98	1380	8.84	7
25-10-16	10:30	19.8	6.95	1300	7.22	7
01-11-16	10:30	17.8	6.98	1470	1.2	9
08-11-16	11:15	20.9	7.29	1650	1.78	15
15-11-16	11:00	21.2	7.38	1840	2.68	50
22-11-16	10:05	23.7	7.32	1810	2.24	33
29-11-16	9:10	24.4	7.51	1960	6.9	41
04-03-17	9:30	23	7.24	790	7.4	11
04-04-17	10:30	23.1	7.11	815	6.8	9
09-05-17	10:10	22.3	6.94	850	6.4	6

Water levels at Pambalong recorded monthly from the Main Swamp in 2017/18

The water level data reveals that considerable fluctuation occurs in the Main Swamp, with lows of between < 1 - 10 cm recorded during January to mid March 2017, with other extremely dry periods occurring from mid September 2017 through to mid March 2018 (consistent with field observations). Significant rainfall events in mid to late March 2017 resulted in water levels increasing to a high of 86.5 cm in early April, with the highest water level of 1.27 m recorded in late March 2018 after close to 100 mm of rain fell in a 24-hr period (22 and 23 March).

However, two other significant rainfall events (> 50 mm in one day) in late February and early March 2018 had no observable impact on water levels at Pambalong. After the extremely dry spring / summer period of 2017 / 2018 it is not surprising that sporadic rainfall prior to the late March 2018 deluge did not increase water levels as the larger catchment probably acted like a sponge. However, the > 100 mm on the 22nd/23rd March significantly increased water levels and very quickly. Water appears to flow through the Pambalong system after a large rainfall event as reflected in the dropping water levels post rainfall.

General field observations during 2019/2019 surveys indicate that water levels are particularly shallow within the Southern Swamp, generally less than 30cm as surveyors were able to walk through the centre of the waterbody with gumboots.

Analysis and discussion of water quality monitoring data will be included in future reports when a more complete dataset is available.

3.3 FLORA RESULTS

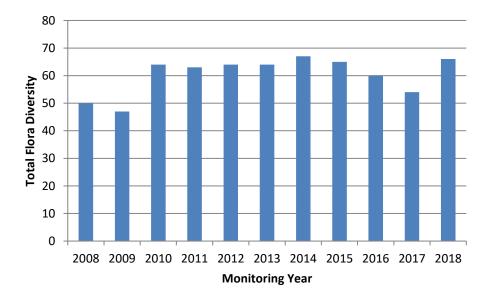
Flora surveys were conducted during December 2018. A total of 109 species were detected in 2018, compared to 90 species in 2017. A total of 200 species have been identified on the site since monitoring surveys commenced in 2008, an increase of four (196) since the last survey (**Appendix 1**). Twenty-two species were recorded in 2018 that were not recorded in 2017 (nine exotic and 13 native species), whereas three species were not recorded in 2018 that were recorded in 2018 that were not recorded in 2018 that were recorded in 2018 that were not recorded in 2018 that were recorded in 2018 that were not recorded in 2018 that were recorded in 2018 that were not recorded in 2018 that were recorded in 13 native species), whereas three species were not recorded in 2018 that were recorded in 2018 that were recorded in 2018 that were not recorded in 2018 that were recorded in the previous year's survey - all natives.

No threatened flora species were recorded during the field surveys. Three species considered as regionally significant by Eco Logical (2003) have been detected during the surveys since monitoring began; *Cyperus odoratus, Melaleuca linariifolia* and *Enydra fluctuans*.

Coastal Foothills Spotted Gum - Ironbark Forest (Q1)

The Coastal Foothills Spotted Gum - Ironbark Forest quadrat (Q1) has contained the highest species diversity of the four flora plots surveyed in the Reserve (**Plate 1**) during the annual spring surveys since 2008. The 2018 results were consistent with this trend (66 species recorded).

Flora diversity in this quadrat has recovered in 2018 to be near the peak diversity of 67 species recorded in 2014, albeit six of those are exotic species (**Figure 6**). *Corymbia maculata* (Spotted Gum), *Eucalyptus siderophloia* (Grey Ironbark), *Entolasia stricta* (Wiry Panic Grass) and *Aristida vagans* (Three-awned Spear Grass) and *Themeda triandra* (Kangaroo Grass) dominate the Coastal Foothills Spotted Gum - Ironbark Forest community (**Appendix 1**). A total of 13 species (12 native and one exotic) were recorded from the 2018 survey that were not observed in the 2017 survey. These species were entirely in the ground cover and forb layers and their presence or absence can depend on current environmental conditions.


During the 2018 survey, six exotic species were recorded within Quadrat 1; *Bidens pilosa* (Cobblers Peg), *Senecio madagascariensis* (Fireweed), *Sida rhombifolia* (Paddy's Lucerne), *Ehrharta erecta* (Panic Veldtgrass), *Lantana camara* (Lantana) and *Paspalum dilatatum* (Paspalum) - a new species recorded this survey. Five of these species were observed to comprise less than 5% coverage with Lantana increasing to a coverage score of 3 (5-<25%) – a considerable increase from the previous survey.

The vegetation community appears to be in good overall health evident by the increase in species diversity. This could be due to natural fluctuations and/or climatic conditions. However, the increase in Lantana requires control action.

Plate 1: Flora quadrat 1 (Q1) located in Coastal Foothills Spotted Gum - Ironbark Forest (Photograph taken in 2018)

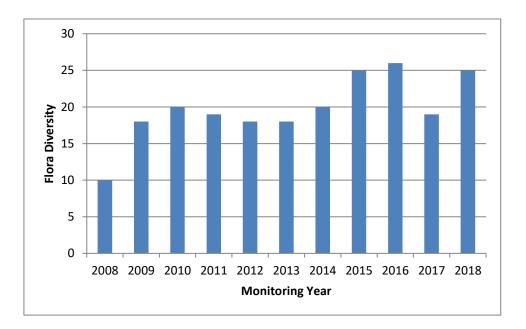
Figure 6: Flora species richness within Q1 from 2008 to 2018

Freshwater Wetland Complex (Q2)

The number of species recorded in the Freshwater Wetland Complex (Q2) since 2009 has fluctuated with a minimum of 18 and a maximum of 26 species recorded. The 2018 survey recorded 25 species, an increase on the previous year's 19 species (**Plate 2**, **Figure 7**). This quadrat was relocated in 2009 following an OEH recommendation. It was thought that the new location would provide data more relevant to the scope of the survey.

One native species, *Triglochin procerum* were not recorded from the quadrat in 2018.

A total of 12 exotic species were recorded in the 2018 survey, an increase of seven from the 2017 survey. The five species recorded from 2017: *Atriplex prostrata, Cassia pendula* subsp. *glabrata, Vicia sativa, Cenchrus clandestinus* (formerly *Pennisetum clandestinum* [Kikuyu]) and *Rumex conglomeratus* were recorded again during the 2018 survey. *Ageratina adenophora* (Crofton Weed), *Cyclospermum leptophyllum* (Slender Celery), *Lantana camara* (Lantana), *Phytolacca octandra* (Inkweed), *Senecio madagascariensis* (Fireweed), *Solanum nigrum* (Blackberry Nightshade) and *Verbena bonariensis* (Purpletop) were the new weed species recorded in 2018.


All but Kikuyu (increased to between 5% - <25%) were recorded at less than 5 percent coverage. The increase in the exotic species diversity, and the appearance of Crofton Weed indicate that the weeds are beginning to encroach in to the wetland. Whether this trend will be reversed with an increase in water levels following increased rainfall will be determined by subsequent years' monitoring. The weeds have most likely been sourced from the adjacent road side.

Overall, the wetland appears to still be in good health with native species dominating the wettest areas (*Typha orientalis, Schoenoplectus subulatus, Bolboschoenus caldwellii* and *Eleocharis equisetina*).

Plate 2: Flora quadrat 2 (Q2) located in Freshwater Wetland Complex dominated by Typha (Photograph taken in 2018)

Figure 7: Flora species richness within Q2 from 2008 to 2017

Paperbark Swamp Forest (Q3)

Flora species richness in the Paperbark Swamp Forest (Q3) (**Plate 3**) has remained relatively constant throughout the survey period (between 15-19 species), with two years of high species abundance being 2010 and 2016 (**Figure 8**). This year's survey recorded 23 species, with the increase wholly attributable to exotic species.

Twenty-three species were recorded in the 2018 survey; of these, 12 were exotic. Exotic species recorded this survey (but not 2017) were *Brassica juncea, Bidens pilosa* (Cobblers Pegs), *Cirsium vulgare* (Black Thistle), *Conyza spp.* (Fleabane), *Phytolacca octandra* (Inkweed) and *Solanum nigrum* (Blackberry Nightshade). The 2017 survey noted that the exotic species *Atriplex prostrata* (Hastate Orache) had increased dramatically over the previous three surveys. This survey recorded a substantial decrease in cover from 5 (50 - <75%) to 2 (<5%, but many individuals). *Cenchrus clandestinus* (Kikuyu) and *Rubus fruticosus* (Blackberry) remain abundant adjacent to Q3 in the north-east corner of the reserve. One exotic species *Aster subulatus* (Wild Aster) was not recorded this survey.

Native species richness and their cover remain largely unchanged between surveys at Q3.

Plate 3: Flora quadrat 3 (Q3) located in Paperbark Swamp Forest (Photograph taken in 2018)

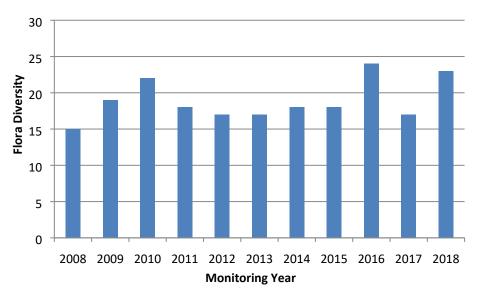


Figure 8: Flora species richness within Q3 from 2008 to 2018

Paperbark Swamp Forest (Q4)

A total of 12 species were recorded in the Paperbark Swamp Forest (Q4) in 2008 (**Figure 9**, **Plate 4**). This quadrat was relocated in 2009 in response to a request by OEH, as the new location was thought likely to produce more informative seasonal data. There has been a gradual decrease in the number of flora species recorded from 2009 to 2012 with the number of species remaining stable from 2012 to 2015. In 2016 species richness rose slightly to the highest since the 2011 survey before falling again by one species to a total of 14 during the 2017 survey, while in the 2018 survey 16 species were recorded (**Figure 9**). This is likely to be due to natural seasonal variation. Native species richness increased slightly by one species with *Schoenoplectus subulatus* recorded this survey.

The environmental weed *Alternanthera philoxeroides* (Alligator Weed) was first recorded in 2011. The abundance of this weed has fallen somewhat to a cover of two (<5%, many individuals).

Plate 4:Flora quadrat 4 located in Paperbark Swamp Forest (Photograph taken in
2017). Alligator Weed dominates in the foreground.

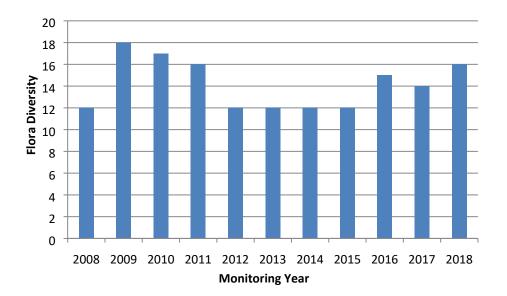


Figure 9: Flora species richness within Q4 from 2008 to 2018

Flora Transect

The flora transect samples a Freshwater Wetland Complex (**Plate 5**). Flora species richness has remained relatively stable since monitoring began (**Figure 10**). The 2018 survey recorded the same number of species as the 2017 survey but recorded a different suite of species. A total of six native and two exotic species were recorded in 2018, compared to seven native species and one exotic in 2017. The major change was the prevalence of open water this year (**Plate 5**), compared to the 2017 survey (**Plate 6**).

The exotic plant *Myriophyllum aquaticum* (Parrots Feather) was a new exotic recorded this survey, although its cover is only <5% (cover abundance of 2). Native species not recorded since 2017 were *Paspalum distichum* (Water Couch) and *Persicaria decipiens* (Slender Knotweed), while *Ludwigia peploides* (Water Primrose), *Spirodela punctata* (Duck Weed) and *Triglochin procerum*, all with substantial cover abundances were also not recorded this year. Water Hyacinth (*Eichhornia crassipes*) was recorded at high densities from 2008 to 2011, with a reduction in 2012 following control efforts. As found in the previous two years (2016 and 2017), only a small number of plants were observed in 2018, and these were located around the edges of the swamp.

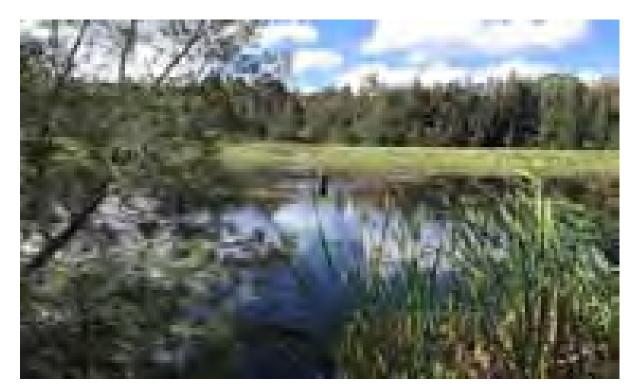


Plate 5: Flora transect located in Freshwater Wetland Complex (Photograph taken in 2018). Note the extent of open water.

Plate 6: Flora transect located in Freshwater Wetland Complex (Photograph taken in 2017). Note the absence of open water.

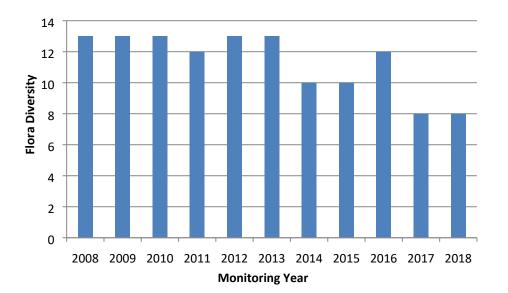


Figure 10: Species richness within the flora transect from 2008 to 2018

3.4 WEED SPECIES

The reserve has significant weed infestations across both disturbed areas and within the natural vegetation (**Figure 11**). The primary weeds at the time of survey were:

- Eichhornia crassipes (Water Hyacinth);
- Alternanthera philoxeroides (Alligator Weed);
- Cenchrus clandestinus (Kikuyu);
- Rubus fruticosus sp. aggregate (Blackberry); and
- Lantana camara (Lantana).

3.4.1 *Eichhornia crassipes* (Water Hyacinth)

Eichhornia crassipes (Water Hyacinth) can survive for extended periods of time and when conditions are favourable, can spread rapidly and cover large areas of open water. This rapid spread can choke out sunlight for natural inundated plant species and reduce open water access and usage for water birds. The life cycle of this plant means that it will continue to become established from both local and regional sources as it can float downstream and seeds can be delivered by itinerant birdlife.

- This weed dominated the water outlet from the Main Swamp to the North Swamp during the first monitoring event in 2008 (Plate 7). Prior to the 2009 monitoring event, some Water Hyacinth had been extracted from the open water and a grate installed to prevent this weed blocking the under-road culvert (Plate 8). Subsequent years can be observed in Plates 9-17.
- The 2018 monitoring event found that the coverage of *Eichhornia crassipes* on the North Swamp has increased since the previous year (2017). While areas of open water are present in 2018 (Figure 11), they are noticeably reduced in area. Plate 16 shows the increase in weeds surrounding the installed grate when compared to 2016 (Plate 15) however this is predominantly *Alternanthera philoxeroides* (Alligator Weed). This is likely to be due to *Eichhornia crassipes* spraying by the Pambalong Nature Reserve Enhancement Project which caused significant reductions of the weed in 2012 (Plate 11) and 2013 (Plate 12), and appears to have had similar results in 2016.
- Aerial drone photography shows the extent of the Water Hyacinth in the north swamp (**Plate 18**).
- Water Hyacinth is an environmental weed that should be controlled under the General Biosecurity Duty of the *Biosecurity Act 2015* due to its potential biosecurity risk. The NPWS Hunter Region Pest Management Strategy (2002) has identified control of Water Hyacinth

at Pambalong Nature Reserve as a "high priority" and an active program has been operating in the reserve since 2002.

Plate 7: Water Hyacinth at the Northern Swamp inlet in 2008

Plate 8: Water Hyacinth at the Northern Swamp inlet in 2009 showing the installation of a grate

Plate 9: Water Hyacinth at the Northern Swamp inlet in 2010

Plate 10: Water Hyacinth at the Northern Swamp inlet in 2011

Plate 11: Water Hyacinth at the Northern Swamp inlet in 2012

Plate 12: Water Hyacinth at the Northern Swamp inlet in 2013

Plate 13: Water Hyacinth at the Northern Swamp inlet in 2014

Plate 14: Water Hyacinth and Alligator Weed at the Northern Swamp inlet in 2015

Plate 15: Water Hyacinth and Alligator Weed at the Northern Swamp inlet in 2016

Plate 16: Water Hyacinth and Alligator Weed at the Northern Swamp inlet in 2017

Plate 17: Alligator Weed (foreground) and Typha at the Northern Swamp inlet in 2018.

Plate 18: Aerial photography showing the extent of the Water Hyacinth on the north swamp in 2018.

3.4.2 *Alternanthera philoxeroides* (Alligator Weed)

Alternanthera philoxeroides (Alligator Weed) may infest both terrestrial and aquatic environments (**Plate 17**). The abundance of Alligator Weed in 2018 was found to be approximately the same as the 2017 survey, although this has not been quantifiably assessed. Alligator Weed has the potential to form more extensive infestations within the reserve and invade adjoining land. Alligator Weed is easily spread and once established it is virtually impossible to eradicate. Alligator Weed is an environmental weed that should be controlled under General Biosecurity Duty of the *Biosecurity Act 2015* due to its potential biosecurity risk The NPWS Hunter Region Pest Management Strategy (2002) identifies Alligator Weed as a "high priority" weed.

NSW National Parks and Wildlife have attempted in the past to control Alligator Weed at the site but after a 3-year treatment program, have not made any headway with controlling its spread. Upstream weed sources and the species' long seed viability has made its control extremely difficult.

3.4.3 *Cenchrus clandestinus* (Kikuyu)

Cenchrus clandestinus (Kikuyu) forms dense, monoculture grassy thickets within disturbed areas of the subject site (**Plate 19**). The thickets are so dense in some areas that they are supressing native vegetation from regenerating.

- Kikuyu is a species listed under the Key Threatening Process (KTP) 'Invasion of native vegetation communities by exotic perennial grasses'.
- The boundary of Kikuyu dominance is restricted by the hydrological regime, generally adjacent to the high water mark, and is unlikely to spread into the wetland areas.
- Kikuyu is particularly dense in the north-west and south-east corners of the subject site and along the majority of the roadsides (**Plate 20**).

Plate 19: Cenchrus clandestinus (Kikuyu) in the north-west corner of the reserve

Plate 20: Aerial view of transition (from top to bottom) from open water to Typha to Kikuyu to woodland. Kikuyu excludes all other vegetation.

3.4.4 *Rubus fruticosus* sp. aggregate. (Blackberry)

Rubus fruticosus sp. aggregate. (Blackberry) is found in areas of previous disturbance within the reserve, and forms a dense thicket to 1 m high, supressing natural regeneration. Blackberry thickets can restrict fauna access to the wetland areas and provide shelter for feral animals. Blackberry is listed as a prohibited matter under the *Biosecurity Act 2015* in Newcastle, Cessnock and Maitland local government areas and the growth and spread of the plant must be controlled according to the measures specified in a management plan published by the local control authority (the plant may not be imported into the state or sold).

 The NPWS Hunter Region Pest Management Strategy (2002) identifies Blackberry as a "high priority" weed. This species was initially treated by weed control efforts in 2008; however, it was still recorded at low densities on Transect 1 in 2013. Ongoing treatment is required to eradicate/suppress this species and prevent re-establishment as it is still present in patches in certain sections of the reserve (Plate 21 and Figure 11).

Plate 21: *Rubus fruticosus* (Blackberry) – background in the north-west corner of the reserve. *Ambrosia tenuifolia* (Lacy Ragweed) in the foreground.

3.4.5 *Lantana camara* (Lantana)

Lantana camara (Lantana) is a primary weed of the dry sclerophyll woodland at the southern portion of the subject site. Efforts to control the weed in this area have been successful in previous years. As noted in Section 3.3, this weed has increased its cover in the Coastal Foothills Spotted Gum – Ironbark Forest community and requires control efforts.

This species can dominate the shrub and mid stratum if left untreated, effectively outcompeting native species and can provide refuge for feral animals.

- The 'Invasion, establishment and spread of *Lantana camara*' is listed as a Key Threatening Process (KTP) under the NSW *Biodiversity Conservation Act 2016*.
- Lantana is a Weed of National Significance (WONS). The NPWS Hunter Region Pest Management Strategy (2002) identifies Lantana as a "high priority" weed. Significant efforts were made to control this weed in the southern part of the reserve in 2013 and 2016 with good results.

3.4.6 Environmental Weeds

An environmental weed is a plant species that is not a priority weed and / or WoNs but can still impact on the environment through the degradation of ecosystems by interfering with the growth and spread of other native flora species. Environmental weeds can also impact on native fauna by replacing their natural food sources, making wildlife corridors impenetrable, and/or degrading other important habitat features.

Other weeds found at the subject site are general weeds of disturbed areas, confined to the fringes of the reserve, roadsides and the former rail line and are generally outside the natural vegetation areas. Some naturally occurring species may also present a problem if they become too abundant.

3.4.6.1 *Typha orientalis (native)*

Typha orientalis (Typha) has increased in abundance over the past few years and has spread into areas of open water, restricting the available habitat of open water bird species, such as pelicans, ducks and swans. This is particularly evident in the north swamp inlet (**Plates 13-17**). The extent of Typha within the subject site should continue to be monitored to determine if this high abundance is temporary (e.g. in response to favourable climatic conditions) or relatively

permanent (e.g. in response to changes in the catchment that have affected water levels within the swamp).

3.4.6.2 *Ambrosia tenuifolia*

Ambrosia tenuifolia (Lacy Ragweed) is an environmental weed that has colonised and spread rapidly in the north-west corner of the reserve in the area adjacent to Q3 in the Kikuyu Grassland and disturbed area (**Figure 11, Plate 21**). Under the NSW *Biosecurity Act 2015* this species is required to be managed to prevent, eliminate or minimise any risk it presents as far as is practicable.

L:\GIS FOLDER\00 CLIENT FILES\101_AbelUndergroundCoalMine\20192319_Pambalong_November2018Wapping\20192319_Fig11WeedSpeciesMapping.mxd

3.5 VEGETATION COMMUNITIES

Three natural vegetation communities and associated variations, and two altered vegetation types were mapped on the subject site in 2008 (**Figure 12**). The distribution of communities did not change in the 2018 surveys.

3.5.1 Coastal Foothills Spotted Gum – Ironbark Forest (Dry Sclerophyll Forest)

This community occurs as an open forest on the knoll at the southern portion of the subject site. The overall community shows significant past disturbance and subsequent weed infestation.

The community is dominated by *Corymbia maculata* and *Eucalyptus siderophloia* with some *Eucalyptus acmenoides* scattered throughout. The mid stratum has a high abundance of *Bursaria spinosa* and *Acacia maidenii*. The shrub layer is dominated by *Daviesia ulicifolia* and the ground cover is grassy with *Themeda australis*, *Dichelachne micrantha*, *Entolasia stricta*, *Echinopogon caespitosus* and *Aristida vagans* common.

This community is not dependent on the wetland and associated hydrology. *Coastal Foothills Spotted Gum – Ironbark Forest* is not listed as a Threatened Ecological Community.

3.5.2 Paperbark Swamp Forest (Swamp Sclerophyll Forest)

The Paperbark community is restricted to more elevated flats and areas bordering the freshwater wetland complex. Patches at the centre of the reserve are the most mature and consist of a scattered *Casuarina glauca* canopy over dense *Melaleuca* sub-canopy. Flora quadrat 3 is located in the northern portion, adjacent to the Water Couch-Triglochin Swamp Meadow community and flora quadrat 4 is located centrally in the core forested area.

The species composition within Q3 is typically dominated by the canopy species *Melaleuca linariifolia* and *M. styphelioides*. One juvenile *Ficus macrophylla* is also located in the quadrat. Some *Melaleuca ericifolia* is present within the quadrat indicating frequent inundation; however, this species is more common in permanent swamp areas at the ecotone between the Paperbark community and the freshwater wetlands. The mid stratum is sparse or absent.

The ground cover within the quadrat comprises *Bolboschoenus caldwellii, Eleocharis acuta, Atriplex prostrata* and *Lachnagrostis filiformis.*

Within Q4, floristic structure is similar to Q3; however, with the more permanent inundation, several other species are also present. These include *Enydra fluctuans, Juncus pallidus, Ludwigia peploides* subsp. *montevidensis, Typha orientalis* and *Casuarina glauca*. The exotic species *Alternanthera philoxeroides* also dominates the area with scattered Water hyacinth also present. Two epiphytic orchid species, *Dendrobium linguiforme* (Tongue Orchid) and *D. teretifolium* (Rat's Tail Orchid), occur on several *Casuarina glauca* trees.

The Paperbark Swamp Forest and Paperbark Woodland forms part of the NSW BC Act listed *Swamp Sclerophyll Forest on Coastal Floodplains EEC.*

3.5.3 Freshwater Wetland Complex (Freshwater Wetland)

The Freshwater Wetland Complex occurs in deeper depressions having a permanent or periodical inundation of fresh water, such that the species composition is comprised of water tolerant species. At the subject site the Freshwater Wetland Complex consists of three variations: Typha Reedland; Rushland Swamp/Open Water; and Water Couch-Triglochin Swamp Meadow.

Specifically, these mapped freshwater wetland variations range from open water bodies, with tall reeds and sedges, to a mixed reedland, rushland or swamp meadow integrating with the Paperbark Swamp Forest community. The integration is likely to be a dynamic and moving boundary, at the present time directed by seasonal and climatic conditions.

The Freshwater Wetland Complex forms part of the NSW BC Act listed *Freshwater Wetlands* on *Coastal Floodplains* EEC.

3.5.3.1 Typha Reedland

The Typha Reedland dominates deeper permanently inundated areas within the reserve. The Typha Reedland generally borders the lagoon areas. The extent of Typha relates to the seasons and water levels. Q2 is located within this community variant. The dominant species are *Typha orientalis* (Broadleaf Cumbungi), *Schoenoplectus validus, Paspalum distichum* (Water Couch), *Eleocharis equisetina* and *Bolboschoenus caldwellii.*

3.5.3.2 Rushland Swamp/Open Water

The Rushland Swamp is located in shallow semi-permanent and permanent water bodies. Transect 1 is located in this community in the South Swamp and the species diversity within this community is relatively low. The water level varies from deeper water to boggy substrate in the survey transect. The community is dominated by *Eleocharis sphacelata, Ludwigia peploides* subsp. *montevidensis, Spirodela punctata* and *Triglochin procera*, although these latter three species were recorded this year.

The open water areas occupy large portions of the Main Swamp and the North Swamp. This community is very variable due to seasonal and local climatic conditions and is related to the extent of the Typha Reedland and Rushland Swamp.

3.5.3.3 Water Couch-Triglochin Swamp Meadow

The Water Couch-Triglochin Swamp Meadow is found at the northern end of the Main Swamp. The presence of old fence lines indicates the previous land use of the site for grazing purposes. The composition and structure of flora are indicative of some disturbance. This community is dominated by *Paspalum distichum*, *Triglochin* sp. and *Persicaria* sp. The Swamp Meadow is also fringed on the deeper inundations by Typha Reedland.

3.5.4 Altered Vegetation - Swamp Oak Forest (planted)

Two isolated sections of the subject site contain *Casuarina glauca* stands that have been physically planted. These communities are not natural and their composition does not adequately represent a natural community. *Casuarina glauca* is also found naturally throughout the Paperbark Swamp Forest.

3.5.5 Altered Vegetation - Disturbed/Kikuyu Grassland

The Kikuyu dominated grasslands and disturbed areas have a monoculture of Kikuyu or a weed dominated composition. Kikuyu Grass dominates large areas adjacent to the south swamp and Coastal Foothills Spotted Gum – Ironbark Forest community and north from the main swamp. The rail line between the South Swamp and Main Swamp is infested by weeds; however, this is mainly restricted to the elevated area and is not impacting upon the swamp areas.

3.5.6 Endangered Ecological Communities

The vegetation mapping encompasses two Endangered Ecological Communities: *Freshwater Wetlands on Coastal Floodplains* EEC; and, *Swamp Sclerophyll Forest on Coastal Floodplains EEC*. The EECs occupy the majority of the reserve and their distribution is shown in **Figure 12**.

3.5.6.1 Freshwater Wetlands

Freshwater Wetlands are associated with coastal areas subject to periodic flooding and in which standing fresh water persists for at least part of the year in most years. Soils are typically silts, muds or humic loams in low-lying parts of floodplains, alluvial flats, depressions, drainage lines, back-swamps, lagoons and lakes but may also occur in back-barrier landforms where floodplains adjoin coastal sandplains (NSW Scientific Committee 2004).

The species composition of freshwater wetlands at the subject site is indicative of the EEC as they are dominated by herbaceous plants and have few woody species. The vegetation composition (grassland, open water or sedgeland vegetation) is known to vary both spatially and temporally depending on the water regime.

Hexham Swamp and Pambalong Nature Reserve are recognised as important reserves for freshwater wetlands.

3.5.6.2 Swamp Sclerophyll Forests

The Paperbark Swamp Forest is recognised as a Swamp Sclerophyll Forest EEC. The community is dominated by *Melaleuca linariifolia*, *M. ericifolia* and *M. styphelioides* (paperbarks) and scattered *Casuarina glauca*. This is indicative of a sclerophyllous community; however, it does lack a tree layer of eucalypts. Much of the subject site was inundated at the time of surveying; however, previous reports indicate these areas become dry land during extended dry periods.

The groundcover was composed of abundant sedges, ferns, forbs, and grasses which are indicative of the EEC. Within the Lower Hunter district, this community includes 'Swamp Mahogany-Paperbark Swamp Forest' (map unit 37), Riparian Melaleuca Swamp Woodland (map unit 42) and Melaleuca Scrub (map unit 42a) of NPWS (2000).

Legend

Pambalong Nature Reserve

		Мар
1.0	Contra Maria	GDA 1
00	Seel Dea	Data LPI - 2 Nearm
Project Ref:	20192319	
Plot Date:	2/20/2019 16:41	Disclaim map but All data y
Revision:	001 (THawkins)	available points ar

1994 MGA Zone 56

a **Sources:** 2016 map - 2017

n the b

00 CLIENT FILES\101_AbelU dergroundCoalMine\20192319_Pambalong_November2018Wapping\20192319_Fig12_VegCommunity.mxd

3.6 FAUNA

A total of 104 fauna species have been recorded during the 2018/19 monitoring period. Total fauna species richness recorded in each monitoring year is shown in **Figure 13**. Species recorded in 2018/19 comprised six frog, two reptile, two arboreal mammal, three terrestrial mammal, 12 bat and 79 bird species. Of these, five are listed as Vulnerable and one is listed as Endangered under the NSW BC Act (**Table 6**). Additionally, two species are listed under the Commonwealth EPBC Act. Total fauna species richness in 2018/19 has returned to similar number observed in 2015/16 after slightly fewer numbers of species were noted in 2016/17 and 2017/2018. Differences in recent years appears to be largely driven by the diversity of birds detected year to year.

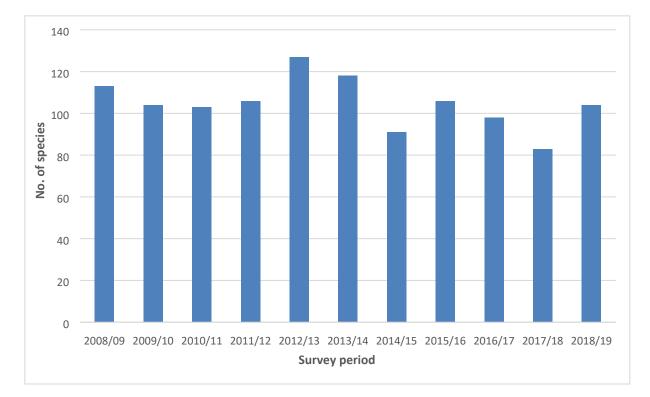


Figure 13: Fauna species richness recorded from 2008/09 to 2018/19.

Scientific Name	Common Name	Legal status	Survey Method
Falsistrellus tasmaniensis	Eastern False Pipistrelle	V – BC Act	Anabat recording (probable)
Haliaeetus leucogaster	White-bellied Sea-Eagle	V – BC Act	Bird survey
Miniopterus australis	Little Bentwing-bat	V – BC Act	Trapped and Anabat recording (confident)
Pteropus poliocephalus	Grey-headed Flying-fox	V – BC Act / V – EPBC Act	Spotlighting
Botaurus poiciloptilus	Australasian Bittern	E – BC Act / E – EPBC Act	Bird Survey
Glossopsitta pusilla	Little Lorikeet	V – BC Act	Bird Survey

Table 6: Threatened fauna species recorded in 2018/19

NB: taxonomy for bats follows Churchill (2008). V = vulnerable.

The number of amphibian, reptile, and mammal species detected in each monitoring year is shown in **Figure 14**. The number of mammal and amphibian species recorded each year has remained relatively constant throughout the survey years; however, the number of reptile species detected has been found to fluctuate each year. Two reptile species were recorded in the 2018/19 survey period; Red-bellied Black Snake (*Pseudechis porphyriacus*) and Common Tree Snake (*Dendrelaphis punctulata*). Reptiles are not specifically targeted by the monitoring program.

Figure 14: Fauna species richness by taxon from 2008/09 to 2018/19 (excluding birds).

3.6.1 Amphibians

Six species of amphibian were detected during the 2018 surveys. No threatened species were detected; neither were any new species or notable absences detected.

Selected photographs of each water body surveyed for birds and amphibians are provided in **Appendix 8**. Photographs from the Autumn 2012, 2014, 2015, 2017 and 2018 survey periods are provided to enable a visual comparison of the variability of water levels, areas of open water and aquatic vegetation occurring at each of the three water bodies.

3.6.2 Birds

Figure 15 shows changes in bird species richness at each of the five survey locations over time. A total of 79 bird species were recorded during the 2018/19 surveys, which is slightly less the yearly average over the 10 year survey period. The total number of species recorded during each survey period has remained relatively constant, with expected natural fluctuations, over the past 10 years of surveys. Bird numbers appear to rise and fall on a cyclical basis, every 2 years.

Three species not previously detected by Kleinfelder from the study area were detected in 2018/19 which brings the total number of bird species detected over the past 11 years to 137. A Brown Goshawk (*Accipiter fasciatus*) was detected foraging within the southern swamp which then proceed to perch within the woodland patch. One new threatened species were also detected during surveys, the Australasian Bittern - *Botaurus poiciloptilus* (listed as Endangered under both the BC and EPBC Act) was heard calling at dusk from within emergent vegetation within the northern portion of the Main Swamp (where the road dissects the Main and North Swamps). Detection of an Australasian Bittern is of significance as the species is highly cryptic, hiding amongst dense vegetation and is often missed during targeted searches. Calls of the species are distinct and are described as a deep "ooOOm, ooOOm". The source of the individual may be from Hexham Swamp which is suspected to be a possible breeding ground.

Australasian Shovelers were once again detected during the 2018/2019 surveys after being periods of absence between 2009 and 2017. A total of 16 Shovelers were observed in the Main Swamp along with 33 Black Swan's that were recorded during the roosting bird counts.

Twenty-seven species were detected at the North Transect in 2018 which is slightly below the yearly average of 32 species. A decline in species richness at this transect is evident (**Figure 15**) and has been gradually occurring since the Spring 2011 survey. Noticeable absences in the current survey at the North (and South) Transect included spring migrants such as the White-throated Gerygone and Cicadabird, several Cuckoo species, Tawny Grassbird, Pied Currawong and small passerines such as the Variegated Fairy-wren and Yellow Thornbill. Two species not previously detected at the North Transect were recorded in 2018; Brush Cuckoo and Rufous Fantail. A Pheasant Coucal was also observed in 2018 which has not been detected since 2012.

Similarly, slightly less species were observed in the Southern Transect than the yearly average. A total of 24 species were recorded in the Southern Transect which has fluctuated between 36 and 22 species over the past 11 years.

Figure 15: Bird species richness recorded at Pambalong Reserve from 2008 to 2019.

Wetland-specialist species were separated from the total species list for comparison over time. These species were then further separated into waterbirds, (ducks, cormorants and pelicans) and wading birds (ibises, egrets and herons, etc.) to determine if there has been any change in the occurrence of species within these guilds over time. As these groups use different habitat (open deep water versus shallow, vegetated edges), changing conditions at the reserve will affect each group differently.

The number of wetland-specialist bird species recorded during the monitoring events has fluctuated considerably over time (**Figure 16**). A total of 23 wetland-specialist species were detected at the Main Swamp in 2018/19 which is a substantial increase from 9 species detected in 2017/2018. While the waterbody survey location is increasingly becoming overgrown, limiting the field of view, birds that were recorded opportunistically along the northern reaches of the Main Swamp have also been included.

Large numbers of Straw-necked Ibis were detected within the Main Swamp following several years where the species has not been detected. Apart from Ibis, reasonable numbers of Australasian Shovelers and Black Swans were observed on multiple surveys within the Main Swamp. This is the first time Australasian Shovelers have been recorded in the Main Swamp.

The annual number of wetland species within the reserve has remaining relatively stable since the previous year's survey in 2017/2018. While the number of wetland birds detected in the South and North Swamp is lower than the previous year, significantly more species (23) were detected in the North Swamp after only nine species were observed the year previous.



Figure 16: Wetland-specialist bird species recorded at Pambalong Reserve from 2008 to 2019.

The pattern of occurrence of waterbird species that rely on open water for foraging has fluctuated considerably across the three Swamps over the past four years (**Figure 17**). Overall, the number of waterbirds has rebounded to the highest diversity recorded since 2012/2013. Since then, lower than average waterbird species have generally been observed through the three Swamps. In particular, fewer birds have progressively been detected in the North Swamp which is likely to be the result of loss of open water habitat. While the South Swamp is experiencing similar levels of aquatic and riparian weed growth, the number of waterbirds has remained relatively constant. This may be explained by the persistence of an area of open water immediately adjacent to the waterbird survey point. However, closer inspection of the open area of water in the South Swamp during 2018/2019 surveys has revealed that the water level is very low (approximately 30cm) and is being encroached around the periphery by grasses. Loss of open water in future years may result in complete loss of water and wading birds in the South Swamp. Greater numbers of waterbirds and wading birds are being observed

in the northern reaches of the Main Swamp may be due to the loss of open water in the North and South Swamp.

The total number of wading birds at Pambalong has varied over the recent years. Peaks and troughs in diversity appear to occur on alternate years with the 2018/2019 surveys returned slightly less numbers of species than the previous year. Across the three Swamps, the number of wading birds has experienced similar changes throughout the 11 year survey period. In 2017/2018 the greatest difference was observed between numbers of wading birds between Swamps, however, there difference is marginal in 2018/2019.

Lower than average annual rainfall conditions have been experienced throughout much of eastern Australia seaboard, particularly since 2016. This trend has also been observed in the Hunter with lower than average annual rainfall recorded at the closest weather station to Pambalong in 2017 and 2018. Previously during periods of low annual rainfall, greater numbers of species have been generally observed at Pambalong. This is suggested to be the result of inland areas drying up, leading to birds seeking water in coastal regions. In 2018/2019 surveys, reasonable rainfall events were recorded immediately prior to surveys in Nov/Dec 2018 and May 2019 in the lower Hunter. Above average rainfall events during these months may have allowed wetland birds to return to inland regions resulting in fewer birds being detected in the current survey year.



Figure 17: Waterbird species recorded at Pambalong Reserve from 2008 to 2019.

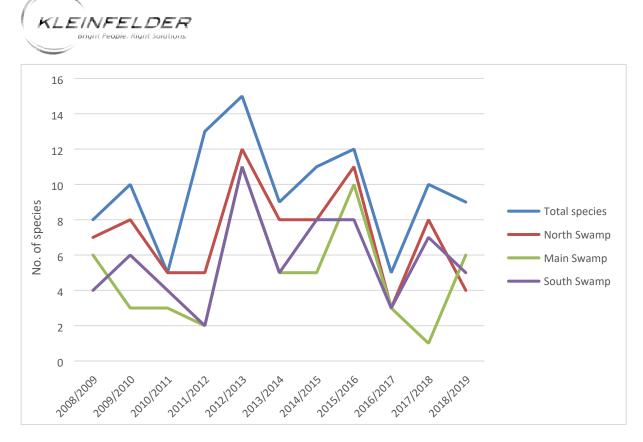


Figure 18: Wading bird species recorded at Pambalong Reserve from 2008 to 2019.

Roosting bird counts have largely reflected the presence of a small number of species that sometimes appear in large numbers. For example, three species (Australian White Ibis, Strawnecked Ibis and Cattle Egret) have contributed 91% of all 2705 individual roosting birds recorded since project initiation in 2008. The highest numbers of roosting birds were observed in 2015 (598 birds), while less than 100 birds have been reported in any survey since to 2015 to 2018. Reasonable numbers of Australian White Ibis (112 birds) were observed in the most recent survey (May 2019) indicating that the stand of Melaleucas and Casuarinas within the Main Swamp are still used as roosting habitats for waterbirds on an intermittent basis.

Other factors likely to affect bird species detection between years include seasonal variations (e.g. arrival times of migratory species), flowering times of foraging resources for nectarivorous species, climatic conditions and individual species ecology (e.g. some species have a large home range and may be absent from the study area during surveys or have cryptic traits which make them more difficult to detect).

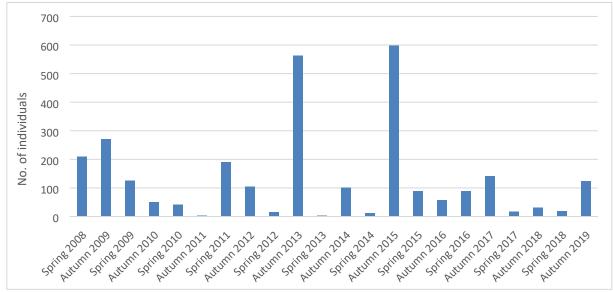


Figure 19: Number of birds recorded roosting in the Melaleuca Swamp Forest of the Main Swamp from 2008 to 2019.

3.6.2.1 Bird Data from Other Sources

Members of the Hunter Bird Observers Club (HBOC) and other similar interest groups make occasional visits to the Reserve. The HBOC was approached for their records of species during the in 2017, however, Kleinfelder was advised that Club records had been provided to Birdlife Australia's database https://birdata.birdlife.org.au. A search of records contained within the database from May 2018 to May 2019 returned a total of 99 species. A number of species that were not detected during Kleinfelder surveys within the Reserve include wetland species. These were Hoary-headed Grebe, Black-winged Stilt, Royal Spoonbill in addition to a number of woodland and predatory birds.

3.6.3 Mammals

Two arboreal mammals were detected in 2018/19 (Common Brushtail Possum and Brown Antechinus), both of which have been detected in previous surveys. Three terrestrial mammals were also detected, including two introduced species; European Rabbit (*Oryctolagus cuniculus*), and the Black Rat (*Rattus rattus*) which have been irregularly recorded over the 11 years of annual monitoring.

A total of 12 bat species, including three threatened species, were recorded in 2018/19, which is considered a high diversity for the local area.

The exotic Black Rat has been consistently recorded since 2008/09, with the exception of 2011/12 and 2016/17. This species is known to out-compete native rodent species. This could explain the intermittent detection of native rodents, such as the Swamp Rat, which was only detected in 2013/14 and the Bush Rat, which was detected in 2008/09, and again in 2015/16.

3.6.4 Reptiles

Two reptile species were detected during the 2018 surveys; Red-bellied Black Snake (*Pseudechis porphyriacus*) and the Common Tree Snake (*Dendrelaphis punctulata*). Reptiles are not specifically targeted by the monitoring program.

3.6.5 Introduced Fauna

Introduced species previously recorded in the reserve include: Black Rat, House Mouse, Rabbit, Fox, Wild Dog, Feral Cat, Common Myna, Spotted Dove, Northern Mallard, House Sparrow, Red-whiskered Bulbul and Common Starling (Hunter Bird Observers Club records 1990 – 2008; Straw 2000; White 2000; Kleinfelder 2008 - 2017).

Two introduced fauna species were recorded during the 2018/19 survey period, European Rabbit (*Oryctolagus cuniculus*) and Black Rat (*Rattus rattus*). The ecological condition of the reserve is negatively impacted by the presence of these species and their presence should be monitored and control measures implemented if deemed necessary.

4. CONCLUSION AND RECOMMENDATIONS

Monitoring of the Pambalong Nature Reserve has been undertaken in 2018/19 in accordance with the Flora and Fauna Management Plan for Abel Underground Coalmine (ecobiological 2007).

In total, there were 109 flora species (within the flora survey quadrats and transect) and 98 fauna species comprising six amphibian, two reptile, 17 mammal (12 bat) and 73 bird species recorded in 2018/19. The following threatened species were recorded during field surveys:

- Eastern False Pipistrelle (Falsistrellus tasmaniensis);
- Grey-headed Flying-fox (Pteropus poliocephalus);
- Little Bentwing-bat (*Miniopterus australis*); and
- White-bellied Sea-Eagle (Haliaeetus leucogaster);

Two feral species were detected in 2018/19:

- European Rabbit (*Oryctolagus cuniculus*);
- Black Rat (*Rattus rattus*).

Control of the aquatic weeds Water Hyacinth and Alligator Weed throughout the reserve is recommended to improve the quality of the habitat for water birds and other native fauna (however, it is acknowledged that continued efforts will unlikely ever eradicate these weeds from the reserve without the cooperation from upstream landholders). Control of terrestrial weeds such as Lantana, Blackberry and Kikuyu should also be undertaken in combination with rubbish removal to make the habitat less suitable for feral fauna species and more suitable for native species.

The 2018/19 survey recorded four new flora species, three of which are native species (*Cheilanthes sieberi* subsp. *sieberi* Mulga Fern, *Desmodium gunnii* Slender Tick-treefoil, *Eremophila debilis* Winter Apple). The fourth new species was the exotic *Myriophyllum aquaticum* (Parrots Feather) at Transect 1, although its cover its still <5% (cover abundance of 2). Flora species richness has remained relatively constant between the monitoring events in Quadrats 1 - 4. Flora species richness at Transect 1 remained the same as in the previous

year's survey. No significant changes to the vegetation community extents were recorded in the 2018 surveys.

Kikuyu grass, blackberry and other weeds continue to cover significant dry areas and any treatment of these areas would require follow up regeneration and rehabilitation. Planting with canopy species such as *Casuarina glauca* (Swamp Oak) or other 'forested wetland' species may provide sufficient shade to prevent reinfestation of these areas once the weeds have been eradicated by herbicidal spray.

In order to maintain the quality and usefulness of data collected on the health of Pambalong Reserve it is recommended that new methods be added where possible to the existing methodology. One evident change in the reserve is the continued encroachment of Typha orientalis into areas that were once open water (refer to Section 3.4.6.1 for details). While Typha orientalis is a native species, infestations can interfere with waterflow (restricting access to water by wildlife), reduce water quality and limited establishment of other native emergent vegetation. This encroachment may be due to the lack of water movement throughout the swamps or gradual sedimentation of all swamps (Kathleen Straw, pers. comm.). Bird species, particularly wading species may be a good indicator that this sedimentation is occurring. While the proliferation of Typha is simply part of wetland dynamics and changing water levels, if the reserve continues to dry, many species that require areas of open water i.e. ducks, grebes etc. may be forced elsewhere and diversity as a whole will decline. As such, it is recommended that potential annual mapping of aquatic vegetation such as *Typha orientalis* be undertaken and then used in conjunction with data collected by the water quality monitoring station. Such data may provide explanations for changing numbers of waterbird diversity/abundance and need to manage the extent of *Typha* should natural water flows be impeded.

Fauna surveys in 2018/19 recorded 104 species which is marginally below the yearly average (n = 105 species). Mammal, amphibian and reptile diversity were similar to recent years. Bird diversity recorded in 2018/2019 was highest observed since 2015/2016. The total diversity of wetland bird species has fallen from the previous year's survey results, however, the trend appears to follow a rise and fall on alternate years. While the diversity of wading and waterbird species within the North and South Swamp are lower than average, diversity within the Main Swamp has increased. Increased in Alligator Weed and *Typha orientalis* within the wetland is clearly reducing open water availability and without targeted management is likely to continue to impact bird diversity.

Annual monitoring in 2018/19 has continued to contribute to a valuable long term data set on the composition, abundance and distribution of flora and fauna within Pambalong Nature Reserve. This information provides a sound basis for evaluating the potential ecological impacts of underground mining which may arise in the future, and the development of appropriate management responses.

5. REFERENCES

Anstis M 2002, *Tadpoles of South-Eastern Australia: A Guide with Keys,* Reed New Holland, Sydney.

Bell FG, Stacey TR & Genske DD 2000 'Mining subsidence and its effect on the environment: some differing examples' *Environmental Geology* 40(1-2), pp 135-152.

Bibby CJ, Burgess ND & Hill DA 2000, *Bird Census Techniques*, Academic Press Limited, London.

Briggs JD & Leigh JH 1995, Rare or Threatened Australian Plants, CSIRO, Canberra.

Brunner H, Triggs B & Ecobyte Pty Ltd 2002, Hair ID - An interactive tool for identifying Australia mammalian hair, CSIRO Publishing, Collingwood.

Churchill S 2008, Australian Bats 2nd Edition, Allen & Unwin, Crows Nest.

Department of Environment and Conservation 2006, *Pambalong Nature Reserve Plan of Management*, DEC Hunter Region, May 2006.

ecobiological 2007, *Abel Underground Coalmine Flora and Fauna Management Plan*, prepared for Donaldson Coal Pty Ltd, October 2007.

Eco Logical Australia 2003, *An Investigation and Description of the Vegetation of the Pambalong Swamp (Pambalong Nature Reserve)*, NSW National Parks and Wildlife Service.

Harden GJ (ed) 1992, Flora of New South Wales Volume 3, NSW University Press, Sydney.

Harden GJ (ed) 1993, Flora of New South Wales Volume 4, NSW University Press, Sydney.

Harden GJ (ed) 2000 Flora of New South Wales Volume 1, NSW University Press, Sydney.

Harden GJ (ed) 2002 Flora of New South Wales Volume 2, NSW University Press, Sydney.

NPWS 2000, Vegetation Survey, Classification and Mapping Lower Hunter and Central Coast Region Version 1.2, A project undertaken for The Lower Hunter and Central Coast Regional Environment Management Strategy CRA Unit Sydney Zone, National Parks and Wildlife Service.

NPWS 2002, *Hunter Region Pest Management Strategy*, NSW National Parks and Wildlife Service, Shortland.

NSW Scientific Committee 2004, *Freshwater Wetlands on Coastal Floodplains of the NSW North Coast, Sydney Basin and South East Corner Bioregions – Endangered Ecological Community Listing*, Office of Environment and Heritage Website, Updated 28 February 2011, Available:

http://www.environment.nsw.gov.au/determinations/FreshwaterWetlandsEndSpListing.htm

Poore, MED 1955 'The use of phytosociological methods in ecological investigations: The Braun-Blanquet system', *Journal of Ecology*, 43(1), pp 226-244.

Sidle RC, Kamil I, Sharma A & Yamashita S 2000, 'Stream response to subsidence from underground coal mining in central Utah', *Environmental Geology* 39(3-4), pp 279-291.

Straw P 2000, *Birds of Pambalong Nature Reserve – Management Strategy Avifauna,* Avifauna studies for NSW National Parks and Wildlife Service.

White A 2000, *Frog, Reptile and Mammal Survey Minmi Swamp Biosphere*, Environmental Consultants for NSW National Parks and Wildlife Service.

APPENDIX 1. FLORA SPECIES LIST

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1
Acanthaceae	Brunoniella australis	Blue Trumpet	1				
Adiantaceae	Cheilanthes distans	Bristly Cloak Fern	2				
Adiantaceae	Cheilanthes sieberi subsp. sieberi	Mulga Fern	2				
Alismataceae	Alisma plantago-aquatica	Water Plantain					
Amaranthaceae	*Alternanthera philoxeroides	Alligator Weed				2	
Amaranthaceae	Alternanthera denticulata	Lesser Joyweed		1	2		
Anthericaceae	Arthropodium milleflorum	Pale Vanilla-lily	2				
Apiaceae	Cyclospermum leptophyllum	Slender Celery		1			
Apiaceae	*Foeniculum vulgare	Fennel					
Apiaceae	*Hydrocotyle bonariensis	Pennywort					
Apiaceae	Centella asiatica	Indian Pennywort					
Apium	Apium prostratum						
Apocynaceae	*Araujia sericifera	Moth Vine					
Apocynaceae	*Gomphocarpus fruticosus	Wild Cotton					
Apocynaceae	Parsonsia straminea	Monkey Rope		1			
Asparagaceae	*Protasparagus aethiopicus	Fern Asparagus					
Asteraceae	*Ageratina adenophora	Crofton Weed		1			
Asteraceae	*Ambrosia psilostachya						
Asteraceae	*Ambrosia tenuifolia	Lacy Ragweed					
Asteraceae	*Aster subulatus	Wild Aster				2	
Asteraceae	*Bidens pilosa	Cobblers peg	2		2		

Table 7:Flora species identified from the 2018 survey

\frown
KLEINFELDER
Bright People. Right Solutions.

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1
Asteraceae	*Cirsium vulgare	Black Thistle			2		
Asteraceae	*Conyza canadensis var. canadensis	Canadian Fleabane					
Asteraceae	*Conyza sp.	Fleabane			2		
Asteraceae	*Conyza sumatrensis	Tall Fleabane					
Asteraceae	*Crassocephalum crepidioides	Thickhead					
Asteraceae	*Euchiton sp.	Cudweed					
Asteraceae	*Hypochaeris radicata	Catsear					
Asteraceae	*Hypochaeris radicata	Catsear					
Asteraceae	*Senecio madagascariensis	Fireweed	1	2	2		
Asteraceae	*Sonchus oleraceus	Milk Thistle		1	2		
Asteraceae	*Tagetes minuta	Stinking Roger					
Asteraceae	Brachycome multifida var. dilatata	Cut-leaf daisy					
Asteraceae	Cotula coronopifolia	Water Buttons					
Asteraceae	Enydra fluctuans					3	
Asteraceae	Euchiton involucratus	Star Cudweed					
Asteraceae	Ozothamnus diosmifolius	White dogwood	1				
Asteraceae	Senecio pterophorus						
Asteraceae	Vernonia cinerea var. cinerea		2				
Asteraceae	Vittadinia cuneata var. cuneata	Fuzzweed	2				
Azollaceae	Azolla filiculoides	Pacific Azolla				2	
Bignoniaceae	Pandorea pandorana subsp. pandorana	Wonga Wonga Vine	2				
Brassica	*Brassica juncea				1		
Campanulaceae	Wahlenbergia gracilis	Native Bluebell					
Caryophyllaceae	*Stellaria media	Chickweed					
Casuarinaceae	Casuarina glauca	Swamp Oak		2		4	
Celastraceae	Denhamia silvestris	Orange Bark	1				
Ceratophyllaceae	Ceratophyllum demersum	Hornwort					
Chenopodiaceae	*Atriplex prostrata	Hastate Orache		1	2		

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1
Chenopodiaceae	Einadia hastata	Berry Saltbush	1				
Commelinaceae	*Tradescantia albiflora	Wandering Jew					
Commelinaceae	Commelina cyanea		1		2		
Convolvulaceae	*lpomoea purpurea	Common Morning Glory					
Convolvulaceae	Dichondra repens	Kidney weed	2				
Cyperaceae	*Cyperus difformis						
Cyperaceae	Bolboschoenus caldwellii			3	4	3	
Cyperaceae	Cyperus gracilis	Slender Flat-sedge	2				
Cyperaceae	Cyperus inversa						
Cyperaceae	Cyperus odoratus						
Cyperaceae	Eleocharis acuta	Tall Spike-rush					
Cyperaceae	Eleocharis equisetina			3	3		2
Cyperaceae	Eleocharis sphacelata	Tall Spike-rush					2
Cyperaceae	Fimbristylis dichotoma	Common Fringe-sedge					
Cyperaceae	Schoenoplectus subulatus			5		2	1
Cyperaceae	Schoenoplectus validus			2			
Euphorbiaceae	*Ricinus communis	Castor Oil Plant					
Fabaceae - Caesalpinioideae	*Senna pendula subsp. glabrata	Cassia		1			
Fabaceae - Faboideae	*Trifolium dubium	Yellow Suckling Clover					
Fabaceae - Faboideae	*Trifolium fragiferum	Strawberry Clover					
Fabaceae - Faboideae	*Trifolium repens	White Clover					
Fabaceae - Faboideae	*Vicia sativa	Common Vetch		2			
Fabaceae - Faboideae	Daviesia ulicifolia	Gorse Bitter Pea	3				
Fabaceae - Faboideae	Desmodium gunnii	Slender Tick-trefoil	1				
Fabaceae - Faboideae	Desmodium rhytidophyllum	Tick-trefoil					
Fabaceae - Faboideae	Desmodium varians	Slender Tick-trefoil	1				
Fabaceae - Faboideae	Glycine clandestina	Twining Glycine	1				

KLEINFELDER Bright People. Right Solutions.

1

				$\overline{}$					
Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1		
Fabaceae - Faboideae	Glycine tabacina								
Fabaceae - Faboideae	Hardenbergia violacea	Purple Twining Pea	1						
Fabaceae - Faboideae	Kennedia rubicunda	Red Kennedy Pea							
Fabaceae - Mimosoideae	Acacia falcata	Sickle Wattle							
Fabaceae - Mimosoideae	Acacia fimbriata								
Fabaceae - Mimosoideae	Acacia implexa	Hickory							
Fabaceae - Mimosoideae	Acacia irrorata subsp irrorata								
Fabaceae - Mimosoideae	Acacia maidenii	Maidens Wattle	3						
Gentianaceae	*Centaurium erythraea	Common Centaury							
Goodeniaceae	Goodenia heterophylla								
Haloragaceae	*Myriophyllum aquaticum	Parrots Feather					2		
Haloragaceae	Myriophyllum variifolium								
Iridaceae	*Freesia laxa								
Juncaceae	Juncus continuus								
Juncaceae	Juncus pallidus	Pale Rush							
Juncaceae	Juncus usitatus	Common Juncus	2	2		1			
Juncaginaceae	Triglochin procerum					2			
Juncaginaceae	Triglochin striata	Streaked Arrowgrass							
Lamiaceae	Plectranthus parviflorus	Cockspur Flower	2						
Lemnaceae	Lemna disperma								
Lemnaceae	Spirodela punctata	Duck Weed				3			
Lobeliaceae	Pratia purpurascens	White root	2						
Lomandraceae	Lomandra filiformis	Wattle Matt Rush	1						
Lomandraceae	Lomandra glauca	Pale Mat-rush							
Lomandraceae	Lomandra multiflora subsp. multiflora	Iron Grass	2						
Loranthaceae	Dendrophthoe vitellina	Mistletoe	1						
Luzuriagaceae	Eustrephus latifolius	Wombat Berry	2						
Luzuriagaceae	Geitonoplesium cymosum	Scrambling Lily	2						

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1
Malvaceae	*Sida rhombifolia	Paddy's Lucerne	2				
Menispermaceae	Stephania japonica var. discolor	Snake Vine	2				
Moraceae	Ficus macrophylla	Moreton Bay Fig			1		
Myoporaceae	Eremophila debilis	Winter Apple	1				
Myrsinaceae	Myrsine variabilis		2				
Myrtaceae	Corymbia maculata	Spotted Gum	4				
Myrtaceae	Eucalyptus acmenoides	White mahogany	1				
Myrtaceae	Eucalyptus siderophloia	Grey Ironbark	4				
Myrtaceae	Eucalyptus tereticornis	Forest Redgum					
Myrtaceae	Melaleuca ericifolia				3	3	
Myrtaceae	Melaleuca linariifolia	Flax-leaved Paperbark			4	4	
Myrtaceae	Melaleuca styphelioides				4		
Oleaceae	Notelaea longifolia	Mock olive	3				
Onagraceae	*Oenothera stricta	Evening Primrose					
Onagraceae	Epilobium billardierianum subsp. billardierianum						
Onagraceae	Ludwigia peploides subsp. montevidensis	Water Primrose				2	
Orchidaceae	Dendrobium linguiforme	Tongue Orchid					
Orchidaceae	Dendrobium teretifolium	Rat's Tail Orchid					
Oxalidaceae	Oxalis perennans		2				
Passifloraceae	*Passiflora edulis	Common Passionfruit					
Phormiaceae	Dianella caerulea	Blue Flax-lily	3				
Phormiaceae	Dianella revoluta var. revoluta	Blueberry Lily	2				
Phyllanthaceae	Breynia oblongifolia	Coffee Bush	3				
Phyllanthaceae	Phyllanthus hirtellus	Thyme Spurge	2				
Phytolaccaceae	*Phytolacca octandra	Inkweed			2		
Pittosporaceae	Bursaria spinosa	Box Thorn	3				
Pittosporaceae	Pittosporum multiflorum	Orange Thorn	1				
Pittosporaceae	Pittosporum revolutum	Wild Yellow Jasmine	2				

KLEINFELDER

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1		
Plantaginaceae	*Plantago lanceolata	Lambs Tongue							
Plantaginaceae	Veronica plebeia	Trailing Speedwell							
Poaceae	*Andropogon virginicus	Whisky Grass							
Poaceae	*Axonopus fissifolius	Narrow-leafed Carpet Grass							
Poaceae	*Briza maxima	Quaking Grass							
Poaceae	*Bromus catharticus	Prairie Grass			2				
Poaceae	*Cenchrus clandestinus	Kikuyu		3					
Poaceae	*Chloris gayana	Rhodes Grass							
Poaceae	*Cortaderia selloana	Pampas Grass							
Poaceae	*Ehrharta erecta	Panic Veldtgrass	2						
Poaceae	*Eragrostis curvula	African Lovegrass							
Poaceae	*Hyparrhenia hirta	Coolatai Grass							
Poaceae	*Lolium perenne	Perennial Ryegrass							
Poaceae	*Melinis repens	Red Natal Grass							
Poaceae	*Panicum maximum	Guinea Grass							
Poaceae	*Paspalum dilatatum	Paspalum							
Poaceae	*Paspalum urvillei	Tall Paspalum							
Poaceae	*Polypogon monspeliensis	Annual Beardgrass							
Poaceae	*Setaria pumila	Pale Pigeon Grass							
Poaceae	*Setaria sphacelata	South African Pigeon Grass							
Poaceae	*Setaria verticillata	Whorled Pigeon Grass							
Poaceae	*Sporobolus africanus	Parramatta Grass							
Poaceae	Aristida ramosa	Three-awned Spear Grass							
Poaceae	Aristida vagans	Three-awned Spear Grass	4						
Poaceae	Austrostipa sp.	Speargrass	2						
Poaceae	Austrostipa spp	Speargrass	2						
Poaceae	Capillipedium parviflorum	Scented-top Grass							
Poaceae	Cymbopogon refractus	Barbed Wire Grass	2						

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1
Poaceae	Cynodon dactylon	Couch	2	4	3		2
Poaceae	Dichelachne micrantha	Shorthair Plumegrass	2				
Poaceae	Digitaria ramularis						
Poaceae	Digitaria parviflora	Small-flowered Finger Grass	2				
Poaceae	Echinopogon caespitosus	Tufted Hedgehog Grass					
Poaceae	Entolasia stricta	Wiry panic	4				
Poaceae	Imperata cylindrica	Bladey grass	2				
Poaceae	Lachnagrostis filiformis				3		
Poaceae	Microlaena stipoides var. stipoides	Weeping Grass	2				
Poaceae	Oplismenus aemulus	Basket Grass					
Poaceae	Panicum simile	Two Colour Panic					
Poaceae	Paspalidium distans		2				
Poaceae	Paspalum dilatatum	Paspalum	2				
Poaceae	Paspalum distichum	Water Couch				2	2
Poaceae	Rytidosperma tenuius	Wallaby Grass	2				
Poaceae	Sporobolus creber	Western Rat-tail Grass					
Poaceae	Themeda triandra	Kangaroo grass	5				
Polygonaceae	*Polygonum arenastrum	Wireweed					
Polygonaceae	*Rumex conglomeratus	Clustered Dock		2	2		
Polygonaceae	*Rumex crispus	Dock			2		
Polygonaceae	Persicaria attenuata subsp. attenuata					2	
Polygonaceae	Persicaria decipiens	Slender Knotweed		1			2
Polygonaceae	Persicaria hydropiper	Water Pepper					
Pontederiaceae	*Eichhornia crassipes	Water Hyacinth					2
Ranunculaceae	*Ranunculus plebeius	Creeping Buttercup					
Ranunculaceae	Clematis glycinoides	Old Mans Beard					
Ranunculaceae	Ranunculus inundatus	River Buttercup		2			
Rhamnaceae	Alphitonia excelsa	Red Ash	1				

KLEINFELDER Bright People. Right Solutions.

\bigcirc
KLEINFELDER
Bright People. Right Solutions.

Family	Scientific Name	Common Name	Q1	Q2	Q3	Q4	T1
Rhamnaceae	Polyscias sambucifolia	Elderberry Panax	1				
Rosaceae	*Rubus fruticosus sp.agg	Blackberry					
Rubiaceae	Opercularia diphylla		1				
Scrophulariaceae	Bacopa monnieri	Васора					
Solanaceae	*Solanum mauritianum	Wild Tobacco					
Solanaceae	*Solanum nigrum	Blackberry Nightshade		1	2		
Solanaceae	Solanum brownii	Violet Nightshade	3				
Solanaceae	Solanum prinophyllum	Forest Nightshade					
Typhaceae	Typha orientalis	Broadleaf Cumbungi		6	2	3	
Verbenaceae	*Lantana camara	Lantana	3	1			
Verbenaceae	*Verbena bonariensis	Purpletop		2			
Violaceae	Viola hederacea	Ivy-leaved Violet	2				
Vitaceae	Cayratia clematidea	Native Grape	1				
	Total Species	·	61	24	23	16	8
	Exotic			14	11	7	3
	Native			10	12	9	5

* denotes an introduced species

APPENDIX 2. FAUNA SPECIES LISTS (EXCLUDING BIRDS)

Scientific Name	Common Name	White (2000)	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19
				Amp	hibians								
Crinia signifera	Common Eastern Froglet		+		+	+	+	+	+		+	+	+
Limnodynastes peronii	Striped Marsh Frog		+	+	+	+	+	+		+	+	+	+
Limnodynastes tasmaniensis	Spotted Marsh Frog							+	+			+	+
Litoria fallax	Eastern Dwarf Tree Frog		+	+	+	+	+	+	+	+	+	+	+
Litoria freycineti	Freycinet's Frog	+											
Litoria latopalmata	Broad-palmed Frog	+			+			+					
Litoria peronii	Peron's Tree Frog		+	+	+	+		+	+	+	+	+	+
Litoria tyleri	Southern Laughing Tree Frog		+	+	+	+	+	+	+	+	+	+	+
Litoria verreauxii	Verreaux's Tree Frog			+				+					
Uperoleia laevigata	Smooth Toadlet				+								
Total		2	5	5	7	5	4	8	5	4	5	6	6

Scientific Name	Common Name	White (2000)	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19
					2	7	~	7	~	~	2	7	N
		1	Reptile	es	r	1	1	1	1	1	1	1	1
Amphibolurus muricatus	Jacky Lizard	+					+						
Chelodina longicollis	Eastern Long-necked Turtle	+				+		+					
Ctenotus robustus	Robust Ctenotus	+											
Dendrelaphis punctulata	Common Tree Snake												+
Eulamprus quoyii	Eastern Water Skink	+											
Hemiaspis signata	Marsh Snake										+		
Lampropholis delicata	Garden Skink	+					+						
Physignathus lesueurii lesueurii	Eastern Water Dragon		+				+						
Pseudechis porphyriacus	Red-bellied Black Snake	+	+		+	+	+					+	+
Pseudonaja textilis	Eastern Brown Snake					+	+						
Tiliqua scincoides	Eastern Blue-tongued Lizard						+						
Varanus varius	Lace Monitor								+				
Total		6	2	0	1	3	6	1	1	0	1	1	2

Scientific Name	Common Name	White (2000)	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19
			Non	-flying Ma	ammals						·		
Acrobates pygmaeus	Feathertail Glider								+				
Antechinus stuartii	Brown Antechinus	+	+		+	+			+				+
Petaurus breviceps	Sugar Glider	+						+	+		+		
Pseudocheirus peregrinus	Common Ringtail Possum							+			+		
Trichosurus vulpecula	Common Brushtail Possum						+	+	+		+		+
Canis lupus	*Wild Dog						+				+		
Felis catus	*Domestic Cat				+								
Wallabia bicolor	Swamp Wallaby						+				+		
Mus domesticus	*House Mouse		+	+									
Oryctolagus cuniculus	*European Rabbit									+			+
Rattus fuscipes	Bush Rat		+							+			
Rattus lutreolus	Swamp Rat							+					
Rattus rattus	*Black Rat	+	+	+	+		+	+	+	+		+	+
Tachyglossus aculeatus	Short-beaked Echidna											+	+
Vulpes vulpes	*Red Fox	+				+	+	+			+	+	
Total Non-flying Mammals		4	4	2	3	2	5	6	5	3	6	3	5

* denotes an introduced species

Scientific Name	Common Name	White (2000)	2008 /09	2009 /10	2010 /11	2011 /12	2012 /13	2013 /14	2014 /15	2015 /16	2016 /17	2017 /18	2018 /19
				Bats									
Chalinolobus dwyeri	# Large-eared Pied Bat										+		
Chalinolobus gouldii	Gould's Wattled Bat	+	+	+	+	+	+	+	+	+	+	+	+
Chalinolobus morio	Chocolate Wattled Bat			+	+		+	+	+	+		+	+
Falsistrellus tasmaniensis	# Eastern False Pipistrelle		+		+	+		+		+		+	+
Miniopterus australis	# Little Bentwing-bat	+	+	+	+	+	+	+		+	+	+	+
Miniopterus schreibersii oceanensis	# Eastern Bentwing-bat	+	+			+	+	+		+	+	+	
Mormopterus norfolkensis	# East-coast Freetail-bat	+	+	+		+	+	+		+	+	+	
Mormopterus ridei	Eastern Freetail-bat	+			+	+	+	+		+	+		+
Myotis macropus	# Southern Myotis					+	+			+	+		
Nyctophilus geoffroyi	Lesser Long-eared Bat					+	+	+		+	+	+	+
Nyctophilus gouldii	Gould's Long-eared Bat								+				
Nyctophilus sp.	Unidentified Long-eared Bat	+		+	+	+	+	+					+
Pteropus sp.	Flying-fox						+						
Pteropus poliocephalus	# Grey-headed Flying-fox	+	+					+	+		+		+
Rhinolopus megaphyllus	Eastern Horseshoe-bat				+					+		+	+
Saccolaimus flaviventris	# Yellow-bellied Sheathtail-bat			+								+	
Scoteanax rueppellii	# Greater Broad-nosed Bat	+					+			+			
Scotorepens orion	Eastern Broad-nosed Bat			+	+		+				+	+	+
Tadarida australis	White-striped Mastiff-bat				+	+	+	+	+		+		+
Vespadelus darlingtoni	Large Forest Bat									+			
Vespadelus pumilus	Eastern Forest Bat	+	+	+	+		+						
Vespadelus regulus	Southern Forest Bat										+		
Vespadelus troughtoni	# Eastern Cave Bat				+	+		+					
Vespadelus vulturnus	Little Forest Bat	+	+	+	+	+	+	+	+	+	+	+	+
То	tal Bats	10	8	9	12	12	15	13	6	13	13	11	12

* denotes an introduced species; # denotes a threatened species under the NSW BC Act 2016 and/or the Commonwealth EPBC Act 1999; NB: Taxonomy for bats follows Churchill (2008).

KLEINFELDER Bright People. Right Solutions.

APPENDIX 3. BIRD SPECIES LIST - TRANSECTS

	Scientific	Common		ring)08	Spi 20			nmer 10	Spi 20	ring 11	Spr 20	ing 12	Spr 20		Spi 20	ring 14	Spr 20	ring 15		ring 16	Spi 20	ring 17	Spr 20	ring 018
Family	Name	Name	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South
Acanthizidae	Acanthiza lineata	Striated Thornbill			+		+						+	+			+							
Acanthizidae	Acanthiza nana	Yellow Thornbill		+	+	+	+								+			+					+	+
Acanthizidae	Acanthiza pusilla	Brown Thornbill			+		+								+			+			+		+	
Acanthizidae	Gerygone mouki	Brown Gerygone	+		+		+	+	+	+	+				+		+		+	+	+			
<u>Acanthizidae</u>	Gerygone olivacea	White-throated Gerygone	+	+	+	+		+		+	+			+										
Acanthizidae	Sericornis frontalis	White-browed Scrubwren	+		+		+		+		+			+	+				+	+	+		+	
Accipitridae	Accipiter novaehollandiae	Grey Goshawk																		+				
Accipitridae	Aquila audax	Wedge-tailed Eagle	+	+										+										
Accipitridae	Aviceda subcristata	Pacific Baza	+	+	+	+	+				+		+	+						+				
Accipitridae	Circus approximans	Swamp Harrier			+		+							+			+							
Accipitridae	Elanus axillaris	Black- shouldered Kite																			+			
Accipitridae	Haliastur sphenurus	Whistling Kite			+		+											+	+	+				
Acrocephalidae	Acrocephalus australis	Australian Reed-Warbler			+		+		+	+	+	+			+		+						+	
Anatidae	Anas superciliosa	Pacific Black Duck	+		+		+		+															

		-		ring 08	Spi 20	ing 09	Sum 20	nmer 10	Spi 20			ing 12		ring 13		ring 14		ring 15		ring 16	Spr 20			ring 18
Family	Scientific Name	Common Name	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South
Apodidae	Hirundapus caudacutus	White-throated Needletail												+								+		
Ardeidae	Ardea ibis	Cattle Egret	+										+	+							+			
Ardeidae	Egretta novaehollandiae	White-faced Heron	+																			+		
Artamidae	Artamus leucorynchus	White-breasted Woodswallow	+	+	+	+	+	+	+	+		+	+					+			+			
Artamidae	Cracticus nigrogularis	Pied Butcherbird	+												+				+		+		+	
Artamidae	Cracticus tibicen	Australian Magpie									+		+				+		+		+	+	+	
Artamidae	Cracticus torquatus	Grey Butcherbird	+	+	+	+	+		+	+		+	+			+								
Artamidae	Strepera graculina	Pied Currawong	+	+	+		+		+	+	+	+		+										
Cacatuidae	Cacatua galerita	Sulphur- crested Cockatoo								+		+	+	+				+		+		+		
Cacatuidae	Cacatua sanguinea	Little Corella	+		+													+						
Cacatuidae	Eolophus roseicapillus	Galah																		+				+
Campephagida e	Coracina novaehollandiae	Black-faced Cuckoo-shrike	+	+	+	+	+	+	+	+	+				+	+	+	+	+	+	+	+	+	+
Campephagida e	Coracina tenuirostris	Cicadabird	+		+	+	+	+	+	+	+													
Charadriidae	Vanellus miles	Masked Lapwing			+		+		+								+	+		+				
Cisticolidae	Cisticola exilis	Golden-headed Cisticola								+		+			+									
Columbidae	Geopelia humeralis	Bar-shouldered Dove											+					+	+		+	+		
Columbidae	Leucosarcia picata	Wonga Pigeon	+		+															+				
Columbidae	Lopholaimus antarcticus	Topknot Pigeon																	+					

	Scientific	Common		ring 108		ing 09		nmer 10	Spr 20			ring 12		ring 13		ing 14		ring)15		ring 16	Spi 20	ring 17		ring)18
Family	Name	Name	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South
Columbidae	Ocyphaps lophotes	Crested Pigeon		+				+		+														
Columbidae	Phaps chalcoptera	Common Bronzewing																			+			
Coraciidae	Eurystomus orientalis	Dollarbird			+		+		+		+			+		+		+		+		+	+	
Corvidae	Corvus coronoides	Australian Raven		+												+				+	+	+	+	
Cuculidae	Cacomantis flabelliformis	Fan-tailed Cuckoo			+		+		+				+							+			+	
Cuculidae	Cacomantis variolosus	Brush Cuckoo		+										+									+	
Cuculidae	Centropus phasianinus	Pheasant Coucal	+	+	+	+	+	+	+	+		+											+	
Cuculidae	Chalcites basalis	Horsfield's Bronze-Cuckoo	+	+	+		+	+		+														
Cuculidae	Chalcites lucidus	Shining Bronze-Cuckoo	+	+	+	+	+	+	+	+	+	+			+									
Cuculidae	Eudynamys orientalis	Eastern Koel	+	+	+	+	+		+		+			+							+			+
Cuculidae	Scythrops novaehollandiae	Channel-billed Cuckoo	+	+	+	+	+	+	+	+		+	+				+	+		+	+	+		
Estrildidae	Neochmia temporalis	Red-browed Finch			+		+					+	+	+		+	+			+	+	+		
Estrildidae	Taeniopygia bichenovii	Double-barred Finch		+					+		+													
Falconidae	Falco peregrinus	Peregrine Falcon																			+			
Halcyonidae	Dacelo novaeguineae	Laughing Kookaburra	+	+	+	+	+	+	+		+						+				+	+		+
Halcyonidae	Todiramphus sanctus	Sacred Kingfisher		+			+		+					+	+	+	+	+		+	+	+	+	+
Hirundinidae	Hirundo neoxena	Welcome Swallow	+	+	+		+						+	+				+						
Maluridae	Malurus cyaneus	Superb Fairy- wren													+	+	+	+	+	+	+	+	+	+

	Scientific	Common		ring 08	Spr 20	ing 09	Sum 20		Spr 20			ring 12	Spi 20	ring 13	Spi 20	ring 14		ring 15		ring 16	Spi 20	ring 17		ring 18
Family	Name	Common Name	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South
Maluridae	Malurus Iamberti	Variegated Fairy-wren	+		+	+	+	+		+						+	+		+				+	+
Megaluridae	Megalurus gramineus	Little Grassbird					+		+				+											
Megaluridae	Megalurus timoriensis	Tawny Grassbird	+	+	+	+	+	+	+	+			+	+					+				+	
Meliphagidae	Acanthorhynchu s tenuirostris	Eastern Spinebill							+		+							+		+	+			
Meliphagidae	Lichenostomus chrysops	Yellow-faced Honeyeater	+							+		+	+		+	+		+	+	+	+	+		+
Meliphagidae	Manorina melanocephala	Noisy Miner	+	+	+	+			+		+		+	+		+		+						+
Meliphagidae	Manorina melanophrys	Bell Miner											+			+		+	+	+		+		+
Meliphagidae	Meliphaga Iewinii	Lewin's Honeyeater	+		+		+	+	+	+	+	+				+	+		+	+	+	+	+	+
Meliphagidae	Melithreptus brevirostris	Brown-headed Honeyeater	+	+	+	+	+	+	+	+	+	+	+											
Meliphagidae	Melithreptus Iunatus	White-naped Honeyeater									+		+	+						+		+		+
Meliphagidae	Myzomela sanguinolenta	Scarlet Honeyeater												+	+	+	+	+		+	+	+		
Meliphagidae	Philemon corniculatus	Noisy Friarbird	+	+	+	+	+	+	+	+	+	+	+	+				+				+		
Meliphagidae	Phylidonyris niger	White-cheeked Honeyeater												+						+		+		
Meliphagidae	Plectorhyncha lanceolata	Striped Honeyeater												+										
Meropidae	Merops ornatus	Rainbow Bee- eater		+		+		+	+	+	+													
Monarchidae	Grallina cyanoleuca	Magpie-lark	+	+	+	+	+	+	+	+	+	+	+	+					+			+	+	+
Monarchidae	Monarcha melanopsis	Black-faced Monarch											+											
Monarchidae	Myiagra rubecula	Leaden Flycatcher																		+				

	Scientific	Common		ring 008		ring 09		nmer 10	Spr 20	ing 11		ring 12		ring 13		ring 14		ring)15		ring 16	Spi 20	ring 17		ring)18
Family	Name	Common Name	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South
Nectariniidae	Dicaeum hirundinaceum	Mistletoebird							+		+		+	+		+						+		
Neosittidae	Daphoenositta chrysoptera	# Varied Sittella	+	+	+	+	+	+		+		+	+	+				+				+		
Oriolidae	Oriolus sagittatus	Olive-backed Oriole	+	+	+	+	+		+		+				+	+					+	+		+
Oriolidae	Sphecotheres vieilloti	Australasian Figbird	+		+		+		+		+													
Pachycephalid ae	Colluricincla harmonica	Grey Shrike- thrush	+	+	+		+		+					+								+		
Pachycephalid ae	Pachycephala pectoralis	Golden Whistler	+		+		+	+		+					+	+					+	+	+	+
Pachycephalid ae	Pachycephala rufiventris	Rufous Whistler												+	+	+	+	+	+	+		+	+	+
Pardalotidae	Pardalotus punctatus	Spotted Pardalote	+		+		+		+				+	+										
Petroicidae	Eopsaltria australis	Eastern Yellow Robin	+	+				+		+		+			+		+		+		+			
Phasianidae	Coturnix ypsilophora	Brown Quail																		+				
Psittacidae	Alisterus scapularis	Australian King-Parrot																		+		+		+
Psittacidae	Glossopsitta pusilla	# Little Lorikeet																		+				+
Psittacidae	Platycercus eximius	Eastern Rosella	+	+	+		+		+	+	+	+	+		+	+		+		+			+	+
Psittacidae	Trichoglossus chlorolepidotus	Scaly-breasted Lorikeet																		+			+	
Psittacidae	Trichoglossus haematodus	Rainbow Lorikeet		+	+	+	+	+	+	+		+	+	+		+		+	+	+		+		+
Psophodidea	Psophodes olivaceus	Eastern Whipbird					+	+	+	+		+	+		+	+	+	+	+	+	+	+	+	+
Ptilonorhynchid ae	Ptilonorhynchus violaceus	Satin Bowerbird		+		+		+		+		+							+		+	+	+	
Ptilonorhynchid ae	Sericulus chrysocephalus	Regent Bowerbird																						+

	0-1	0		ring 108		ing 09		nmer 10	Spi 20	ring 11		ring 12	Spi 20	ring 13	Spr 20		Spi 20	ring 15		ring 16	Spr 20			ring)18
Family	Scientific Name	Common Name	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South	North	South
Rallidae	Porphyrio porphyrio	Purple Swamphen											+	+			+					+		
Rhipiduridae	Rhipidura albiscapa	Grey Fantail	+	+	+	+								+	+	+	+	+	+	+	+	+	+	+
Rhipiduridae	Rhipidura leucophrys	Willie Wagtail			+		+									+		+		+	+	+		
Rhipiduridae	Rhipidura rufifrons	Rufous Fantail		+																			+	
Strigidae	Ninox strenua	# Powerful Owl																+						
Sturnidae	Sturnus tristis	*Common Myna																						
Sturnidae	Sturnus vulgaris	*Common Starling	+		+		+		+		+		+	+										
Threskiornithid ae	Threskiornis spinicollis	Straw-necked Ibis																						
Timaliidae	Zosterops lateralis	Silvereye		+		+			+	+	+	+			+		+		+	+	+	+	+	
		TOTALS	41	36	47	25	45	24	38	31	28	22	30	33	21	22	21	28	22	36	31	35	27	24

* denotes an introduced species; # denotes a threatened species under the NSW BC Act 2016 and/or the Commonwealth EPBC Act 1999.

BIRD SPECIES LIST – NORTH SWAMP

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Acanthizidae	Acanthiza lineata	Striated Thornbill							+				
Acanthizidae	Acanthiza nana	Yellow Thornbill	+			+	+	+	+	+			
Acanthizidae	Acanthiza pusilla	Brown Thornbill				+		+	+	+			+
Acanthizidae	Sericornis frontalis	White-browed Scrubwren	+	+	+	+	+	+		+		+	+
Accipitridae	Accipiter novaehollandiae	Grey Goshawk											+
Accipitridae	Aquila audax	Wedge-tailed Eagle	+			+	+	+				+	
Accipitridae	Circus approximans	Swamp Harrier	+	+	+	+		+		+		+	
Accipitridae	Elanus axillaris	Black-shouldered Kite						+				+	
Accipitridae	Haliaeetus leucogaster	# White-bellied Sea-Eagle			+			+	+	+		+	+
Accipitridae	Haliastur sphenurus	Whistling Kite	+	İ		1	İ	+	İ	+	+	+	
Acrocephalidae	Acrocephalus australis	Australian Reed-Warbler	+	+	+	+	+	+	+	+		+	+
Alcedinidae	Ceyx azureus	Azure Kingfisher		İ	İ	1	İ	+	İ	+		ĺ	
Anatidae	Anas castanea	Chestnut Teal	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Anas gracilis	Grey Teal	+	+			+		+			+	
Anatidae	Anas platyrhynchos	* Northern Mallard	+										
Anatidae	Anas rhynchotis	Australasian Shoveler	+	+								+	
Anatidae	Anas superciliosa	Pacific Black Duck	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Aythya australis	Hardhead	+	+		+			+				
Anatidae	Chenonetta jubata	Australian Wood Duck	+	İ		1	+	1	Ì	1		+	
Anatidae	Cygnus atratus	Black Swan	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Dendrocygna arcuata	Wandering Whistling-Duck	+										
Anhingidae	Anhinga melanogaster	Australasian Darter	+			+		+	+	+			
Ardeidae	Ardea ibis	Cattle Egret	+	+	+	+	+	+	+	+		+	+

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Ardeidae	Ardea intermedia	Intermediate Egret		+			+	+	+	+		+	+
Ardeidae	Ardea modesta	Eastern Great Egret					+	+		+			
Ardeidae	Ardea pacifica	White-necked Heron					+	+	+	+		+	
Ardeidae	Egretta garzetta	Little Egret								+			
Ardeidae	Egretta novaehollandiae	White-faced Heron	+	+	+	+	+	+	+	+		+	+
Artamidae	Artamus leucorynchus	White-breasted Woodswallow	+		+	+	+	+		+	+	+	+
Artamidae	Cracticus nigrogularis	Pied Butcherbird	+	+	+	+			+	+	+	+	+
Artamidae	Cracticus tibicen	Australian Magpie		+	+	+	+	+		+	+	+	
Artamidae	Cracticus torquatus	Grey Butcherbird	+	+		+		+				+	
Cacatuidae	Cacatua galerita	Sulphur-crested Cockatoo	+	+				+				+	+
Cacatuidae	Cacatua sanguinea	Little Corella	+										
Cacatuidae	Calyptorhynchus funereus	Yellow-tailed Black-Cockatoo									+		
Campephagidae	Coracina novaehollandiae	Black-faced Cuckoo-shrike	+	+	+	+	+	+	+	+		+	
Charadriidae	Vanellus miles	Masked Lapwing	+	+	+	+	+	+	+	+	+		
Ciconiidae	Ephippiorhynchus asiaticus	# Black-necked Stork							+				
Cisticolidae	Cisticola exilis	Golden-headed Cisticola		+		+	+		+	+	+	+	
Columbidae	Geopelia humeralis	Bar-Shouldered Dove								+			+
Columbidae	Leucosarcia picata	Wonga Pigeon	+										
Columbidae	Ocyphaps lophotes	Crested Pigeon	+	+			+	+					
Columbidae	Streptopelia chinensis	*Spotted Dove	+			+							
Coraciidae	Eurystomus orientalis	Dollarbird							+	+			
Corvidae	Corvus coronoides	Australian Raven	+	+	+		+	+	+	+	+	+	
Cuculidae	Cacomantis flabelliformis	Fan-tailed Cuckoo	+		+	+	+	+	+			+	
Cuculidae	Cacomantis variolosus	Brush Cuckoo	+	+									
Cuculidae	Centropus phasianinus	Pheasant Coucal		+			+	+					
Cuculidae	Eudynamys orientalis	Eastern Koel	+	+					+				

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Cuculidae	Scythrops novaehollandiae	Channel-billed Cuckoo				+		+				+	
Estrildidae	Neochmia temporalis	Red-browed Finch	+	+	+	+	+	+	+	+			+
Falconidae	Falco longipennis	Australian Hobby			+								
Halcyonidae	Dacelo novaeguineae	Laughing Kookaburra	+	+	+	+	+	+	+	+		+	
Halcyonidae	Todiramphus sanctus	Sacred Kingfisher	+	+	+	+	+	+	+	+	+	+	+
Hirundinidae	Hirundo neoxena	Welcome Swallow	+	+	+	+	+	+	+	+		+	+
Hirundinidae	Petrochelidon ariel	Fairy Martin								+		+	
Jacanidae	Irediparra gallinacea	# Comb-crested Jacana					+						
Maluridae	Malurus cyaneus	Superb Fairy-wren	+	+	+	+	+	+	+	+	+	+	+
Maluridae	Malurus lamberti	Variegated Fairy-wren	+		+				+				
Maluridae	Stipiturus malachurus	Southern Emu-wren							+				
Megaluridae	Megalurus gramineus	Little Grassbird	+	+	+	+	+	+	+	+	+	+	+
Megaluridae	Megalurus timoriensis	Tawny Grassbird							+				+
Meliphagidae	Acanthorhynchus tenuirostris	Eastern Spinebill					+	+		+			
Meliphagidae	Lichenostomus chrysops	Yellow-faced Honeyeater	+	+	+			+	+	+		+	
Meliphagidae	Manorina melanocephala	Noisy Miner	+										
Meliphagidae	Manorina melanophrys	Bell Miner	+	+	+					+		+	
Meliphagidae	Meliphaga lewinii	Lewin's Honeyeater	+	+	+	+	+	+	+	+			
Meliphagidae	Myzomela sanguinolenta	Scarlet Honeyeater			+		+		+	+	+		+
Meliphagidae	Philemon corniculatus	Noisy Friarbird			+					+			
Monarchidae	Grallina cyanoleuca	Magpie-lark	+	+	+	+	+	+	+	+			
Nectariniidae	Dicaeum hirundinaceum	Mistletoebird			+	+			+	+		+	
Pachycephalidae	Pachycephala pectoralis	Golden Whistler	+	+					+				+
Pachycephalidae	Pachycephala rufiventris	Rufous Whistler	+	+			+		+	+			
Pardalotidae	Pardalotus punctatus	Spotted Pardalote	+										
Pelecanidae	Pelecanus conspicillatus	Australian Pelican		+						+			

Family	Scientific Name	Common Name	5008/2006	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Petroicidae	Eopsaltria australis	Eastern Yellow Robin	+	+	+	+	+	+	+	+			+
Phalacrocoracidae	Microcarbo melanoleucos	Little Pied Cormorant	+	+				+		+			
Phalacrocoracidae	Phalacrocorax carbo	Great Cormorant						+		+			
Phalacrocoracidae	Phalacrocorax sulcirostris	Little Black Cormorant	+	+	+	+	+	+	+	+			
Phalacrocoracidae	Phalacrocorax varius	Pied Cormorant	+			+	+			+		+	+
Phasianidae	Coturnix ypsilophora	Brown Quail									+		+
Podicipedidae	Tachybaptus novaehollandiae	Australasian Grebe	+	+		+	+	+	+	+	+	+	
Psittacidae	Platycercus eximius	Eastern Rosella	+	+			+			+			
Psittacidae	Trichoglossus haematodus	Rainbow Lorikeet		+	+			+		+			+
Psophodidae	Psophodes olivaceus	Eastern Whipbird	+	+	+	+	+	+	+	+		+	+
Rallidae	Fulica atra	Eurasian Coot					+	+	+	+			
Rallidae	Gallinula tenebrosa	Dusky Moorhen	+				+	+	+		+	+	
Rallidae	Porphyrio porphyrio	Purple Swamphen	+	+	+	+	+	+	+	+	+	+	+
Recurvirostridae	Himantopus himantopus	Black-winged Stilt					+	+				+	
Rhipiduridae	Rhipidura albiscapa	Grey Fantail	+	+	+	+	+	+	+	+	+	+	+
Rhipiduridae	Rhipidura leucophrys	Willie Wagtail	+	+	+	+	+	+	+	+	+	+	
Rhipiduridae	Rhipidura rufifrons	Rufous Fantail											+
Sturnidae	Sturnus tristis	*Common Myna	+		+	+				+			
Sturnidae	Sturnus vulgaris	*Common Starling	+	+									
Threskiornithidae	Platalea flavipes	Yellow-billed Spoonbill		+									
Threskiornithidae	Platalea regia	Royal Spoonbill	+	+			+			+	+		
Threskiornithidae	Threskiornis molucca	Australian White Ibis	+	+	+	+	+			+		+	+
Threskiornithidae	Threskiornis spinicollis	Straw-necked Ibis	+				+		+	+		+	
Timaliidae	Zosterops lateralis	Silvereye	+	+	+	+	+	+	+	+		+	+
	·	TOTALS	64	52	41	43	51	54	51	62	22	47	36

* denotes an introduced species; # denotes a threatened species under the NSW BC Act 2016 and/or the Commonwealth EPBC Act 1999.

BIRD SPECIES LIST – MAIN SWAMP

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Acanthizidae	Acanthiza lineata	Striated Thornbill										+	
Acanthizidae	Acanthiza nana	Yellow Thornbill	+	+	+	+	+	+	+	+	+		
Acanthizidae	Acanthiza pusilla	Brown Thornbill		+		+	+	+					
Acanthizidae	Gerygone mouki	Brown Gerygone								+			
Acanthizidae	Gerygone olivacea	White-throated Gerygone							+				
Acanthizidae	Sericornis frontalis	White-browed Scrubwren		+	+	+	+	+	+	+	+	+	+
Accipitridae	Accipiter novaehollandiae	Grey Goshawk	+						+			+	
Accipitridae	Aquila audax	Wedge-tailed Eagle		+									
Accipitridae	Circus approximans	Swamp Harrier	+	+	+	+	+			+			
Accipitridae	Haliaeetus leucogaster	# White-bellied Sea-Eagle								+	+		+
Accipitridae	Haliastur sphenurus	Whistling Kite	+		+					+	+	+	
Acrocephalidae	Acrocephalus australis	Australian Reed-Warbler	+	+		+	+	+	+	+	+	+	+
Anatidae	Anas castanea	Chestnut Teal	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Anas gracilis	Grey Teal				+	+		+				+
Anatidae	Anas superciliosa	Pacific Black Duck	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Aythya australis	Hardhead				+					+		+
Anatidae	Chenonetta jubata	Australian Wood Duck					+				+		
Anatidae	Cygnus atratus	Black Swan	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Spatula rhynchotis	Australasian Shoveler											+
Anhingidae	Anhinga melanogaster	Australasian Darter				+				+			
Ardeidae	Ardea ibis	Cattle Egret	+	+	+		+	+	+	+	+		+
Ardeidae	Ardea intermedia	Intermediate Egret					+						+
Ardeidae	Ardea modesta	Eastern Great Egret		+			+			+			
Ardeidae	Ardea pacifica	White-necked Heron					+						

						_							
Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Ardeidae	Botaurus poiciloptilus	# Australasian Bittern											+
Ardeidae	Egretta garzetta	Little Egret								+			
Ardeidae	Egretta novaehollandiae	White-faced Heron	+		+	+	+	+	+	+	+		+
Artamidae	Artamus leucorynchus	White-breasted Woodswallow	+		+				+	+	+	+	
Artamidae	Cracticus nigrogularis	Pied Butcherbird			+	+			+	+			
Artamidae	Cracticus tibicen	Australian Magpie		+	+				+	+			
Artamidae	Cracticus torquatus	Grey Butcherbird	+	+	+		+	+	+				
Artamidae	Strepera graculina	Pied Currawong					+						
Cacatuidae	Cacatua galerita	Sulphur-crested Cockatoo	+			+							+
Cacatuidae	Cacatua sanguinea	Little Corella						+		+			
Cacatuidae	Calyptorhynchus funereus	Yellow-tailed Black-Cockatoo									+		
Cacatuidae	Eolophus roseicapillus	Galah					+					+	+
Campephagidae	Coracina novaehollandiae	Black-faced Cuckoo-shrike		+				+	+	+	+	+	
Campephagidae	Coracina tenuirostris	Cicadabird		+	+	+							
Charadriidae	Vanellus miles	Masked Lapwing	+					+		+			+
Cisticolidae	Cisticola exilis	Golden-headed Cisticola	+	+	+	+							
Climacteridae	Cormobates leucophaea	White-throated Treecreeper							+				
Columbidae	Ocyphaps lophotes	Crested Pigeon										+	
Coraciidae	Eurystomus orientalis	Dollarbird			+		+	+	+	+		+	+
Corvidae	Corvus coronoides	Australian Raven	+	+			+	+	+	+		+	+
Cuculidae	Cacomantis flabelliformis	Fan-tailed Cuckoo	+			+		+	+				
Cuculidae	Cacomantis variolosus	Brush Cuckoo	+					+					
Cuculidae	Chalcites lucidus	Shining Bronze-Cuckoo	+										
Cuculidae	Scythrops novaehollandiae	Channel-billed Cuckoo		+			+	+		+			
Estrildidae	Neochmia temporalis	Red-browed Finch	+	+	+		+	+	+	+	+	+	
Halcyonidae	Dacelo novaeguineae	Laughing Kookaburra	+									+	
Halcyonidae	Todiramphus sanctus	Sacred Kingfisher	+	+	+			+				+	

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Hirundinidae	Hirundo neoxena	Welcome Swallow	+	+	+	+	+	+	+	+	+	+	+
Hirundinidae	Petrochelidon ariel	Fairy Martin	+	+	+			+					+
Maluridae	Malurus cyaneus	Superb Fairy-wren	+	+	+	+	+	+	+	+	+	+	+
Maluridae	Malurus lamberti	Variegated Fairy-wren	+	+			+						
Megaluridae	Megalurus gramineus	Little Grassbird		+	+	+	+	+		+			+
Megaluridae	Megalurus timoriensis	Tawny Grassbird		+						+			
Meliphagidae	Acanthorhynchus tenuirostris	Eastern Spinebill			+			+		+		+	
Meliphagidae	Lichenostomus chrysops	Yellow-faced Honeyeater	+	+		+	+	+		+		+	+
Meliphagidae	Manorina melanocephala	Noisy Miner	+	+									
Meliphagidae	Manorina melanophrys	Bell Miner	+	+					+		+	+	+
Meliphagidae	Meliphaga lewinii	Lewin's Honeyeater			+	+				+			
Meliphagidae	Myzomela sanguinolenta	Scarlet Honeyeater			+	+	+		+		+	+	+
Meliphagidae	Philemon corniculatus	Noisy Friarbird								+			
Meliphagidae	Phylidonyris niger	White-cheeked Honeyeater								+			
Monarchidae	Grallina cyanoleuca	Magpie-lark	+	+	+		+	+	+	+		+	
Monarchidae	Myiagra rubecula	Leaden Flycatcher	+										
Nectariniidae	Dicaeum hirundinaceum	Mistletoebird			+			+			+		
Oriolidae	Oriolus sagittatus	Olive-backed Oriole		+				+					
Pachycephalidae	Pachycephala pectoralis	Golden Whistler					+			+			
Pachycephalidae	Pachycephala rufiventris	Rufous Whistler			+								
Pelecanidae	Pelecanus conspicillatus	Australian Pelican								+			
Petroicidae	Eopsaltria australis	Eastern Yellow Robin			+	+	+	+	+	+		+	
Phalacrocoracidae	Microcarbo melanoleucos	Little Pied Cormorant	+			+	+	+		+	+		+
Phalacrocoracidae	Phalacrocorax carbo	Great Cormorant			+		+	+		+			+
Phalacrocoracidae	Phalacrocorax sulcirostris	Little Black Cormorant			+			+		+			+
Phalacrocoracidae	Phalacrocorax varius	Pied Cormorant					+						+
Phasianidae	Coturnix ypsilophora	Brown Quail								+			

											-		
Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Podicipedidae	Tachybaptus novaehollandiae	Australasian Grebe	+			+					+		+
Psittacidae	Platycercus eximius	Eastern Rosella						+			+		
Psittacidae	Trichoglossus haematodus	Rainbow Lorikeet		+					+	+	+	+	+
Psophodidae	Psophodes olivaceus	Eastern Whipbird					+	+		+			
Rallidae	Fulica atra	Eurasian Coot				+	+		+	+	+		
Rallidae	Gallinula tenebrosa	Dusky Moorhen	+	+	+	+	+	+	+		+	+	+
Rallidae	Porphyrio porphyrio	Purple Swamphen	+	+	+	+	+	+	+	+	+	+	+
Recurvirostridae	Himantopus himantopus	Black-winged Stilt					+			+			
Rhipiduridae	Rhipidura albiscapa	Grey Fantail	+	+	+	+	+	+	+	+	+	+	
Rhipiduridae	Rhipidura leucophrys	Willie Wagtail	+	+	+	+	+	+	+	+		+	+
Scolopacidae	Gallinago hardwickii	^M Latham's Snipe					+						
Sturnidae	Sturnus tristis	*Common Myna			+	+							
Sturnidae	Sturnus vulgaris	*Common Starling			+					+			
Threskiornithidae	Platalea flavipes	Royal Spoonbill								+	+		
Threskiornithidae	Plegadis falcinellus	Glossy Ibis					+						
Threskiornithidae	Threskiornis molucca	Australian White Ibis	+				+		+	+			+
Threskiornithidae	Threskiornis spinicollis	Straw-necked Ibis	+				+	+	+	+			+
Timaliidae	Zosterops lateralis	Silvereye	+	+	+		+	+	+	+		+	+
		TOTALS	40	37	38	32	46	41	36	54	30	31	37

* denotes an introduced species; # denotes a threatened species under the NSW BC Act 2016 and/or the Commonwealth EPBC Act 1999; ^M denotes a migratory species listed under the Commonwealth EPBC Act 1999.

BIRD SPECIES LIST – SOUTH SWAMP

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Acanthizidae	Acanthiza lineata	Striated Thornbill						+					
Acanthizidae	Acanthiza nana	Yellow Thornbill					+				+		
Acanthizidae	Acanthiza pusilla	Brown Thornbill	+					+		+			
Acanthizidae	Gerygone olivacea	White-throated Gerygone								+			
Acanthizidae	Sericornis frontalis	White-browed Scrubwren				+	+			+		+	
Accipitridae	Accipiter fasciatus	Brown Goshawk											+
Accipitridae	Aviceda subcristata	Pacific Baza			+								
Accipitridae	Circus approximans	Swamp Harrier	+		+		İ		+	+		+	
Accipitridae	Haliaeetus leucogaster	# White-bellied Sea-Eagle			+		+	+	ĺ	+	ĺ		+
Accipitridae	Haliastur sphenurus	Whistling Kite	+	+	+		+			+		+	
Accipitridae	Pandion haliaetus cristatus	Eastern Osprey		1	İ		İ	İ	+	İ	ĺ		
Acrocephalidae	Acrocephalus australis	Australian Reed-Warbler	+	+	+	+	+	+	+	+		+	+
Alcedinidae	Alcedo azurea	Azure Kingfisher		1	İ	+	+	İ	ĺ	İ	+		
Anatidae	Anas castanea	Chestnut Teal	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Anas gracilis	Grey Teal		+		+	+		+		+	+	+
Anatidae	Anas platyrhynchos	Domestic Duck		1	İ		+		İ	İ	Ì		
Anatidae	Anas superciliosa	Pacific Black Duck	+	+	+	+	+	+	+	+	+	+	+
Anatidae	Aythya australis	Hardhead		1	İ	+	İ	İ	ĺ	İ	ĺ	+	+
Anatidae	Chenonetta jubata	Australian Wood Duck			+		+	+	+		+	+	+
Anatidae	Cygnus atratus	Black Swan	+	+	+	+	+	+	+	+	+	+	+
Anhingidae	Anhinga melanogaster	Australasian Darter				+		+					
Apodidae	Hirundapus caudacutus	White-throated Needletail										+	
Ardeidae	Ardea ibis	Cattle Egret		+	+		+	+		+		+	+

			-										_
Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Ardeidae	Ardea intermedia	Intermediate Egret					+	+	+	+			
Ardeidae	Ardea modesta	Eastern Great Egret					+		+	+			
Ardeidae	Ardea pacifica	White-necked Heron	+	+			+		+			+	+
Ardeidae	Egretta garzetta	Little Egret					+	+					
Ardeidae	Egretta novaehollandiae	White-faced Heron	+	+	+	+	+	+	+	+	+	+	+
Artamidae	Artamus leucorynchus	White-breasted Woodswallow	+	+	+	+	+	+	+	+	+	+	+
Artamidae	Cracticus nigrogularis	Pied Butcherbird	+	+					+				+
Artamidae	Cracticus tibicen	Australian Magpie	+	+	+	+	+	+		+		+	
Artamidae	Cracticus torquatus	Grey Butcherbird	+	+	+	+		+	+				
Artamidae	Strepera graculina	Pied Currawong	+										
Cacatuidae	Cacatua galerita	Sulphur-crested Cockatoo	+	+				+		+		+	
Cacatuidae	Cacatua sanguinea	Little Corella					+		+	+		+	+
Cacatuidae	Eolophus roseicapillus	Galah			+			+		+			+
Campephagidae	Coracina novaehollandiae	Black-faced Cuckoo-shrike		+	+	+	+		+	+	+	+	+
Campephagidae	Coracina tenuirostris	Cicadabird	+	+									
Campephagidae	Lalage tricolor	White-winged Triller					+	+					
Charadriidae	Vanellus miles	Masked Lapwing	+	+	+				+	+	+	+	+
Ciconiidae	Ephippiorhynchus asiaticus	# Black-necked Stork									+		
Cisticolidae	Cisticola exilis	Golden-headed Cisticola	+	+	+		+	+	+			+	
Climacteridae	Cormobates leucophaea	White-throated Treecreeper							+	+			
Columbidae	Geopelia humeralis	Bar-shouldered Dove										+	
Columbidae	Geopelia striata	Peaceful Dove									+		
Columbidae	Leucosarcia picata	Wonga Pigeon						+					
Columbidae	Ocyphaps lophotes	Crested Pigeon										+	
Coraciidae	Eurystomus orientalis	Dollarbird	+		+	+	+	+	+	+			
Corvidae	Corvus coronoides	Australian Raven	+	+	+	+	+	+	+	+	+		

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Cuculidae	Cacomantis flabelliformis	Fan-tailed Cuckoo	+	+		+	+	+		+	+	+	
Cuculidae	Cacomantis variolosus	Brush Cuckoo	+	+	+			+					
Cuculidae	Centropus phasianinus	Pheasant Coucal		+	+								+
Cuculidae	Chalcites lucidus	Shining Bronze-Cuckoo	+										
Cuculidae	Chrysococcyx basalis	Horsfield's Bronze-Cuckoo					+						
Cuculidae	Eudynamys orientalis	Eastern Koel	+				+	+					
Cuculidae	Scythrops novaehollandiae	Channel-billed Cuckoo		+				+	+				
Estrildidae	Neochmia temporalis	Red-browed Finch	+				+		+	+		+	+
Halcyonidae	Dacelo novaeguineae	Laughing Kookaburra	+	+		+	+	+	+	+	+	+	+
Halcyonidae	Todiramphus sanctus	Sacred Kingfisher	+	+	+	+	+	+	+	+	+	+	+
Hirundinidae	Hirundo neoxena	Welcome Swallow	+	+	+	+	+	+	+	+	+	+	+
Hirundinidae	Petrochelidon ariel	Fairy Martin		+	+			+		+		+	
Maluridae	Malurus cyaneus	Superb Fairy-wren	+	+	+	+	+	+	+	+	+	+	+
Maluridae	Malurus lamberti	Variegated Fairy-wren				+	+		ĺ	İ	1	İ	
Maluridae	Stipiturus malachurus	Southern Emu-wren											+
Megaluridae	Megalurus gramineus	Little Grassbird	+	+	+	+	+	+	+	İ	+	+	+
Megaluridae	Megalurus timoriensis	Tawny Grassbird	+	+						+			
Meliphagidae	Acanthorhynchus tenuirostris	Eastern Spinebill					+						
Meliphagidae	Lichenostomus chrysops	Yellow-faced Honeyeater	+	+	+		+	+		+	+	+	+
Meliphagidae	Lichenostomus leucotis	White-eared Honeyeater					+						
Meliphagidae	Manorina melanocephala	Noisy Miner	+	+	+	+	İ		+	+	1	İ	
Meliphagidae	Manorina melanophrys	Bell Miner	+	+	+	+	+	+	+	+	+	+	
Meliphagidae	Meliphaga lewinii	Lewin's Honeyeater	+	+	+	+	+	+		+		+	
Meliphagidae	Melithreptus lunatus	White-naped Honeyeater								+		+	
Meliphagidae	Myzomela sanguinolenta	Scarlet Honeyeater							+	+		+	+
Meliphagidae	Philemon corniculatus	Noisy Friarbird	+						+	+			

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Meliphagidae	Phylidonyris niger	White-cheeked Honeyeater								+		+	
Meliphagidae	Plectorhyncha lanceolata	Striped Honeyeater	+	+									
Meropidae	Merops ornatus	Rainbow Bee-eater	+										
Monarchidae	Grallina cyanoleuca	Magpie-lark	+	+	+	+	+	+	+	+		+	+
Monarchidae	Myiagra rubecula	Leaden Flycatcher	+										
Nectariniidae	Dicaeum hirundinaceum	Mistletoebird				+		+	+	+			+
Neosittidae	Daphoenositta chrysoptera	Varied Sittella						+		+			
Oriolidae	Oriolus sagittatus	Olive-backed Oriole		+	+		+	+			+	+	+
Oriolidae	Sphecotheres vieilloti	Australasian Figbird			+								
Pachycephalidae	Colluricincla harmonica	Grey Shrike-thrush					+	+					
Pachycephalidae	Pachycephala pectoralis	Golden Whistler	+	+					+			+	
Pachycephalidae	Pachycephala rufiventris	Rufous Whistler	+	+	+	+		+				+	+
Pardalotidae	Pardalotus punctatus	Spotted Pardalote	+	+								+	
Pelecanidae	Pelecanus conspicillatus	Australian Pelican					+						
Petroicidae	Eopsaltria australis	Eastern Yellow Robin		+		+				+			+
Phalacrocoracidae	Microcarbo melanoleucos	Little Pied Cormorant	+	+		+	+		+	+	+	+	+
Phalacrocoracidae	Phalacrocorax carbo	Great Cormorant				+				+			
Phalacrocoracidae	Phalacrocorax sulcirostris	Little Black Cormorant		+		+	+		+	+		+	+
Phalacrocoracidae	Phalacrocorax varius	Pied Cormorant				+	+						+
Podicipedidae	Tachybaptus novaehollandiae	Australasian Grebe		+		+	+	+		+		+	+
Psittacidae	Alisterus scapularis	Australian King-Parrot				+				+			
Psittacidae	Platycercus eximius	Eastern Rosella	+	+	+	+	+	+	+	+	+	+	+
Psittacidae	Trichoglossus haematodus	Rainbow Lorikeet	+	+	+	+	+		+	+		+	+
Psophodidae	Psophodes olivaceus	Eastern Whipbird	+	+	+	+	+	+	+	+		+	+
Rallidae	Fulica atra	Eurasian Coot		+		+	+	+	+	+	+	+	+
Rallidae	Gallinula tenebrosa	Dusky Moorhen	+	+	+	+	+	+	+	+	+	+	

Family	Scientific Name	Common Name	2008/2009	2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016	2016/2017	2017/2018	2018/2019
Rallidae	Porphyrio porphyrio	Purple Swamphen	+	+	+	+	+	+	+	+	+	+	+
Recurvirostridae	Himantopus himantopus	Black-winged Stilt										+	
Rhipiduridae	Rhipidura albiscapa	Grey Fantail	+	+		+	+	+	+	+	+	+	+
Rhipiduridae	Rhipidura leucophrys	Willie Wagtail	+	+	+	+	+	+	+	+	+	+	+
Scolopacidae	Gallinago hardwickii	^M Latham's Snipe					+			+		+	+
Sturnidae	Sturnus tristis	*Common Myna			+								
Sturnidae	Sturnus vulgaris	*Common Starling			+								
Threskiornithidae	Platalea regia	Royal Spoonbill		+			+		+	+			
Threskiornithidae	Plegadis falcinellus	Glossy Ibis					+						
Threskiornithidae	Threskiornis molucca	Australian White Ibis					+		+			+	+
Timaliidae	Zosterops lateralis	Silvereye					+	+				+	+
		TOTALS	51	53	43	44	62	51	48	59	30	57	47

* denotes an introduced species; # denotes a threatened species under the NSW BC Act 2016 and/or the Commonwealth EPBC Act 1999; ^M denotes a migratory species listed under the Commonwealth EPBC Act 1999.

APPENDIX 7. ROOSTING BIRD COUNTS FROM THE MAIN SWAMP

Family	Scientific Name	Common Name	15/10/2008	5/03/2009	18/11/2009	23/03/2010	23/12/2010	23/03/2011	19/10/2011	20/03/2012	2/11/2012	5/03/2013	4/12/2013	12/12/2013	10/03/2014	26/03/2015	13/12/2015	21/04/2016	24/10/2016	7/12/2017	30/04/2018	6/12/2018	11/04/2019
Anhingidae	Anhinga melanogaster	Australasian Darter													1								
Ardeidae	Ardea ibis	Cattle Egret	57	170	67		26		188	80		120		80		280	22		88	15	2	1	
Ardeidae	Ardea pacifica	White- necked Heron	1																				
Ardeidae	Egretta garzetta	Little Egret															7						
Ardeidae	Egretta novaehollandiae	White-faced Heron								4		20				29	1						
Monarchidae	Grallina cyanoleuca	Magpie-lark													1			3					
Phalacrocoracidae	Phalacrocorax carbo	Great Cormorant					2			15		2		3	7							2	
Phalacrocoracidae	Phalacrocorax sulcirostris	Little Black Cormorant	17	10	5		14		1	5	15			8	2		6					4	
Phalacrocoracidae	Microcarbo melanoleucos	Little Pied Cormorant			8	3						6	1	10								4	
Phalacrocoracidae	Phalacrocorax varius	Pied Cormorant										10											
Rallidae	Porphyrio porphyrio	Purple Swamphen											2										
Threskiornithidae	Threskiornis molucca	Australian White Ibis	9	50	37	44		2	1			5				276	53	36		1	8	3	112
Threskiornithidae	Threskiornis spinicollis	Straw- necked Ibis	125	40	8	3						400				13		18			20	3	11
Ardeidae	Ardea intermedia	Intermediate Egret																				2	
		Total No. of Individuals	209	270	125	50	42	2	190	104	15	563	3	101	11	598	89	57	88	16	30	19	123

APPENDIX 8. SELECTION OF WATER BODY PHOTOGRAPHS

Plate 22: Stitched photograph of South Swamp taken in March 2012.

Plate 23:Stitched photograph of South Swamp taken in March 2015

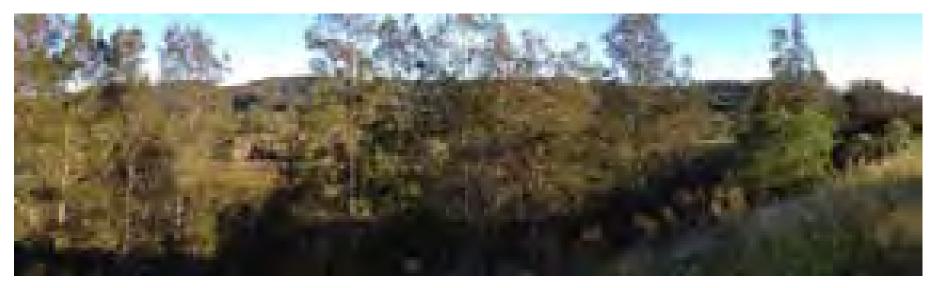


Plate 24: Stitched photograph of South Swamp taken in April 2018

Figure 20: Stitched photograph of South Swamp taken in April 2019

Plate 25: Stitched photograph of Main Swamp taken in March 2012.

Plate 26: Stitched photograph of Main Swamp taken in March 2014.

Plate 27: Stitched photograph of Main Swamp taken in April 2018.

Ref: NCA19R92101 Copyright 2019 Kleinfelder

Figure 21: Stitched photograph of Main Swamp taken in April 2019.

Plate 28: Stitched photograph of North Swamp taken in March 2012.

Plate 29: Stitched photograph of North Swamp taken in March 2015.

Plate 30: Stitched photograph of North Swamp taken in April 2018.

Figure 22: Stitched photograph of North Swamp taken in April 2019.

APPENDIX 9. STAFF CONTRIBUTIONS

The following staff were involved in the compilation of this report.

Name	Qualification	Title/Experience	Contribution
Bradley Deane	BBioCons / MWldMgmt	Environmental Consultant / GIS Support	Map preparation
Gayle Joyce	BSc (Forestry) (Hons)	GIS Specialist	Map preparation
Kristy Peters	B.ParkMgt/BSc. (Hons)	Senior Ecologist	Bird surveys, report review
Nigel Fisher	BSc (Hons), PhD	Restoration Ecologist	Flora survey, report writing
Elise Connolly	Dip Cons Land Mgt, AdvDip EnvMgt	Ecologist	Flora survey
Mark Dean	BEnvSc&Mgt	Ecologist	Fauna survey, report writing
Daniel O'Brien	BEnvSc&Mgt (Hons)	Ecologist	Fauna survey, report writing
Ben Stewart	MMarSc&Mgt	Ecologist	Report amendment

APPENDIX 10. LICENSING

Kleinfelder employees involved in the current study are licensed or approved under the *Biodiversity Conservation Act 2016* (License Number: SL100730, Expiry: 31 March 2020) and the Animal Research Act 1985 to harm/trap/release protected native fauna and to pick for identification purposes native flora and to undertake fauna surveys.

Appendix 4

Aquatic Monitoring Report: Autumn 2019 and Spring 2019


(No. of pages including blank pages = 54)

This page has intentionally been left blank

Tasman Coal Aquatic Monitoring Report Autumn 2019

Prepared for Donaldson Coal Pty Ltd July 2019

Niche Environment and Heritage

A specialist environmental and heritage consultancy.

Head Office

Niche Environment and Heritage Level 1, 460 Church Street North Parramatta NSW 1750 All mail correspondence to: PO Box 2443 North Parramatta NSW 1750 Email: info@niche-eh.com Sydney 0488 224 888 **Central Coast** 0488 224 999 Illawarra 0488 224 777 Armidale 0488 224 094 Mudgee 0488 224 025 **Port Macquarie** 0488 774 081 **Brisbane** 0488 224 036 Cairns 0488 284 743

i

Document control

Project no.:	4920
Project client:	Donaldson Coal Pty Ltd
Project office:	Sydney
Document description:	Aquatic monitoring report Autumn 2019
Project Manager:	Matthew Russell
Authors:	Matthew Russell
Internal review	Lisa Carter
Document status:	Final
Document address:	P:\Projects\4920\Reports
Local Government Area:	Newcastle\Maitland

Author	Revision number	Internal review	Date issued	Signature
David Wilkinson	D1	Lisa Carter		

© Niche Environment and Heritage, 2019

Copyright protects this publication. Except for purposes permitted by the Australian *Copyright Act 1968*, reproduction, adaptation, electronic storage, and communication to the public is prohibited without prior written permission. Enquiries should be addressed to Niche Environment and Heritage, PO Box 2443, Parramatta NSW 1750, Australia, email: info@niche-eh.com.

Any third party material, including images, contained in this publication remains the property of the specified copyright owner unless otherwise indicated, and is used subject to their licensing conditions.

Cover photograph: Blue Gum Creek

Executive summary

The Tasman Coal mine ceased production in July 2013 and the site has subsequently been undergoing rehabilitation since September 2014. As part of environmental monitoring requirements for the Tasman Coal mine, the aquatic ecological health of Blue Gum Creek is monitored. The aquatic monitoring program includes methods for measuring macroinvertebrates as well as water quality and catchment riparian conditions.

The aim of the aquatic monitoring program is to assess river health of Blue Gum Creek. The monitoring includes:

- Assessment of stream condition using Riparian and Channel and Environment (RCE) inventory assessment.
- Assessment of habitat condition using the AUSRIVAS proforma.
- Assessment of water quality against default ANZECC trigger values.
- Assessment of the macroinvertebrate community condition using Stream Invertebrate Grade Number Average Level (SIGNAL).

The report found that aquatic environments downstream of Tasman Coal rehabilitation works have moderate riparian and channel morphology condition. Assessment of macroinvertebrates using weighted SIGNAL scores showed that Blue Gum Creek was in poor stream health, however some pollution sensitive taxa (Leptophlebiidae) were sampled which shows that despite the poor overall health it does provide suitable habitat for this sensitive family.

Blue Gum Creek continues to exhibit degradation and poor stream health. This is indicated by pollution tolerant macroinvertebrate communities present, presence of weeds, and filamentous algae. Ongoing issues with siltation and erosion appear to be continuing to impact at the downstream site. As discussed in previous reports, these disturbances appear unrelated to the mine's previous operations, but rather the combination of past and ongoing land use management issues in the broader catchment and low flows.

i

Table of Contents

Exec	cutive s	ummaryi
Tab	e of Co	ntentsi
Glos	sary an	d abbreviations3
1.	Introd	uction4
	1.1	Background4
	1.2	Catchment characteristics
	1.3	Aim
2.	Metho	ds6
	2.1	Location of sampling sites
	2.2	Field methods
	2.3	Data analysis
3.	Result	s 11
	3.1	Weather conditions 11
	3.2	Aquatic habitat
	3.3	Water quality
	3.4	Macroinvertebrates
	3.5	Other fauna 15
4.	Discus	sion16
	4.1	RCE Scores
	4.2	SIGNAL Scores and stream health 16
	4.3	Water quality
5.	Conclu	ision17
6.	Refere	nces
Ann	ex 1. M	acroinvertebrate survey results

List of Figures

Figure 1 Study area	. 5
Figure 2 Location of study sites	. 7
Figure 3: Total daily rainfall at Abel rain gauge (January –July 2019). Source: Donaldson Coal	11
Figure 4. SIGNAL 2 Bi-plot	15

i

List of Plates

Plate 1: Sampling method – dip netting	8
Plate 2. Blue Gum Creek at Stockrington Road	12
Plate 3. Blue Gum Creek at Dog Hole Bridge	13

List of Tables

Table 1. Location of sampling sites	6
Table 2. SIGNAL Grade and the Level of Pollution Tolerance	9
Table 3. Guide to interpreting the SIGNAL 2 scores	. 10
Table 4. RCE inventory scores	. 11
Table 5. Blue Gum Creek at Stockrington Road habitat results	. 12
Table 6. Blue Gum Creek at Dog Hole Bridge habitat results	. 13
Table 7. Water quality results	. 14
Table 8. Macroinvertebrate results	. 14
Table 9. 2015, 2016, 2017, 2018, 2019 weighted SIGNAL scores	. 15

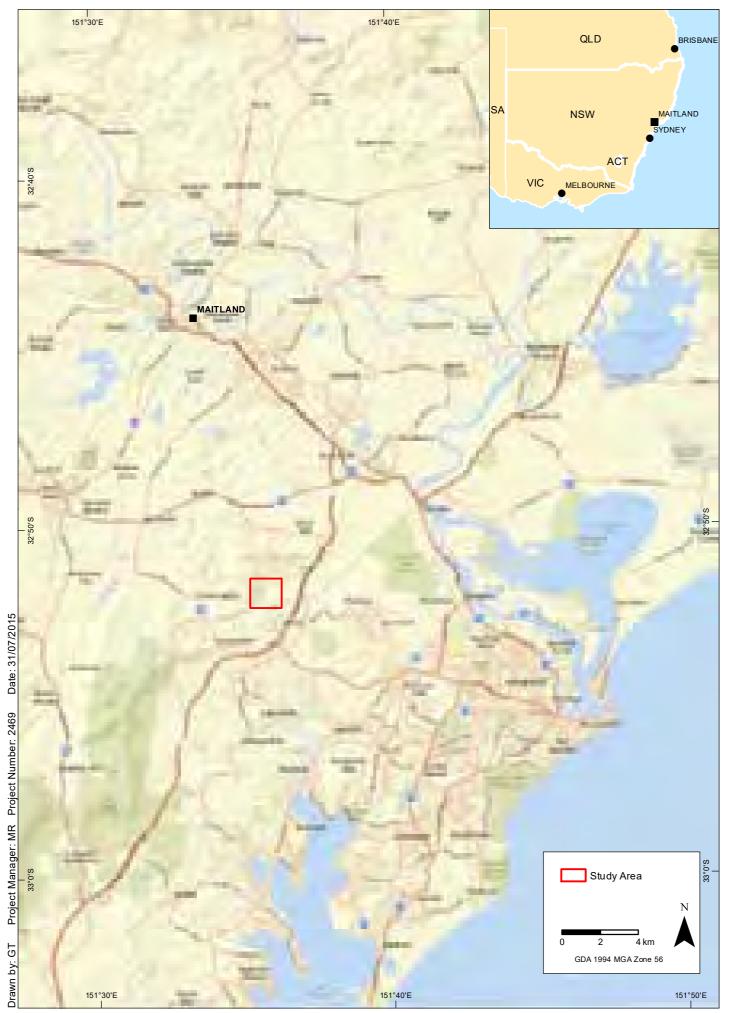
Glossary and abbreviations

ANZECC	Australian and New Zealand Environment and Conservation Council
Anthropogenic	Caused or produced by humans
Aquatic macroinvertebrates	Animals that have no backbone, are visible with the naked eye and spend all or part of their life in water
AUSRIVAS	Australian Rivers Assessment system
СМА	Catchment Management Area
Drainage	Natural or artificial means for the interception and removal of surface or subsurface water.
Ecology	The study of the relationship between living things and the environment.
Ephemeral	Existing for a shot amount of time
Habitat	The place where a species, population or ecological community lives (whether permanently, periodically or occasionally).
RCE inventory	Riparian and Channel and Environment inventory assessment
Riparian	Relating to the banks of a natural waterway.
SIGNAL	Stream Invertebrate Grade Number Average Level. SIGNAL2 scores are indicative only and pollution does not refer to just anthropogenic sources. Environmental stress may result in poor water quality occurring naturally in waterways such as those conditions found in ephemeral streams. Low family richness and the occurrence of pollution tolerant invertebrates can give a low SIGNAL score even when they are natural condition.
Stress	Response to a stressor such as an environmental condition or a stimulus

1. Introduction

1.1 Background

The Tasman Coal mine ceased production in July 2013 and the site has subsequently been undergoing rehabilitation since September 2014. Monitoring of stream health of Blue Gum Creek is conducted biannually as part of the environmental monitoring requirements for the Tasman Coal mine . The aquatic monitoring program includes monitoring macroinvertebrates, water quality and catchment-riparian condition. These measures are used to evaluate the effectiveness of water quality protection measures established during development of the area for mining, and success of catchment rehabilitation.


1.2 Catchment characteristics

Blue Gum Creek originates at Mount Sugarloaf, approximately two kilometres north-west of West Wallsend. It drains a catchment area of approximately 16 square kilometres upstream of Pambalong Nature Reserve. The catchment upstream of the monitoring sites is predominantly bushland, with areas that include the rehabilitated mine site and the Hunter Expressway corridor. Stockrington Quarry is also located inside the catchment to the north of Blue Gum Creek. The lower catchment includes rural land use with grazing, which occurs adjacent to the downstream monitoring site (Figure 1).

1.3 Aim

The aim of the aquatic monitoring program is to assess river health of Blue Gum Creek to determine if water quality protection measures and catchment rehabilitation are having a positive influence on the environment. The monitoring includes:

- Assessment of stream condition using Riparian and Channel and Environment (RCE) inventory assessment.
- Assessment of habitat condition using the AUSRIVAS proforma.
- Assessment of water quality against default ANZECC trigger values.
- Assessment of the macroinvertebrate community condition using Stream Invertebrate Grade Number Average Level (SIGNAL).

Regional location of study area Tasman Coal - Aquatic Monitoring

2. Methods

2.1 Location of sampling sites

Two sampling sites are required to be sampled on Blue Gum Creek (Figure 2, Table 1). These are located downstream of the Tasman Coal rehabilitation area.

Table 1. Location of sampling sites

Site name	Stream	Location	Easting	Northing
BGC@SR	Blue Gum Creek	Blue Gum Creek upstream of Stockrington Road	368006	6362135
BGC@DHB	Blue Gum Creek	Blue Gum Creek downstream at Dog Hole Bridge	369275	6363473

2.2 Field methods

Field surveys for this monitoring event were undertaken on 28 May 2019. The field methods were consistent with standardised techniques in field sampling as prescribed by AUSRIVAS (Turak *et al.* 2000). The AUSRIVAS methods of sampling both pools and riffles have been modified for this project, as no suitable in-stream riffle features are present.

2.2.1 Aquatic habitat and stream condition

Riparian, Channel and Environment Inventory assessment (RCE)

The RCE Inventory (Chessman *et al.* 1997) provides a comparative measure of stream condition by assessing both the stream and its riparian environment in terms of habitat diversity, habitat condition and the degree of human-induced disturbance. Thirteen categories each receive a score between 1 and 4 based on their condition, resulting in an accumulated score of between 13 and 52. The maximum score (52) indicates a stream with little or no obvious physical disruption and the lowest score (13) indicates a heavily channelled stream without any riparian vegetation. An RCE score greater than 40 indicates a stream considered to be in good condition with potential for higher biodiversity values. RCE scores of 20-40 indicate a stream is in moderate condition and below 20 indicates that the stream is in very poor condition. This assessment provided a score for the general condition of the stream and must be interpreted accordingly.

Habitat description

A description of aquatic habitat was also produced using the AUSRIVAS proforma. The survey is a rapid visual assessment used to describe the habitat based on the following parameters:

- geomorphology
- channel diversity
- bank stability
- riparian vegetation and adjacent land use
- water quality
- macrophytes
- local impacts and land use practices.

Location of study sites Tasman Coal - Aquatic Monitoring

FIGURE 2

Imagery: (c) Nearmap (May 2015)

2.2.2 Water quality

Water quality was measured *in situ* using a calibrated Yeokal 611 water quality probe at each site. The following variables were recorded:

- temperature (°C)
- conductivity (μS/cm)
- pH
- dissolved oxygen (DO)(% saturation and mg/L)
- turbidity (NTU).

Alkalinity (mg CaCO₃/L) was measured with a standard titration kit. Water quality data were compared with the ANZECC (2000) default guideline values to physical and chemical stressors for protection of slightly upland aquatic ecosystems in South-Eastern Australia.

2.2.3 Macroinvertebrates

Samples were collected from pool edges for a length of 10 metres, either as a continuous line or in disconnected segments. Sampling in segments was often undertaken to ensure the sampling of subhabitats such as macrophyte beds, bank overhangs, submerged branches and root mats. Segmented sampling was also employed where pool length was short and it was logistically difficult to sample in a continuous line (e.g. in-stream logs). A 250 μ m dip net was drawn through the water with short sweeps towards the bank to dislodge benthic fauna while scraping submerged rocks and debris, sides of the stream bank and the bed substrate (Plate 1). Further sweeps in the water column targeted the suspended fauna.

Plate 1: Sampling method – dip netting

Each sample was rinsed from the net onto a white sorting tray from which animals were picked using forceps, pipettes and/or paint brushes. Each tray was picked for a minimum period of 40 minutes, after which they were picked at 10 minute intervals for either a total of one hour or until no new specimens had been found. Care was taken to collect cryptic and fast moving animals, in addition to those that were conspicuous or slow. The animals collected at each site were placed into a labelled jar containing 70% ethanol.

Laboratory methods-invertebrate identification

Macroinvertebrate samples were identified to family level with the exception of Oligochaeta (to class), Polychaeta (to class), Ostracoda (to subclass), Nematoda (to phylum), Nemertea (to phylum), Acarina (to order) and Chironomidae (to subfamily). Keys used include:

- Dean, J., Rosalind, M., St Clair, M., and Cartwright, D. (2004). Identification keys to Australian families and genera of caddis-fly larvae (Trichoptera). Cooperative Research Centre for Freshwater Ecology.
- Gooderham, J. and Tsyrlin, E. (2002). The Waterbug Book: A guide to the Freshwater Macroinvertebrates of Temperate Australia, CSIRO Publishing.
- Hawking J. and Theischinger G. (1999). A guide to the identification of larvae of Australian families and to the identification of ecology of larvae from NSW. Cooperative Research Centre for Freshwater Ecology.
- Madden, C. (2010). Key to genera of Australian Chironomidae. Museum Victoria Science Reports 12,1-31.
- Madden, C. (2011). Draft identification key to families of Diptera larvae of Australian inland waters. La Trobe University.
- Smith, B. (1996). Identification keys to the families and genera of bivalve and gastropod molluscs found in Australian inland waters. Murray Darling Freshwater Research Centre.
- Website http://www.mdfrc.org.au/bugguide/.

2.2.1 Data analysis

SIGNAL2: (Stream Invertebrate Grade Number Average Level) scores

The revised SIGNAL2 biotic index developed by Chessman (2003a, b) was used to determine the "environmental quality" of sites. This method assigns grade numbers to each macroinvertebrate family or taxa found, based largely on their response to a range of environmental conditions (Table 2). The sum of all grade numbers for that habitat is then divided by the total number of families recorded in each habitat to calculate the SIGNAL2 index. A weighted SIGNAL2 score was also calculated (see Chessman 2003b). The SIGNAL2 index therefore uses the average sensitivity of macroinvertebrate families to present a snapshot of biotic integrity at a site.

Table 3 provides a broad guide for interpreting the health of the site according to the SIGNAL 2 score of the site.

SIGNAL Grade	Pollution Tolerance
10-8	Indicates a greater sensitivity to pollution
7-5	Indicates a sensitivity to pollution
4-3	Indicates a tolerance to pollution
2-1	Indicates a greater tolerance to pollution

Table 2. SIGNAL Grade and the Level of Pollution Tolerance

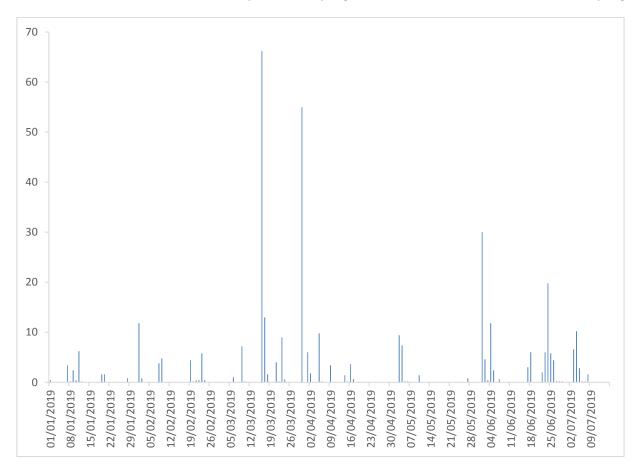
Table 3. Guide to interpreting the SIGNAL 2 scores

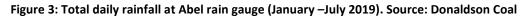
SIGNAL 2 Score	Habitat quality
Greater than 6	Healthy habitat
Between 5 and 6	Mild pollution
Between 4 and 5	Moderate pollution
Less than 4	Severe pollution

(Source: Gooderham J and Tsyrlin E 2002)

*Note that SIGNAL2 scores are indicative only and that pollution does not refer to just anthropogenic pollution. Environmental stress may result in poor water quality occurring naturally in waterways. Low family richness and the occurrence of pollution tolerant invertebrates can give a low SIGNAL score even when they are in natural condition.

2.2.2 Opportunistic observations


Opportunistic visual observations of aquatic fauna were recorded during sampling at each sampling site.



3. Results

3.1 Weather conditions

Surveys were conducted on 28 May 2019. The weather was mild (approximately 18°C) with light winds. The highest daily rainfall in the previous five months occurred in March, with daily total of 66.3 mm (Figure 3). There was little rain fall in the two weeks prior to sampling. There were low flows at the time of sampling.

3.2 Aquatic habitat

The aquatic habitat of the study area comprises pools with no riffles present. Water level was low during the survey. The sampling sites generally had moderate riparian and channel health (RCE 20-40) which is consistent with previous monitoring events. The upstream site (BGC@SR) had a mixture of native and exotic vegetation, however the channel was stable and no erosion or sedimentation present. The Blue Gum Creek downstream site (BGC@DHB) had fine sand/silt substrate and showed some evidence of erosion and sedimentation. Duck Weed (*Spirodela spp.*) was present at the downstream site. Both sampling sites had significant algae growth. Table 4 shows the RCE inventory scores of each sampling site.

Site number	Autumn 2015	Spring 2015	Autumn 2016	Spring 2016	Autumn 2016	Spring 2017	Autumn 2018	Spring 2018	Autumn 2019
BGC@SR	33	36	39	40	38	-	39	38	38
BGC@DHB	36	36	39	32	38	35	36	36	35

Table 4. RCE inventory scores

3.2.1 Blue Gum Creek at Stockrington Road

The aquatic habitat of Blue Gum Creek at Stockrington Road (BGC@SR) (Plate 2) at the time of the Autumn 2019 monitoring surveys is detailed in Table 5.

Plate 2. Blue Gum Creek at Stockrington Road.

Table 5. Blue Gum Creek at Stockrington Road habitat results

	Attribute	Blue Gum Creek at Stockrington road upstream
	Photograph	Plate 2
Riparian	RCE score	38
	Vegetation	Canopy vegetation included Blue Gum (<i>Eucalyptus saligna</i>), Cheese Tree (<i>Glochidion ferdinandi</i>), Coachwood (<i>Ceratopetalum apetalum</i>) and Sandpaper fig (<i>Ficus coronata</i>). The mid-storey was dominated by Lantana (<i>Lantana camara</i>), Tobacco Bush (<i>Solanum mauritianum</i>), Cheese Tree (<i>G. Ferdinandi</i>) and the groundcover by native and exotic grasses and herbs.
	Stream shading	Low
	Exotic vegetation	Lantana (<i>L. camara</i>), Crofton Weed (Ageratina adenophora), Tobacco bush (S. mauritianum)
Stream	Modal width (m)	2
characteristics	Substrate	Silt 70%/Boulder 20%/Sand 10%
	Flow/depth	No flow/<1m
	Macrophytes/algae	Slender knot weed (Persicaria decipiens), Cat tail Typha sp. /Lots of algae
	Water quality observations	Poor, Lots of filamentous algae
Comments		Similar to previous sampling conditions, although water quality appears to have deteriorated and appears soupy.

3.2.2 Blue Gum Creek at Dog Hole Bridge

The aquatic habitat of Blue Gum Creek at Dog Hole Bridge (BGC@DHB) (Plate 3) at the time of the Autumn 2019 monitoring surveys is detailed in Table 6.

Plate 3. Blue Gum Creek at Dog Hole Bridge

Table 6. Blue Gum Creek at Dog Hole Bridge habitat results

	Attribute	Blue Gum Creek at Dog Hole Bridge
	Photograph	Plate 3
Riparian	RCE score	35
	Vegetation	Canopy vegetation included Blue Gum (<i>E. saligna</i>) and Lilly Pilly (<i>Syzygium smithii</i>). The mid-storey was dominated by Lantana (<i>L. camara</i>), Cheese Tree (<i>G. ferdinandi</i>) and Privet (<i>Ligustrum sinense</i>) and the ground cover by native grasses, herbs, and Scurvy Weed (<i>Commelina cyanea</i>).
	Stream shading	Moderate
	Exotic vegetation	Lantana (L. camara), Privet (Ligustrum sinense)
Stream	Modal width (m)	2.5
characteristics	Substrate	Boulder 5%/ Cobble 20%/ Gravel 10%/ Silt 55%/ Sand 10%
	Flow/depth	No flow/<1m
	Macrophytes/algae	Slender Knot weed (P. decipiens), Duck Weed (Spirodela spp.) Lots of algae
	Water quality observations	Poor, Lots of algae and macrophytes.
Comments		Similar to previous sampling conditions. No flow. Bank clear of some vegetation.

3.3 Water quality

Water quality results (Table 7), showed that the temperature was consistent between both upstream (BG@SR) and downstream (BG@DHB) sites (10.69°C and 10.68 °C respectively). Conductivity was relatively high at both sites (976µ/cm and 973 µ/cm); exceeding the default ANZECC guideline of 350 µ/cm but below the EPL limit of 2000 µ/cm. Turbidity measurements were low at the upstream site, 4.4 NTU (BGC@SR) and high at the downstream site, 130.4 NTU (BGC@DHB), exceeding ANZECC guidelines. Dissolved Oxygen (DO) was low; 27.8% saturation upstream and 14% saturation downstream which is below the ANZECC guideline of 80-110%. The pH readings of 7.31 and 6.83 were both within ANZECC guidelines. Alkalinity was 120 mg CaCO₃/L upstream and 140 CaCO₃/L downstream.

Table 7. Water quality results

Site number	Temp (C°)	Conductivity (μS/cm)	Turbidity (NTU)	Dissolved Oxygen (% sat)	рН	Alkalinity (mg CaCO₃/L)
BGC@SR	10.69	976	4.4	27.8	7.31	120
BGC@DHB	10.68	973	130.4	14	6.83	140

ANZECC guidelines for upland streams: Electrical conductivity (30-350 μ S/cm)/ EPL Limit 2000 μ /cm, Turbidity (6-50 NTU), pH (6.5-8), Dissolved Oxygen (80-110%). Text in bold indicate those variables that exceed the default trigger values.

Note: For some waterways, default ANZECC guidelines do not reflect typical background water quality and chemistry. Therefore, an assessment of water quality monitoring data against default values can suggest the condition of the waterway is outside the normal range, or polluted, when in fact it is 'clean', or vice versa.

3.4 Macroinvertebrates

SIGNAL2 results for the two sampling sites are provided in Table 8. Raw data is provided in Annex 1.

Table 8. Macroinvertebrate results

Site number	Number of Taxa	SIGNAL2	SIGNAL2 weighted
BGC@SR	19	4.05	4.28
BGC@DHB	13	4	4.44

The sampling sites had a low- moderate diversity of macroinvertebrate families (13-19) (Table 8). SIGNAL2 and weighted SIGNAL 2 scores indicated that the sites had moderate pollution (~4 SIGNAL), with a dominance of pollution tolerant macroinvertebrate families. However, pollution sensitive mayflies Leptophlebiidae (SIGNAL 8) and caddis flies Leptoceridae (SIGNAL 6) were recorded at both sampling sites. Other sensitive species include beetle larvae Elmidae (SIGNAL 8) at Blue Gum Creek upstream site and Scirtidae (SIGNAL 6) at Blue Gum Creek downstream site. There has been an increase in SIGNAL 2 score since sampling in Spring 2018 (Table 9). The SIGNAL bi-plot (Figure 4) indicates that the downstream sites are potentially suffering from urban, industrial or agricultural pollution and upstream high nutrients or salinity.

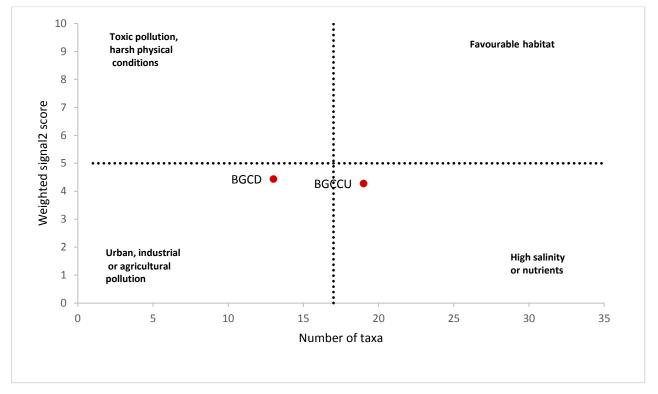


Figure 4. SIGNAL 2 Bi-plot

Table 9. 2015, 2016, 2017, 2018, 2019 weighted SIGNAL scores

Site number	Autumn 2015 Weighted SIGNAL 2	Spring 2015 Weighted SIGNAL 2	Autumn 2016 Weighted SIGNAL 2	Spring 2016 Weighted SIGNAL 2	Autumn 2017 Weighted SIGNAL 2	Spring 2017 Weighted Signal	Autumn 2018 Weighted SIGNAL 2	Spring 2018 Weighted SIGNAL 2	Autumn 2019 Weighted SIGNAL 2
BGC@SR	4.45	3.29	3.75	3.98	3.41	-	3.96	3.18	4.28
BGC@DHB	4.1	3.17	3.76	2.73	2.94	3.43	3.81	3.54	4.44

3.5 Other fauna

Introduced fish Gambusia holbrooki were observed at the Blue Gum Creek upstream site (BGC@SR).

4. Discussion

4.1 RCE Inventory Scores

RCE Inventory scores were similar to previous results with scores between 20-40 indicating moderate condition. These scores are similar to those calculated in Spring 2018 (Table 4) and are within the range of scores (33-40) recorded since commencement of the monitoring program (Tuft 2013).

4.2 SIGNAL Scores and stream health

The low SIGNAL scores recorded (~4) are consistent with previous monitoring and potentially the result of the creek being highly disturbed. Disturbances include presence of weeds, and visible erosion and siltation at the downstream site. There was also filamentous algae present at both sites, potentially indicating high nutrients. The low flows are also likely contributing to a reduction in the quality and quantity of pool habitat for aquatic species.

Despite some poor SIGNAL scores at both sites, there remains potential for improvements in stream health with the presence of sensitive mayfly taxa Leptophlebiidae (SIGNAL 8) (Annex 1), indicating that Blue Gum Creek can support some sensitive taxa. The results are consistent with conclusions from previous monitoring reports that found both sites show a predominance of pollution tolerant families and few sensitive taxa (Tuft 2014; Niche 2015 a, b; Niche 2016 a, b; Niche 2017 a, b, Niche 2018a, b).

4.3 Water quality

This report identified elevated electrical conductivity (EC) within Blue Gum Creek. Although relatively high and exceeding ANZECC default guidelines, these levels are consistent with recent surveys (Niche 2017a, b; Niche 2018a, b) and results prior to the commencement of the mine operations (Newcastle Coal 2002). High alkalinity in Blue Gum Creek indicates that the waterway has a high buffering capacity; providing it with a high resistance to changes in pH. Despite exceedances in EC and dissolved oxygen, these results are likely within the pre – mine variability of Blue Gum Creek.

5. Conclusion

Blue Gum Creek continues to exhibit aquatic monitoring results that indicate degradation and poor stream health. This is indicated by the dominance of pollution tolerant macroinvertebrate communities present, presence of weeds and filamentous algae. Ongoing issues with siltation and erosion appear to be continuing to impact on this waterway. As discussed in previous reports, these disturbances appear unrelated to the Tasman Coal mine's previous operations, but rather past and ongoing land use management issues exacerbated by low flows.

6. References

- Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) (2000). National water quality management strategy and assessment guidelines: Australian and New Zealand guidelines for fresh and marine water quality ANZECC/ARMCANZ.
- Chessman B. C., Growns J.E and Kotlash A.R. (1997) Objective derivation of macroinvertebrate family sensitivity grade numbers for the SIGNAL biotic index: allocation to the Hunter River system, NewSouth Wales. *Marine and Freshwater Research.* **48**, 159-172.
- Chessman B. (2003a) New sensitivity grades for Australian macroinvertebrates. Marine and Freshwater Research **54**, 95-1032
- Chessman B. (2003b) SIGNAL 2 A Scoring System for Macro-invertebrate ('Water Bugs') in Australian Rivers, Monitoring River Heath Initiative Technical Report no 31, Commonwealth of Australia, Canberra DWR, 199
- Dean, J., Rosalind, M., St Clair, M., and Cartwright, D. (2004) Identification keys to Australian families and genera of caddis-fly larvae (Trichoptera) Cooperative Research Centre for Freshwater Ecology.
- Gooderham, J. and Tsyrlin, E. (2002). The Waterbug Book: A guide to the Freshwater Macroinvertebrates of Temperate Australia, CSIRO Publishing.
- Hawking and Theischinger (1999) A guide to the identification of larvae of Australian families and to the identification of ecology of larvae from NSW.
- Niche Environment and Heritage (2015a). Tasman Coal Aquatic Monitoring Report Autumn 2015. Prepared for Tasman Coal.
- Niche Environment and Heritage (2015b). Tasman Coal Aquatic Monitoring Report Spring 2015. Prepared for Tasman Coal.
- Niche Environment and Heritage (2016a). Tasman Coal Aquatic Monitoring Report Autumn 2016. Prepared for Tasman Coal.
- Niche Environment and Heritage (2016b). Tasman Coal Aquatic Monitoring Report Spring 2016. Prepared for Tasman Coal.
- Niche Environment and Heritage (2017a). Tasman Coal Aquatic Monitoring Report Autumn 2017. Prepared for Tasman Coal.
- Niche Environment and Heritage (2017b). Tasman Coal Aquatic Monitoring Report Spring 2017. Prepared for Tasman Coal.
- Niche Environment and Heritage (2018a). Tasman Coal Aquatic Monitoring Report Spring 2017. Prepared for Tasman Coal.
- Niche Environment and Heritage (2018b). Tasman Coal Aquatic Monitoring Report Spring 2017. Prepared for Tasman Coal.

Madden, C. (2010) Key to genera of Australian Chironomidae. Museum Victoria Science Reports 12, 1-31.

- Madden, C. (2011) Draft identification key to families of Diptera larvae of Australian inland waters La Trobe University.
- Robyn Tuft and Associates (2014). Tasman Coal Mine Macroinvertebrate Sampling Program Pre-mining Survey – November 2014
- Smith, B. (1996) Identification keys to the families and genera of bivalve and gastropod molluscs found in Australian inland waters Murray Darling Freshwater Research Centre.
- Turak E., Waddell N., and Johnstone G. (2000) NSW AUSRIVAS Sampling and Processing Manual. Department of Environment and Conservation.

Websites

http://ausrivas.ewater.com.au/

http://www.mdfrc.org.au/bugguide/

http://www.bom.gov.au/

Annex 1. Macroinvertebrate survey results

	Blue Gum Creek at Stockrington Road upstream site	Blue Gum Creek at Dog Hole Bridge downstream site
Hydrobiidae	5	
Oligochaeta	1	
Atyidae	3	
Dytiscidae	9	17
Elmidae	1	
Hydrophilidae	6	
Scirtidae		17
Dixidae	1	
Ceratopogonidae	1	
Tanypodinae	6	
Chironominae	7	70
Baetidae	7	
Leptophlebiidae	31	24
Corixidae	1	1
Coenagrionidae	1	2
Megapodagrionidae		1
Gomphidae	1	1
Hemicorduliidae	2	2
Libellulidae	1	
Leptoceridae	3	2
Micronectidae	2	1
Sphaeriidae		3
Glossiphoniidae		1

Niche Environment and Heritage

A partial descent public and and and

Head Office

Belland in restoration of the local data

To the Win Parametry Birth (1971)

the same product that it is not

Dread Internation philase

-

This page has intentionally been left blank

Excellence in your environment

Tasman Coal Aquatic Monitoring Report

Spring 2019 Prepared for Donaldson Coal Pty Ltd 24 September 2019

Document control

Project number	Client	Project manager	LGA
4920	Donaldson Coal	Matthew Russell	Newcastle/Maitland

Version	Author	Review	Status	Date
D1	David Wilkinson	Matthew Russell	Draft	20/09/2019
Rev1			Final	24/09/2019

It is not supported in the support of the support o

Marcal Control of Cont

Annual Section and Annual Sec.

Executive summary

The Tasman Coal mine ceased production in July 2013 and the site has subsequently been undergoing rehabilitation since September 2014. As part of environmental monitoring requirements for the Tasman Coal mine, the aquatic ecological health of Blue Gum Creek is monitored. The aquatic monitoring program includes methods for measuring macroinvertebrates as well as water quality and catchment riparian conditions.

The aim of the aquatic monitoring program is to assess river health of Blue Gum Creek. The monitoring includes:

- Assessment of stream condition using Riparian and Channel and Environment (RCE) inventory assessment.
- Assessment of habitat condition using the AUSRIVAS proforma.
- Assessment of water quality against default ANZECC trigger values.
- Assessment of the macroinvertebrate community condition using Stream Invertebrate Grade Number Average Level (SIGNAL).

The report found that aquatic environments downstream of Tasman Coal rehabilitation works have moderate riparian and channel morphology condition. Assessment of macroinvertebrates using weighted SIGNAL scores showed that Blue Gum Creek was in poor stream health, however some pollution sensitive taxa (Leptophlebiidae) were sampled which shows that despite the poor overall health it does provide suitable habitat for this sensitive family.

Blue Gum Creek continues to exhibit degradation and poor stream health. This is indicated by pollution tolerant macroinvertebrate communities present, presence of weeds, and filamentous algae. However algae coverage had reduced in the upstream site since Autumn 2019 survey and showed visual improvement in aquatic habitat. Ongoing issues with siltation and erosion appear to be continuing to impact at the downstream site. As discussed in previous reports, these disturbances appear unrelated to the mine's previous operations, but rather the combination of past and ongoing land use management issues in the broader catchment and low flows.

Table of Contents

Exe	cutive s	ummary	. i				
Tab	e of Co	ntents	ii				
Glos	sary an	d abbreviations	4				
1.	Introduction						
	1.1	Background	5				
	1.2	Catchment characteristics	5				
	1.3	Aim	5				
2.	Metho	ds	7				
	2.1	Location of monitoring sites	7				
	2.2	Field methods	7				
	2.3	Data analysis 1	10				
3.	Result	s 1	2				
	3.1	Weather conditions 1	2				
	3.2	Aquatic habitat/condition 1	2				
	3.3	Water quality 1	6				
	3.4	Macroinvertebrates 1	6				
	3.5	Other fauna 1	17				
4.	Discus	sion1	8				
	4.1	RCE scores 1	8				
	4.2	SIGNALs scores and macroinvertebrate communities 1	8				
	4.3	Water quality 1	8				
5.	Conclu	ision and recommendations1	9				
	5.1	Conclusions 1	9				
6.	Refere	nces 2	20				
Ann	ex 1. M	acroinvertebrate survey results2	!2				

List of Figures

Figure 1: Study area	6
Figure 2: Location of monitoring sites	8
Figure 3: Total daily rainfall at Abel rain gauge (January –September 2019). Source: Donaldson Coal	12
Figure 4. SIGNAL2 Bi-plot	17

List of Plates

Plate 1: Sampling method	9
Plate 2: Blue Gum Creek at Stockrington	14
Plate 3: Blue Gum Creek at Dog Hole Bridge	15

List of Tables

Table 1: Location of sampling sites	. 7
Table 2: SIGNAL Grade and the Level of Pollution Tolerance 1	10
Table 3: Guide to interpreting the SIGNAL2 scores	11
Table 4: RCE inventory scores (2015-2019)1	13
Table 5: Blue Gum Creek at Stockrington habitat results 1	14
Table 6: Blue Gum Creek at Dog Hole Bridge habitat results 1	15
Table 7: Water quality results	16
Table 8. Macroinvertebrate SIGNAL2 results 1	16
Table 9. Weighted SIGNAL2 scores (2015, 2018 and 2019) 1	17

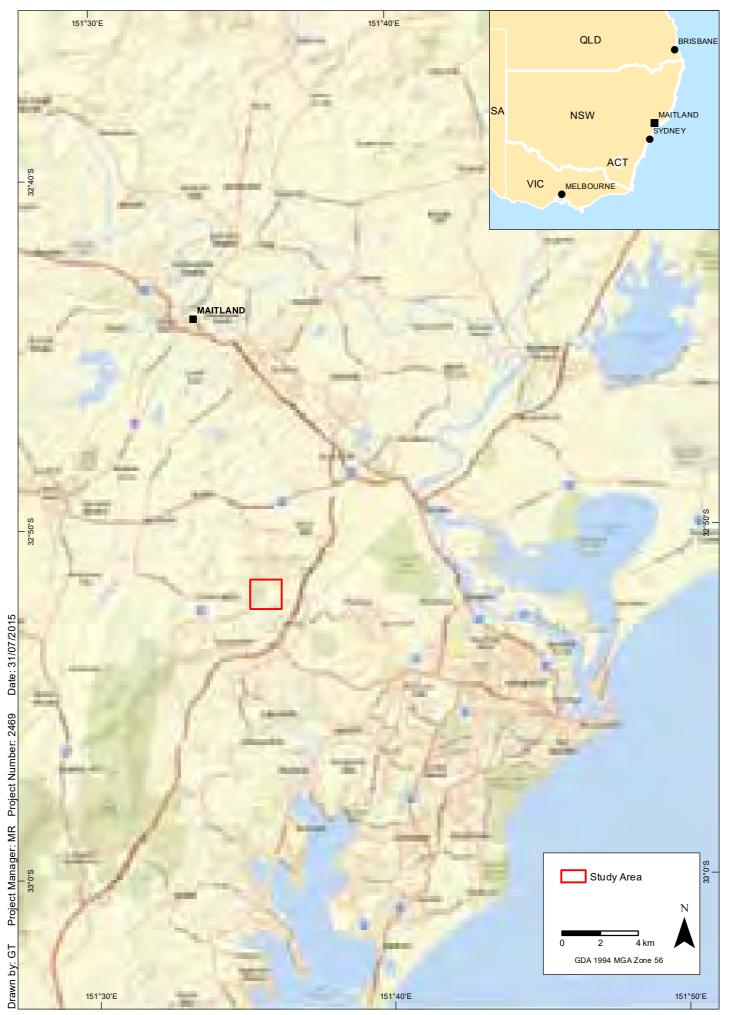
Glossary and abbreviations

ANZECC	Australian and New Zealand Environment and Conservation Council
Anthropogenic	Caused or produced by humans
Aquatic macroinvertebrates	Animals that have no backbone, are visible with the naked eye and spend all or part of their life in water
AUSRIVAS	Australian Rivers Assessment System
СМА	Catchment Management Area
Drainage	Natural or artificial means for the interception and removal of surface or subsurface water.
Ecology	The study of the relationship between living things and the environment.
Ephemeral	Existing for a short amount of time.
Habitat	The place where a species, population or ecological community lives (whether permanently, periodically or occasionally).
LMP	Landscape Management Plan
RCE inventory	Riparian and Channel and Environment inventory assessment.
Riparian	Relating to the banks of a natural waterway.
SIGNAL	Stream Invertebrate Grade Number Average Level. SIGNAL2 scores are indicative only and pollution does not refer to just anthropogenic sources. Environmental stress may result in poor water quality occurring naturally in waterways such as those conditions found in ephemeral streams. Low family richness and the occurrence of pollution tolerant invertebrates can give a low SIGNAL score even though they are a natural condition
Stress	Response to a stressor such as an environmental condition or a stimulus.

1. Introduction

1.1 Background

The Tasman Coal mine ceased production in July 2013 and the site has subsequently been undergoing rehabilitation since September 2014. Monitoring of stream health of Blue Gum Creek is conducted biannually as part of the environmental monitoring requirements for the Tasman Coal mine. The aquatic monitoring program includes monitoring macroinvertebrates, water quality and catchment-riparian condition. These measures are used to evaluate the effectiveness of water quality protection measures established during development of the area for mining, and success of catchment rehabilitation.


1.2 Catchment characteristics

Blue Gum Creek originates at Mount Sugarloaf, approximately two kilometres north-west of West Wallsend. It drains a catchment area of approximately 16 square kilometres upstream of Pambalong Nature Reserve. The catchment upstream of the monitoring sites is predominantly bushland, with areas that include the rehabilitated mine site and the Hunter Expressway corridor. Stockrington Quarry is also located inside the catchment to the north of Blue Gum Creek. The lower catchment includes rural land use with grazing, which occurs adjacent to the downstream monitoring site (Figure 1).

1.3 Aim

The aim of the aquatic monitoring program is to assess river health of Blue Gum Creek to determine if water quality protection measures and catchment rehabilitation are having a positive influence on the environment. The monitoring includes:

- Assessment of stream condition using Riparian and Channel and Environment (RCE) inventory assessment.
- Assessment of habitat condition using the AUSRIVAS proforma.
- Assessment of water quality against default ANZECC trigger values.
- Assessment of the macroinvertebrate community condition using Stream Invertebrate Grade Number Average Level (SIGNAL).

Regional location of study area Tasman Coal - Aquatic Monitoring

2. Methods

2.1 Location of monitoring sites

Two sampling sites are required to be sampled on Blue Gum Creek (Figure 2; Table 1). These are located downstream of the Tasman Coal rehabilitation area.

Table 1: Location of sampling sites

Site acronym	Stream	Location	Easting	Northing
BGC SR	Blue Gum Creek	Blue Gum Creek upstream of Stockrington Road	368006	6362135
BGC DHB	Blue Gum Creek	Blue Gum Creek downstream at Dog Hole Bridge	369275	6363473

2.2 Field methods

Field surveys for this monitoring event were undertaken on 16 September 2019. The field methods were consistent with standardised techniques in field sampling as prescribed by AUSRIVAS (Turak et al. 2000). The AUSRIVAS methods of sampling both pools and riffles have been modified for this project, as no suitable in-stream riffle features are present.

2.2.1 Aquatic habitat and stream condition

Riparian, Channel and Environment inventory assessment (RCE)

The RCE Inventory (Chessman *et al.* 1997) provides a comparative measure of stream condition by assessing both the stream and its riparian environment in terms of habitat diversity, habitat condition and the degree of human-induced disturbance. Thirteen categories each receive a score between one and four based on their condition, resulting in an accumulated score of between 13 and 52. The maximum score (52) indicates a stream with little or no obvious physical disruption and the lowest score (13) indicates a heavily channelled stream without any riparian vegetation. This assessment provides an assessment of the general condition of the stream and must be interpreted accordingly.

Habitat description

A description of aquatic habitat was also produced using the AUSRIVAS proforma. The survey is a rapid visual assessment used to describe the habitat based on the following parameters:

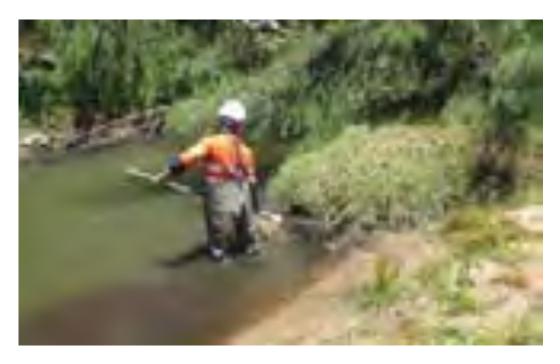
- Geomorphology
- Channel diversity
- Bank stability
- Riparian vegetation and adjacent land use
- Water quality
- Macrophytes
- Local impacts and land use practices.

Location of study sites Tasman Coal - Aquatic Monitoring

FIGURE 2

Imagery: (c) Nearmap (May 2015)

2.2.2 Water quality


Surface water quality was measured *in situ* using a Yeokal 611 water quality probe at each site. The following variables were recorded:

- Temperature (°C)
- Conductivity (μS/cm)
- pH
- Dissolved oxygen (DO)(% saturation and mg/L)
- Turbidity (NTU).

Alkalinity (mg CaCO₃/L) was measured with a standard titration kit. Water quality data were compared with the ANZECC (2000) default guideline values to physical and chemical stressors for protection of slightly upland aquatic ecosystems in South-Eastern Australia.

2.2.3 Macroinvertebrates

Samples of macroinvertebrates were collected from pool edges for a length of 10 metres, either as a continuous line or in disconnected segments. Sampling in segments was often undertaken to ensure the sampling of sub-habitats such as macrophyte beds, bank overhangs, submerged branches and root mats. Segmented sampling was also employed where pool length was short and it was logistically difficult to sample in a continuous line (e.g. in-stream logs). A 250 μ m dip net was drawn through the water with short sweeps towards the bank to dislodge benthic fauna while scraping submerged rocks and debris, sides of the stream bank and the bed substrate (Plate 1). Further sweeps in the water column targeted the suspended fauna.

Plate 1: Sampling method

Each sample was rinsed from the net onto a white sorting tray from which animals were picked using forceps, pipettes and or paint brushes. Each tray was picked for a minimum period of 40 minutes, after which they were picked at 10 minute intervals for either a total of one hour or until no new specimens had been found. Care was taken to collect cryptic and fast moving animals, in addition to those that were

conspicuous or slow. The animals collected at each site were placed into a labelled jar containing 70% ethanol.

Laboratory methods-invertebrate identification

Macroinvertebrate samples were identified to family level with the exception of Oligochaeta (to class), Polychaeta (to class), Ostracoda (to subclass), Nematoda (to phylum), Nemertea (to phylum), Acarina (to order) and Chironomidae (to subfamily). Keys used to identify taxa included:

- Centre for Freshwater Ecosystems (n.d.) Identification Key and Ecology of Australian Freshwater Invertebrates. http://www.mdfrc.org.au/bugguide/.
- Dean, J., Rosalind, M., St Clair, M., and Cartwright, D. (2004) Identification keys to Australian families and genera of caddis-fly larvae (Trichoptera) Cooperative Research Centre for Freshwater Ecology.
- Gooderham, J. and Tsyrlin, E. (2002) The Waterbug Book: A guide to the Freshwater Macroinvertebrates of Temperate Australia, CSIRO Publishing.
- Hawking and Theischinger (1999) A guide to the identification of larvae of Australian families and to the identification of ecology of larvae from NSW.
- Madden, C. (2010) Key to genera of Australian Chironomidae. Museum Victoria Science Reports 12, 1-31.
- Madden, C. (2011) Draft identification key to families of Diptera larvae of Australian inland waters La Trobe University.
- Smith, B. (1996) Identification keys to the families and genera of bivalve and gastropod molluscs found in Australian inland waters Murray Darling Freshwater Research Centre.

2.3 Data analysis

2.3.1 SIGNAL: (Stream Invertebrate Grade Number Average Level) scores

The revised SIGNAL2 biotic index developed by Chessman (2003a and 2003b) was used to determine the "environmental quality" of sites. This method assigns grade numbers to each macroinvertebrate family or taxa found, based largely on their response to a range of environmental conditions (Table 2). The sum of all grade numbers for that habitat is then divided by the total number of families recorded in each habitat to calculate the SIGNAL2 index. A weighted SIGNAL2 score was also calculated (see Chessman 2003b). The SIGNAL2 index therefore uses the average sensitivity of macroinvertebrate families to present a snapshot of biotic integrity at a site.

Table 3 provides a broad guide for interpreting the health of the site according to the SIGNAL2 score of the site.

SIGNAL Grade	Pollution Tolerance
10-8	Indicates a greater sensitivity to pollution
7-5	Indicates a sensitivity to pollution
4-3	Indicates a tolerance to pollution
2-1	Indicates a greater tolerance to pollution

Table 2: SIGNAL Grade and the Level of Pollution Tolerance

Table 3: Guide to interpreting the SIGNAL2 scores

SIGNAL2 Score	Habitat quality
Greater than 6	Healthy habitat
Between 5 and 6	Mild pollution
Between 4 and 5	Moderate pollution
Less than 4	Severe pollution

(Source: Gooderham and Tsyrlin 2002)

*Note that SIGNAL2 scores are indicative only and that pollution does not refer to just anthropogenic pollution. Environmental stress may result in poor water quality occurring naturally in waterways. Low family richness and the occurrence of pollution tolerant invertebrates can give a low SIGNAL score even when they are in natural condition.

2.3.2 Opportunistic observations

Opportunistic visual observations of aquatic fauna were recorded during the surveys at each site.

3. Results

3.1 Weather conditions

Surveys were conducted on 16 September 2019. The weather was mild (approximately 24°C) with light to moderate winds. There was low-moderate rain fall in the month prior to sampling (maximum daily rainfall was 44 mm on 30 August 2019; Figure 3). There were low flows within the study area at the time of sampling.

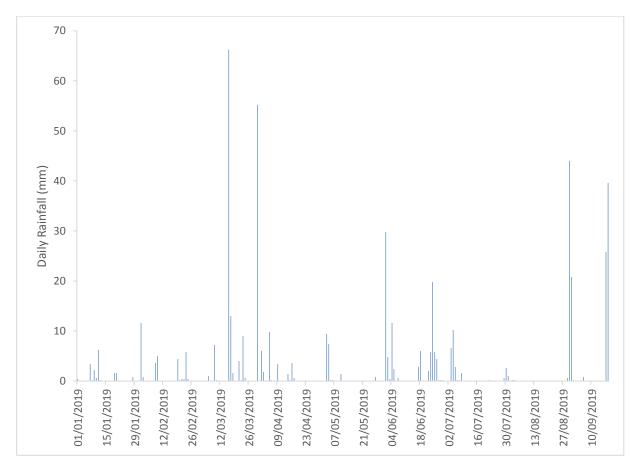


Figure 3: Total daily rainfall at Abel rain gauge (January –September 2019). Source: Donaldson Coal

3.2 Aquatic habitat/condition

The aquatic habitat of the study area comprises pools with no riffles present. Water level was low during the survey. The sampling sites generally had moderate riparian and channel health (RCE 20-40) which is consistent with previous monitoring events. The upstream site (BGC SR) had a mixture of native and exotic vegetation, however the channel was stable and no erosion was present. There was a fine layer of sedimentation present on the creek banks (covering the rocks and vegetation) most likely fluvial deposition from recent rainfall events. The Blue Gum Creek downstream site (BGC DHB) had fine sand/silt substrate and showed some evidence of erosion and sedimentation. Duck Weed (*Spirodela* spp.) was present at the downstream site. Both sampling sites had slight algae growth with a notable reduction at the upstream site. Table 4 shows the RCE inventory scores of each sampling sites.

Table 4: RCE inventory scores (2015-2019)

Site	Autumn 2015	Spring 2015	Autumn 2016	Spring 2016	Autumn 2017	Spring 2017	Autumn 2018	Spring 2018	Autumn 2019	Spring 2019
BGC SR	33	36	39	40	38	-	39	38	38	40
BGC DHB	36	36	39	32	38	35	36	36	35	36

An RCE score greater than 40 indicates a stream considered to be in good condition with potential for higher biodiversity values. RCE Scores of 20-40 indicate a stream is in moderate condition and below 20 indicates that the stream is in very poor condition

3.2.1 Blue Gum Creek at Stockrington Road

The aquatic habitat at Blue Gum Creek at Stockrington Road (Plate 2) at the time of the spring 2019 monitoring surveys is detailed in Table 5.

Blue Gum Creek at Stockrington (Downstream)

Blue Gum Creek at Stockrington (Upstream)

Plate 2: Blue Gum Creek at Stockrington

Table 5: Blue Gum Creek at Stockrington habitat results

	Attribute	Blue Gum Creek at Stockrington
	Photograph	Plate 2
Riparian	RCE score	40
	Vegetation	Canopy vegetation included Blue Gum (<i>Eucalyptus saligna</i>), Cheese Tree (<i>Glochidion ferdinandi</i>), Coachwood (<i>Ceratopetalum apetalum</i>) and Sandpaper fig (<i>Ficus coronata</i>). The mid-storey was dominated by Lantana (<i>Lantana camara</i>), Tobacco Bush (<i>Solanum mauritianum</i>), Cheese Tree (<i>G. Ferdinandi</i>) and the groundcover by native and exotic grasses and herbs.
	Stream shading	Low
	Exotic vegetation	Lantana (L. camara), Crofton Weed (Ageratina adenophora), Tobacco bush (S. mauritianum)
Stream	Modal width (m)	2
characteristics	Substrate	Silt 70%/Boulder 20%/Sand 10%
	Flow/depth	No flow/<1m
	Macrophytes/algae	Slender knot weed (Persicaria decipiens), Cat tail Typha sp. / algae
	Water quality observations	Clearer than previous sampling in Autumn 2019. Some algal growth
Comments		Similar to previous sampling conditions; although water quality seems to have improved slightly with clearer water and less algae. Evidence of sedimentation on dry banks and vegetation. Less algal growth than Autumn 2019 survey.

3.2.2 Blue Gum Creek at Dog Hole Bridge

The aquatic habitat at Blue Gum Creek at Dog Hole Bridge (Plate 3) at the time of the spring 2019 monitoring surveys is detailed in Table 6.

Blue Gum Creek at Dog Hole Bridge (Downstream)

Blue Gum Creek at Dog Hole Bridge (Upstream)

Plate 3: Blue Gum Creek at Dog Hole Bridge

Table 6: Blue Gum Creek at Dog Hole Bridge habitat results

	Attribute	Blue Gum Creek at Dog Hole Bridge				
	Photograph	Plate 3				
Riparian	RCE score	36				
	Canopy vegetation included Blue Gum (<i>E. saligna</i>) and Lilly Pilly (<i>Syzygium smithii</i>) mid-storey was dominated by Lantana (<i>L. camara</i>), Cheese Tree (<i>G. ferdinandi</i>) and F (<i>Ligustrum sinense</i>) and the ground cover by native grasses, herbs, and Scurvy V (<i>Commelina cyanea</i>).					
	Stream shading	Moderate				
	Exotic vegetation	Lantana camara, Privet (Ligustrum sinense)				
Stream	Modal width (m)	2.5m				
characteristics	Substrate	Boulder 5%/ Cobble 20%/ Gravel 10%/ Silt 55%/ Sand 10%				
	Flow/depth	No flow/<1m				
	Macrophytes/algae	Slender Knot weed (P. decipiens), Duck Weed (Spirodela spp.) Some algae.				
	Water quality observations	Low flow, some algae.				
Comments		Similar to previous sampling / sedimentation from uprooted tree(s).				

3.3 Water quality

Water quality results (Table 7), showed that the temperature was similar between both upstream (BGC SR) and downstream (BGC DHB) sites (14.43°C and 13.15 °C respectively). Conductivity was similar at both sites (619 μ S/cm and 518 μ /cm); exceeding the default ANZECC guideline of 350 μ S/cm but below the EPL limit of 2000 μ S/cm. Turbidity measurements were low at the upstream site, 7 NTU (BGC SR) and higher at the downstream site, 43.4 NTU (BGC DHB), however neither exceeding ANZECC guidelines. Dissolved Oxygen (DO) was low; 34.8% saturation upstream and 18.3% saturation downstream which is below the ANZECC guideline of 80-110%. The pH readings of 7.5 and 7.0 were both within ANZECC guidelines. Alkalinity was 120 mg CaCO₃/L upstream and 100 CaCO₃/L downstream indicating that the stream has a good buffering capacity to changes in pH.

Table 7: Water quality results

Site acronym	Temp (C°)	Conductivity (µS/cm)	Turbidity (NTU)	Dissolved Oxygen (% sat)	рН*	Alkalinity (mg CaCO₃/L)
BGC SR	14.43	619	7.0	34.8	7.5	120
BGC DHB	13.15	518	43.4	18.3	7.0	100

ANZECC trigger values for upland streams: Electrical conductivity (30-350 μS/cm), Turbidity (6-50 NTU), pH (6.5-8), Dissolved Oxygen (80-110%). Text in bold indicate those variables that exceed the default trigger values.

3.4 Macroinvertebrates

SIGNAL2 results for the two sampled sites are provided in Table 8. Raw data is provided in Annex 1.

Table 8. Macroinvertebrate SIGNAL2 results

Site acronym	Number of Taxa	SIGNAL2 Score	SIGNAL2 weighted Score
BGC SR	12	3.41	4.05
BGC DHB	21	3.76	4.11

The sampling sites had a low - moderate diversity of macroinvertebrate families (12-21) (Table 8). SIGNAL2 and weighted SIGNAL 2 scores indicated that the sites had moderate pollution (~4 SIGNAL), with a dominance of pollution tolerant macroinvertebrate families. However, pollution sensitive mayflies Leptophlebiidae (SIGNAL 8) were recorded at both sites and caddis flies Leptoceridae (SIGNAL 6) were recorded only at the Dog Hole Bridge site (Downstream). Other sensitive species include mites (Acarina) (SIGNAL 6) at both sites and Scirtidae (SIGNAL 6) at Blue Gum Creek downstream site. There has been a slight decrease in SIGNAL 2 score since sampling in Autumn 2019 (Table 9). The SIGNAL bi-plot (Figure 4) indicates that the upstream sites are potentially suffering from urban, industrial or agricultural pollution and downstream high nutrients or salinity.

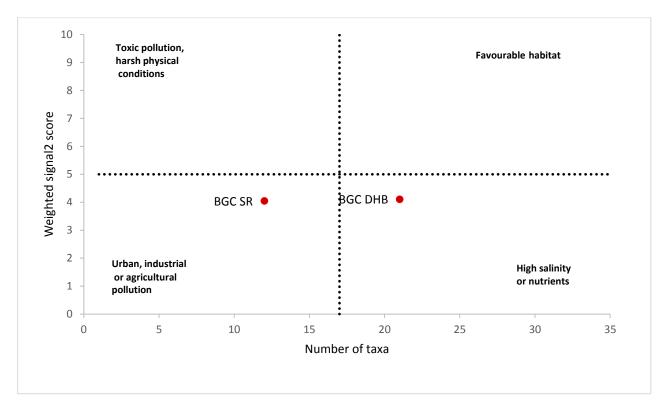


Figure 4. SIGNAL2 Bi-plot

Site	SIGNAL2 weighted Autumn 2015	SIGNAL2 weighted Spring 2015	SIGNAL2 Weighted Autumn 2016	SIOGNAL2 Weighted Spring 2016	SIOGNAL2 Weighted Autumn 2017	SIGNAL2 weighted Spring 2017	SIGNAL2 weighted Autumn 2018	SIGNAL2 weighted Spring 2018	SIGNAL2 weighted Autumn 2019	SIGNAL2 weighted Spring 2019
BGCSR	4.45	3.29	3.75	3.98	3.41	-	3.96	3.18	4.28	4.05
BGCDHB	4.1	3.17	3.76	2.73	2.94	3.43	3.81	3.54	4.44	4.11

3.5 Other fauna

No other aquatic fauna were observed at the time of the Spring 2019 sampling.

4. Discussion

4.1 RCE scores

RCE Inventory scores were similar to previous monitoring results with scores ranging 20-40, indicating moderate condition. These scores are similar to those calculated in Autumn 2019 (Table 4) and are within the range of scores (33-40) recorded since commencement of the monitoring program (Tuft 2013).

4.2 SIGNALs scores and macroinvertebrate communities

The low SIGNAL scores recorded (~4) are consistent with previous monitoring and potentially the result of the creek being highly disturbed. Disturbances include presence of weeds, and visible erosion and siltation at the downstream site. There was filamentous algae present at both sites, potentially indicating high nutrients, however this algal growth was lower than previous survey in Autumn 2019. The low flows are also likely contributing to a reduction in the quality and quantity of pool habitat for aquatic species, as a result of the extended dry periods and lack of consistent rain fall. However recent flow appear to have improved aquatic habitat slightly at the upstream site.

Despite some poor SIGNAL scores at both sites, there remains potential for improvements in stream health with the presence of sensitive mayfly taxa Leptophlebiidae (SIGNAL 8) (Annex 1), indicating that Blue Gum Creek can support some sensitive taxa. The results are consistent with conclusions from previous monitoring reports that found both sites show a predominance of pollution tolerant families and few sensitive taxa (Tuft 2014; Niche 2015 a, b; Niche 2016 a, b; Niche 2017 a, b, Niche 2018a, b, Niche 2019a).

4.3 Water quality

This report identified elevated electrical conductivity (EC) within Blue Gum Creek. Although relatively high and exceeding ANZECC default guidelines, these levels are consistent with recent surveys (Niche 2017a, b; Niche 2018a, b; Niche 2019a) and results prior to the commencement of the mine operations (Newcastle Coal 2002). High alkalinity in Blue Gum Creek indicates that the waterway has a high buffering capacity; providing it with a high resistance to changes in pH. Despite exceedances in EC and low dissolved oxygen, these results are likely within the pre–mine variability of Blue Gum Creek.

5. Conclusion and recommendations

5.1 Conclusions

Blue Gum Creek continues to exhibit aquatic monitoring results that indicate degradation and poor stream health. This is indicated by the dominance of pollution tolerant macroinvertebrate communities present, presence of weeds and filamentous algae. The upstream site aquatic habitat however appeared to have improved since survey in Autumn 2019, a likely response to recent rainfall and river flow. Ongoing issues with siltation and erosion appear to be continuing to impact on this waterway downstream. As discussed in previous reports, these disturbances appear unrelated to the Tasman Coal mine's previous operations, but rather past and ongoing land use management issues exacerbated by low flows.

6. References

- Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) (2000). National water quality management strategy and assessment guidelines: Australian and New Zealand guidelines for fresh and marine water quality ANZECC/ARMCANZ.
- Chessman B. C., Growns J.E and Kotlash A.R. (1997) Objective derivation of macroinvertebrate family sensitivity grade numbers for the SIGNAL biotic index: allocation to the Hunter River system, NewSouth Wales. *Marine and Freshwater Research.* **48**, 159-172.
- Chessman B. (2003a) New sensitivity grades for Australian macroinvertebrates. Marine and Freshwater Research **54**, 95-1032
- Chessman B. (2003b) SIGNAL 2 A Scoring System for Macro-invertebrate ('Water Bugs') in Australian Rivers, Monitoring River Heath Initiative Technical Report no 31, Commonwealth of Australia, Canberra DWR, 199
- Dean, J., Rosalind, M., St Clair, M., and Cartwright, D. (2004) Identification keys to Australian families and genera of caddis-fly larvae (Trichoptera) Cooperative Research Centre for Freshwater Ecology.
- Gooderham, J. and Tsyrlin, E. (2002). The Waterbug Book: A guide to the Freshwater Macroinvertebrates of Temperate Australia, CSIRO Publishing.
- Hawking and Theischinger (1999) A guide to the identification of larvae of Australian families and to the identification of ecology of larvae from NSW.
- Niche Environment and Heritage (2015a). Tasman Coal Aquatic Monitoring Report Autumn 2015. Prepared for Tasman Coal.
- Niche Environment and Heritage (2015b). Tasman Coal Aquatic Monitoring Report Spring 2015. Prepared for Tasman Coal.
- Niche Environment and Heritage (2016a). Tasman Coal Aquatic Monitoring Report Autumn 2016. Prepared for Tasman Coal.
- Niche Environment and Heritage (2016b). Tasman Coal Aquatic Monitoring Report Spring 2016. Prepared for Tasman Coal.
- Niche Environment and Heritage (2017a). Tasman Coal Aquatic Monitoring Report Autumn 2017. Prepared for Tasman Coal.
- Niche Environment and Heritage (2017b). Tasman Coal Aquatic Monitoring Report Spring 2017. Prepared for Tasman Coal.
- Niche Environment and Heritage (2018a). Tasman Coal Aquatic Monitoring Report Autumn 2018. Prepared for Tasman Coal.
- Niche Environment and Heritage (2018b). Tasman Coal Aquatic Monitoring Report Spring 2018. Prepared for Tasman Coal.

- Niche Environment and Heritage (2019a). Tasman Coal Aquatic Monitoring Report Autumn 2019. Prepared for Tasman Coal.
- Madden, C. (2010) Key to genera of Australian Chironomidae. Museum Victoria Science Reports 12, 1-31.
- Madden, C. (2011) Draft identification key to families of Diptera larvae of Australian inland waters La Trobe University.
- Robyn Tuft and Associates (2014). Tasman Coal Mine Macroinvertebrate Sampling Program Pre-mining Survey – November 2014
- Smith, B. (1996) Identification keys to the families and genera of bivalve and gastropod molluscs found in Australian inland waters Murray Darling Freshwater Research Centre.
- Turak E., Waddell N., and Johnstone G. (2000) NSW AUSRIVAS Sampling and Processing Manual. Department of Environment and Conservation.

Websites

- http://ausrivas.ewater.com.au/
- http://www.mdfrc.org.au/bugguide/

http://www.bom.gov.au/

Annex 1. Macroinvertebrate survey results

Stockrington Road	
Stockington Kodu	Dog Hole bridge
2	
	42
2	1
1	3
6	1
3	2
	3
	1
	17
	2
	1
	1
	2
	1
1	4
13	116
5	2
1	
	1
2	
1	
	5
	2 1 6 3 1 1 1 13 5 1 2

	Blue Gum Creek		
Site	Stockrington Road	Dog Hole bridge	
Micronectidae – formerly Corixidae	2	1	
Sphaeriidae		3	
Glossiphoniidae		1	

Los Plant B.

State Revenues and Springer AT NOT 1978 With Light N. Margaret

string insight Street, 1 & prove 195 Alex 7497 March Managements WORLD' Manageria

TRU MALE STREET, MILLION The loss have been \$8.81 mild.) \$---milding

ALC: NAME

Change of the Ethnormal Gampal Second Second Station of the local division of the local d Part Management Service and

(and the second

1.4

Contract, and Kinetinettike And a the second second second second second second second second second second second second second second second se Chartly of the second Constitute of a content of million Research in or Destroya

Burnings, Income

Reading of Concession, Name and the second second contracting, entractively, termination and and

Economical Interspectary, Add Approach.

Name and Address of the Owner, or other Realization of a grant communithe same state of the Annual Annual States of the second second

and the second s

Walk sound an appropriate that have been Summer Westmann, 1995 distances literative for insurement while The statement of the second other printing and

Appendix 5 Subsidence Management Plan End of Year Report 2019

(No. of pages including blank pages = 24)

This page has intentionally been left blank

Abel Mine Subsidence Management Plan End of Year Report 2019

31 March 2020

Approved by

William Farnworth Operations Manager Donaldson Coal

TABLE OF CONTENTS

LES	2
INTRODUCTION	3
PURPOSE AND SCOPE	3
SMP PILLAR EXTRACTION DURING REPORTING PERIOD	3
SUBSIDENCE AND ENVIRONMENTAL PROGRAMS AND MANAGEMENT PLANS	5
SUMMARY OF SUBSIDENCE IMPACTS	6
Impacts on General Surface and Roads / Tracks	6
Impacts on Hunter Water Corporation Waterline	6
Impacts on Ausgrid Powerlines	6
Impacts on TransGrid Transmission Towers	7
Impacts on Blackhill Road	7
Notification under SMP Approval Conditions	7
SUBSIDENCE SURVEY SUMMARY AND ANALYSIS	7
PHOTOGRAPHIC MONITORING AND VISUAL INSPECTION SUMMARY AND ANALYSIS	20
ENVIRONMENTAL MONITORING SUMMARY AND ANALYSIS	20
TRENDS IN MONITORING RESULTS	21
MANAGEMENT ACTIONS	22
LES	
	INTRODUCTION PURPOSE AND SCOPE SMP PILLAR EXTRACTION DURING REPORTING PERIOD SUBSIDENCE AND ENVIRONMENTAL PROGRAMS AND MANAGEMENT PLANS SUMMARY OF SUBSIDENCE IMPACTS Impacts on General Surface and Roads / Tracks Impacts on General Surface and Roads / Tracks Impacts on Hunter Water Corporation Waterline Impacts on Hunter Water Corporation Waterline Impacts on Ausgrid Powerlines Impacts on TransGrid Transmission Towers Impacts on Blackhill Road Notification under SMP Approval Conditions SUBSIDENCE SURVEY SUMMARY AND ANALYSIS PHOTOGRAPHIC MONITORING AND VISUAL INSPECTION SUMMARY AND ANALYSIS TRENDS IN MONITORING RESULTS

Table 1 Approval and Extraction Dates	.4
Table 2 Approved Management Plans	
Table 3 Subsidence Monitoring Survey Dates	.7
Table 4 Comparison of Monitoring Results and SMP Predictions	
Table 5 Summary of Groundwater Quality Monitoring Results	20
Table 6 Summary of Surface Water Quality Monitoring Results	21

ATTACHMENTS

Attachment 1 – Plan of Abel Mine Workings

1 INTRODUCTION

This Subsidence Management Plan End of Year Report fulfils the requirements of Condition 19 of the Abel Subsidence Management Plan (SMP) Approval Conditions for Area 1 and Condition 18 of the Approval Conditions for Area 2, 3 and 4.

A summary of monitoring results for the period January to December 2019 is presented in this report. Mining activities were suspended on 28th April 2016 due to the Mine being placed on Care and Maintenance. Therefore no pillar extraction was undertaken during this reporting period.

Subsidence surveys, photographic monitoring and visual inspections were conducted over all pillar extraction areas in accordance with the approved Subsidence Monitoring Programs, with environmental monitoring conducted in accordance with the approved Environmental Management Plan.

2 PURPOSE AND SCOPE

The purpose of this document is to comply with the relevant approval condition which states:

"The Leaseholder shall prepare an end of year report. This report shall be submitted to the Director Environmental Sustainability, within the first three months of the subsequent year. The end of year report must:

- (a) include a summary of the subsidence and environmental results for the year;
- (b) include an analysis of these monitoring results against the relevant;
 - impact assessment criteria;
 - monitoring results from previous years; and
 - predictions in the SMP.
- (c) identify any trends in the monitoring results over the life of the activity; and
- (d) describe what actions were taken to ensure adequate management of any potential subsidence impacts due to mining."

3 SMP PILLAR EXTRACTION DURING REPORTING PERIOD

Area 1

SMP Approval was granted for Abel Area 1 (Panels 1 to 14 inclusive plus East Mains) on 27 May 2010. Pillar extraction has continued in East Mains during 2014. A Variation application for SMP Area 1 was submitted on the 8 August 2011 and was approved on the 29 September 2011. This variation was related to Panels 9 - 13 being removed from the SMP approved area. No extraction took place in this area during this period.

Area 2

SMP Approval was granted for Abel Area 2 (Panels 14 - 26) on 7 December 2011. A variation was submitted on 19 December 2011 relating to the removal of Panel 14 and the shortening of Panels 15 - 19. The second variation submitted, relating to partial pillar extraction Panel 20 - 22, was approved on the 3 September 2012. A third variation submitted, relating to Panels 19 & 19A, was approved on the 21 December 2012. A fourth variation submitted relating to Panel 22, was approved on the 16 April 2013. No extraction took place in this area during this period.

Area 3

SMP Approval was granted for Abel Area 3 (Panels 23 – 26 and part East Install Headings) on 16 July 2013. A variation was submitted to increase the width to part of Panel 24 and was approved on the 23 December 2013. No extraction took place in this area during this period.

Area 4

SMP/EP Approval was granted for Abel Area 4 (Panels 27 – 35) on the 19th September 2014. A variation was submitted to remove the Subsidence Control Zones around the protected farm dams and was approved on the 11th November 2014. The second variation submitted, relating to Panel 28 panel layout, was approved on 1 April 2015. The third variation submitted, relating to modifying the layout of Panels 29, 31, 33 and 35 which is now to be extracted in the Lower Donaldson Seam, was approved on 13 August 2015. The fourth variation submitted, relating to the removal of the Subsidence Control Zones beneath a principal residence. No extraction took place in this area during this period.

Table 1 below provides approval, plus mining commencement and completion dates for the Panels extracted since approval was granted.

Panel	Approval Date	Extraction Commenced	Extraction Completed
Panel 1	27 May 2010	12 July 2010	22 December 2010
Panel 2	27 May 2010	17 September 2010	12 November 2010
Panel 3	27 May 2010	7 January 2011	19 April 2011
Panel 4	27 May 2010	14 March 2011	20 July 2011
Panel 5	27 May 2010	30 May 2011	24 September 2011
Panel 6	27 May 2010	22 September 2011	2 February 2012
Panel 7	27 May 2010	19 November 2011	31 May 2012
Panel 8	7 December 2011	31 March 2012	17 July 2012
Panel 15	7 December 2011	20 February 2012	26 March 2012
Panel 20	3 September 2012	12 September 2012	3 December 2012
Panel 21	3 September 2012	8 November 2012	18 April 2013
East Mains	27 May 2010	18 July 2012	5 July 2014
East Install Headings	7 December 2011	4 December 2012	17 September 2014
Tailgate Headings	7 December 2011	5 June 2012	10 September 2012
Panel 19A	21 December 2012	20 January 2013	25 May 2013
Panel 19	21 December 2012	25 May 2013	7 August 2013
Panel 22	16 April 2013	19 April 2013	19 July 2013
Panel 23	16 July 2013	22 July 2013	10 March 2014
Panel 24	16 July 2013	16 September 2013	10 July 2014
Panel 25	16 July 2013	11 May 2014	8 May 2015
Panel 26	16 July 2013	11 August 2014	17 June 2015
Panel 27	19 September 2014	30 September 2014	12 August 2015
Panel 28	19 September 2014	11 May 2015	3 February 2016
Panel 30	19 September 2014	22 June 2015	28 April 2016
Panel 31	19 September 2014	25 February 2016	28 April 2016

Table 1 – Approval and Extraction Dates

4 SUBSIDENCE AND ENVIRONMENTAL PROGRAMS AND MANAGEMENT PLANS

Subsidence Monitoring Programs consisting of a combination of subsidence surveys, visual inspections and photographic monitoring, have been developed in consultation with and approved by the Principal Subsidence Engineer, DPE for all Panels extracted to date. All required subsidence monitoring lines have been installed and subsidence surveys completed in accordance with the agreed Subsidence Monitoring Programs.

Management Plans have been prepared for the following infrastructure outlined in **Table 2** and have been approved by the Director of Mine Safety Operations.

Table 2 – Approved Management Plans

Infrastructure Owners	Management Plans	Approved
	Ausgrid Powerline Management Plan SMP Area 2 – Tailgate Headings	21 June 2012
	Ausgrid Powerline Management Plan SMP Area 2 - Panels 20 - 22	2 November 2012
Ausgrid	Ausgrid Powerline Management Plan SMP Area 1 – East Mains	12 July 2013
	Ausgrid Powerline Management Plan SMP Area 3	17 July 2013
	Ausgrid Powerline Management Plan EP / SMP Area 4	1 October 2014
	Telstra Corporation Management Plan SMP Area 2 (Panels 21 & 22)	21 December 2012
	Telstra Corporation Management Plan SMP Area 3 (Panels 23 & 24)	17 July 2013
Telstra	Telstra Corporation Management Plan SMP Area 3 Optic Fibre (Panels 23 & 24)	6 December 2013
	Telstra Corporation Management Plan SMP Area 3 (Panels 25)	11 April 2014
	Telstra Corporation Management Plan SMP Area 3 (Panels 26)	3 September 2014
Telstra	Telstra Corporation Management Plan EP / SMP Area 4 (Panels 27, 28, 29)	1 October 2014

Infrastructure Owners	Management Plans	Approved
TransGrid	TransGrid Towers Management Plan SMP Area 1	22 March 2012
	TransGrid Towers 16 J Management Plan SMP Area 2	16 January 2013
	Blackhill Road and Taylors Road Management Plan SMP Area 2	7 December 2012
Cessnock City Council	Blackhill Road Management Plan SMP Area 3	11 September 2013
	Public Roads Management Plan	23 December 2014
	Hunter Water Corporation Water Pipeline Management Plan SMP Area 2	21 June 2012
Hunter Water	Hunter Water Corporation Water Pipeline Management Plan SMP Area 1 – East Mains	12 December 2012

5 SUMMARY OF SUBSIDENCE IMPACTS

Visual inspections and photographic monitoring of various surface features were conducted throughout the year.

No surveys for subsidence, tilt and strain were undertaken during the year.

5.1 Impacts on General Surface and Roads / Tracks

Surface cracking had occurred generally as predicted on the surface above Panels 28, 30 & 31 in the both the cleared and vegetated areas, private access tracks, and sealed private access road, and sealed local government road.

Remedial works have been carried out in consultation and agreement with the landholder s and infrastructure owners.

5.2 Impacts on Hunter Water Corporation Waterline

No further impacts observed. Impacts were within predictions and infrastructure remained in a safe and serviceable condition.

5.3 Impacts on Ausgrid Powerlines

No further impacts observed. Impacts were within predictions and infrastructure remained in a safe and serviceable condition.

5.4 Impacts on TransGrid Transmission Towers

No further impacts observed. Impacts were within predictions and infrastructure remained in a safe and serviceable condition.

5.5 Impacts on Blackhill Road

No further impacts observed. Impacts were within predictions and infrastructure remained in a safe and serviceable condition.

5.6 Notification under SMP Approval Conditions

There have been no observed and/or reported subsidence impacts, incidents, service difficulties, community complaints, or any other relevant information, that would require notification under the approval conditions.

6 SUBSIDENCE SURVEY SUMMARY AND ANALYSIS

A record of all completed subsidence surveys is shown in Table 3.

A summary of subsidence, strain and tilt results are detailed in **Table 4** with comparison to the SMP predictions.

All required subsidence monitoring lines have been installed and all pre-mining subsidence surveys completed in accordance with the agreed Subsidence Monitoring Programs.

Table 3 – Subsidence Monitoring Survey Dates

Survey / Monitoring Line	Survey / Monitoring Description	Pre – Mining Survey	Survey / Inspection / Monitoring Dates	Post – Mining
Panel 1	Subsidence survey	Installation and pre-mining survey 7/07/2010	Weekly Surveys	11/02/2011 24/06/2011 1/08/2012
Panel 2	Subsidence Survey			22/12/2010 21/06/2011 20/06/2012 9/10/2013
Panel 3	Subsidence survey	23/12/2010	Weekly Surveys	10/06/2011 25/10/2011 9/05/2012

Survey / Monitoring Line	Survey /	Pre – Mining	Survey /	Post – Mining
Line	Monitoring Description	Survey	Inspection / Monitoring Dates	
	Visual inspection		Weekly Surveys	
	Photographic monitoring	23/12/2010		
	Subsidence survey	4/03/2011	Weekly Surveys	24/08/2011
				9/05/2011
Panel 4				3/09/2013
	Visual inspection		Weekly Surveys	
	Photographic monitoring	4/03/2011		
	Subsidence survey	27/05/2011		4/11/2011
Panel 5				2/05/2012
				18/02/2013
				14/09/2013
	Visual inspection		Weekly Surveys	
	Photographic monitoring	27/05/2011		
	Subsidence survey	14/09/2011		1/05/2012
Panel 6				4/09/2013
	Visual inspection		Weekly Surveys	
	Photographic monitoring	14/09/2011		
Panel 7	Subsidence survey	8/02/2012		2/08/2012
				28/05/2013
				13/09/2013
	Visual inspection		Weekly Surveys	
	Photographic monitoring	8/02/2012		
	Subsidence survey	13/02/2012		31/10/2012
Panel 8				17/05/2013

Survey / Monitoring Line	Survey / Monitoring Description	Pre – Mining Survey	Survey / Inspection / Monitoring Dates	Post – Mining
				6/09/2013
	Viewel increation		Weekley Summers	0,00,2010
	Visual inspection		Weekly Surveys	
	Photographic monitoring	13/02/2012		
	Subsidence survey	9/02/2012		27/04/2012
Panel 15				14/01/2013
				17/05/2013
	Visual inspection		Weekly Surveys	
	Photographic monitoring	9/02/2012		
	Subsidence survey	29/08/2012		10/01/2013
Panel 20				8/01/2014
				9/07/2014
	Visual inspection		Weekly Surveys	
	Photographic monitoring	29/08/2012		
	Subsidence survey	1/05/2013		14/09/2013
Panel 19				9/07/2014
	Visual inspection		Weekly Surveys	
	Photographic monitoring	1/05/2013		
	Subsidence survey	7/01/2013		4/06/2013
Panel 19A				14/09/2013
				5/11/2013
				7/01/2014
				7/07/2014
	Visual inspection		Weekly Surveys	
	Photographic monitoring	7/01/2013		

Survey / Monitoring	Survey /	Pre – Mining	Survey /	Post – Mining
Line	Monitoring Description	Survey	Inspection / Monitoring Dates	
	Subsidence survey	7/11/2012		16/05/2013
Panel 21				24/01/2014
				1/09/2014
	Visual inspection		Weekly Surveys	
	Photographic monitoring	7/11/2012		
	Subsidence survey	11/04/2013		30/07/2013
Panel 22				28/01/2014
				19/02/2015
	Visual inspection		Weekly Surveys	
	Photographic monitoring	11/04/2013		
	Subsidence survey	12/07/2013		8/04/2014
Panel 23				3/03/2015
				28/10/2015
	Visual inspection		Daily	
	Photographic monitoring	12/07/2013		
	Subsidence survey	19/02/2013		1/10/2014
Panel 24				3/03/2015
				22/10/2015
	Visual inspection		Daily	
	Photographic monitoring	19/02/2013		
	Subsidence survey	13/03/2014		3/12/2015
Panel 25				22/09/2015
	Visual inspection		Daily	
	Photographic monitoring	13/03/2014		

Survey / Monitoring	Survey /	Pre – Mining	Survey /	Post – Mining
Line	Monitoring Description	Survey	Inspection / Monitoring Dates	
	Subsidence survey	9/05/2014		6/08/2015
Panel 26				31/01/2017
	Visual inspection		Daily	
	Photographic monitoring	9/05/2014		
	Subsidence survey	16/10/2014		3/09/2015
Panel 27				31/01/2017
	Visual inspection		Daily	
	Photographic monitoring	22/09/2014		
	Subsidence survey	6/05/2014		20/12/2016
Panel 28				28/11/2017
	Visual inspection		3 times a week	
	Photographic monitoring	6/05/2014		
	Subsidence survey	30/11/2015		20/12/2016
Panel 30	Visual inspection		3 times a week	
	Photographic monitoring	30/11/2015		
	Subsidence survey	25/02/2016		5/12/2016
Panel 31	Visual inspection		3 times a week	
	Photographic monitoring	25/02/2016		
	Subsidence survey	14/11/2012		23/01/2013
East Install Headings				8/01/2014
	Visual inspection		Weekly Surveys	
	Photographic monitoring	14/11/2012		
	Subsidence survey	18/05/2012		19/12/2012

Survey / Monitoring Line	Survey / Monitoring Description	Pre – Mining Survey	Survey / Inspection / Monitoring Dates	Post – Mining
	Description		Monitoring Dates	
				13/06/2013
Tailgate Headings				14/01/2014
	Visual inspection		Weekly Surveys	
	Photographic monitoring	18/05/2012		
	Subsidence survey	9/07/2012		14/01/2013
East Mains Headings				30/05/2013
	Visual inspection		Weekly Surveys	
	Photographic monitoring	9/07/2012		
Blackhill Road	Subsidence survey	19/02/2013	As detailed in Management Plan	Same date as Panel surveys
	Visual inspection		Daily Surveys	
	Photographic monitoring	19/02/2013		
	Subsidence survey	7/07/2010 over P1 8/09/2010 over P2	Weekly Surveys	11/02/2011 & 24/06/2011 Over P1
Hunter Water		6,05,2010 0001 12		22/12/2010 & 21/06/2011 Over P2
Corporation Pipeline	Visual inspection		As detailed in Management Plan	
	Photographic monitoring			
Augustid Damas Dal	Subsidence survey	Same date as Panel surveys	Weekly Surveys	Same date as Panel surveys
Ausgrid Power Poles	Visual inspection		Weekly Surveys	
	Photographic monitoring	Same date as Panel surveys		
TransGrid	Subsidence survey	28/03/2012	As detailed in Management Plan	Same date as Panel surveys

Survey / Monitoring Line	Survey / Monitoring Description	Pre – Mining Survey	Survey / Inspection / Monitoring Dates	Post – Mining
Transmission Towers	Visual inspection		Daily Surveys	
	Photographic monitoring	28/03/2012		

Table 4 – Comparison of Subsidence Monitoring Results to SMP Predictions

PANEL 1 (W = 120 m; T = 2.35 - 3.0m)				
>75m Cover	Predicted	Final Measured	Comment	
Subsidence	0.95 - 1.25m	0.72 - 1.228m	Measured subsidence < predictions	
Tensile Strain	10 - 18 mm/m	4 - 12 mm/m (18 mm/m)	Measured tensile strains < predictions.	
Compressive Strain	13 - 23 mm/m	5 - 14 mm/m	Measured compressive strains < predictions	
Tilt	22 - 40 mm/m	22 - 46 mm/m	Measured tilts < predictions. One exceedance of 15%.	
Other		Cracked Joint to Hunter Water Pipeline Repaired 11kv Power Line	All necessary repairs have been carried out.	

PANEL 2 (W= 150m ; T = 2.5 m)			
< 75m Cover	Predicted	Final Measured	Comment
Subsidence	1.30 - 1.38m	0.977 - 1.041 m	Measured subsidence < predictions
Tensile Strain	18 - 31 mm/m	4 - 6 mm/m (5 mm/m)	Measured tensile strains < predictions
Compressive Strain	23 - 40 mm/m	4 - 7 mm/m	Measured compressive strains < predictions
Tilt	40 - 67 mm/m	22 - 32 mm/m	Measured tilts < predictions
Other			
>75m Cover	Predicted	Final Measured	Comment
Subsidence	1.20 - 1.32m	0.94 - 0.966m	Measured subsidence < predictions
Tensile Strain	13 - 20 mm/m	9 mm/m (15 mm/m)	Measured tensile strains < predictions
Compressive Strain	17 - 25 mm/m	6 mm/m	Measured compressive strains < predictions
Tilt	30 - 45 mm/m	27 mm/m	Measured tilts < predictions
Other			

PANEL 3 (W=160.5 m; T = 2.5 m)			
< 75m Cover	Predicted	Final Measured	Comment
Subsidence	1.33 - 1.34 m	1.003 m	Measured subsidence < predictions
Tensile Strain	19 - 31 mm/m	8 - 9 mm/m (26 mm/m)	Measured tensile strains < predictions
Compressive Strain	24 - 40 mm/m	5 - 7 mm/m	Measured compressive strains < predictions
Tilt	42 - 67 mm/m	28 - 39 mm/m	Measured tilts < predictions
Other			
>75m Cover	Predicted	Final Measured	Comment
Subsidence	1.26 - 1.27 m	0.884 - 0.982 m	Measured subsidence < predictions
Tensile Strain	14 - 21mm/m	8 mm/m (10 mm/m)	Measured tensile strains < predictions
Compressive Strain	18 - 27 mm/m	4 mm/m	Measured compressive strains < predictions
Tilt	33 - 49 mm/m	30 mm/m	Measured tilts < predictions
Other			

	PANEL 4 (W= 160.5 m; T = 2.5 m)				
< 75m Cover	Predicted	Final Measured	Comment		
Subsidence	1.27-1.29m	1.065m	Measured subsidence < predictions		
Tensile Strain	19 - 31 mm/m	6 - 10 mm/m (37.5 mm/m)	Measured tensile strains < predictions with 1 exceedance of 20% at clay cap.		
Compressive Strain	24 - 40 mm/m	6 - 18 mm/m	Measured compressive strains < predictions		
Tilt	42 - 67 mm/m	36 - 60 mm/m	Measured tilts < predictions		
Other					
>75m Cover	Predicted	Final Measured	Comment		
Subsidence	1.29 - 1.32m	1.054 m	Measured subsidence < predictions		
Tensile Strain	14 - 21mm/m	5 mm/m	Measured tensile strains < predictions		
Compressive Strain	18 - 27 mm/m	5 mm/m	Measured compressive strains < predictions		
Tilt	42 - 67 mm/m	25 - 36 mm/m	Measured tilts < predictions		
Other					

	PANEL 5 (W= 160.5 m; T = 2.5 m)				
< 75m Cover	Predicted	Final Measured	Comment		
Subsidence	1.27-1.43	1.154m	Measured subsidence < predictions		
Tensile Strain	14 - 15 mm/m	10 mm/m	Measured tensile strains < predictions		
Compressive Strain	15 - 19 mm/m	4 mm/m	Measured compressive strains < predictions		
Tilt	41 - 46 mm/m	68 mm/m	Measured tilts < predictions with 1 minor exceedance		
Other					
>75m Cover	Predicted	Final Measured	Comment		
Subsidence	1.42 - 1.43m	1.002 m	Measured subsidence < predictions		
Tensile Strain	11 - 15 mm/m	2 mm/m	Measured tensile strains < predictions		
Compressive Strain	15 - 18 mm/m	13 mm/m	Measured compressive strains < predictions		
Tilt	38 - 46 mm/m	29.8 mm/m	Measured tilts < predictions		
Other					

	PANEL 6 (W= 160.5 m; T = 2.5 m)				
< 75m Cover	Predicted	Final Measured	Comment		
Subsidence	1.21 - 1.32m	1.215m	Measured subsidence < predictions		
Tensile Strain	14 mm/m	8 mm/m	Measured tensile strains < predictions		
Compressive Strain	17 - 18 mm/m	21 mm/m	Measured compressive strains < predictions with 1 minor exceedance		
Tilt	39 - 41 mm/m	89.6 mm/m	Measured tilts < predictions with 1 minor exceedance		
Other					
>75m Cover	Predicted	Final Measured	Comment		
Subsidence	1.32 - 1.42m	1.066 m	Measured subsidence < predictions		
Tensile Strain	11 - 14mm/m	9 mm/m	Measured tensile strains < predictions		
Compressive Strain	14 - 17 mm/m	7 mm/m	Measured compressive strains < predictions		
Tilt	38 - 41 mm/m	30 mm/m	Measured tilts < predictions		
Other					

	PANEL 7 (W= 160.5 m; T = 2.5 m)			
< 75m Cover	Predicted	Final Measured	Comment	
Subsidence	1.27 - 1.32m	0.771m	Measured subsidence < predictions	
Tensile Strain	11 - 14 mm/m	5 mm/m	Measured tensile strains < predictions	
Compressive Strain	14 - 18 mm/m	2 mm/m	Measured compressive strains < predictions	
Tilt	41 mm/m	12 mm/m	Measured tilts < predictions	
Other				
>75m Cover	Predicted	Final Measured	Comment	
Subsidence	1.32 - 1.43m	1.336 m	Measured subsidence < predictions	
	1			
Tensile Strain	11 - 15mm/m	23 mm/m	Measured tensile strains < predictions with 1 minor exceedance	
Tensile Strain Compressive Strain	11 - 15mm/m 14 - 18 mm/m	23 mm/m 36 mm/m		
Compressive			1 minor exceedance Measured compressive strains < predictions with 1 minor	

PANEL 8 (W= 160.5 m; T = 2.5 m)			
< 75m Cover	Predicted	Final Measured	Comment
Subsidence	< 1.32m	0.830m	Measured subsidence < predictions
Tensile Strain	14 - 15 mm/m	2 mm/m	Measured tensile strains < predictions
Compressive Strain	17 - 19 mm/m	3 mm/m	Measured compressive strains < predictions
Tilt	42 mm/m	11.4 mm/m	Measured tilts < predictions
Other			
>75m Cover	Predicted	Final Measured	Comment
Subsidence	1.25 - 1.32m	0.845 m	Measured subsidence < predictions
Subsidence Tensile Strain	1.25 - 1.32m 10 - 14mm/m	0.845 m 11 mm/m	Measured subsidence < predictions Measured tensile strains < predictions with 1 minor exceedance
			Measured tensile strains < predictions with
Tensile Strain Compressive	10 - 14mm/m	11 mm/m	Measured tensile strains < predictions with 1 minor exceedance Measured compressive strains < predictions with 1 minor

PANEL 15 (W= 160.5 m; T = 2.5 m)			
>75m Cover	Predicted	Final Measured	Comment
Subsidence	1.17 - 1.23m	1.164m	Measured subsidence < predictions
Tensile Strain	7 - 12mm/m	15 mm/m	Measured tensile strains < predictions
Compressive Strain	9 - 15 mm/m	13 mm/m	Measured compressive strains < predictions
Tilt	19 - 32 mm/m	49 mm/m	Measured tilts < predictions with 2 minor exceedance
Other			

PANEL 20 (W= 128 m; T = 2.7 m)			
>75m Cover	Predicted	Final Measured	Comment
Subsidence	150 mm	62 mm	Measured subsidence < predictions
Tensile Strain	2 mm/m	1 mm/m	Measured tensile strains < predictions
Compressive Strain	2 mm/m	2 mm/m	Measured compressive strains < predictions
Tilt	3 mm/m	2.5 mm/m	Measured tilts < predictions
Other			

PANEL 21 (W= 212 m; T = 2.7 m)			
125m Cover	Predicted	Final Measured	Comment
Subsidence	150 mm	96 mm	Measured subsidence < predictions
Tensile Strain	2 mm/m	1 mm/m	Measured tensile strains < predictions
Compressive Strain	2 mm/m	1 mm/m	Measured compressive strains < predictions
Tilt	3 mm/m	2.1 mm/m	Measured tilts < predictions
Other			

TAILGATE HEADINGS (W= 80.5 m; T = 2.8 m)					
<110mCover	<110mCover Predicted Final Measured Comment				
Subsidence	0.88 – 0.99m	0.250m	Measured subsidence < predictions		
Tensile Strain	8 - 9mm/m	2 mm/m	Measured tensile strains < predictions		
Compressive Strain	8 - 9 mm/m	2 mm/m	Measured compressive strains < predictions		
Tilt	18 - 33 mm/m	7 mm/m	Measured tilts < predictions		
Other					

	EAST INSTALL HEADINGS (W= 105m; T = 2.7 m)			
100m Cover	00m Cover Predicted Final Measured Comment			
Subsidence	0.9m	1.286m	Measured subsidence > predictions	
Tensile Strain	13 – 19 mm/m	12 mm/m	Measured tensile strains < predictions	
Compressive Strain	16 - 24 mm/m	9 mm/m	Measured compressive strains < predictions	
Tilt	24 - 35 mm/m	44 mm/m	Measured tilts > predictions	
Other				

	EAST MAINS HEADINGS (W= 125m; T = 2.7 m)			
100m Cover	Predicted	Final Measured	Comment	
Subsidence	1.59m	1.408m	Measured subsidence < predictions	
Tensile Strain	10 - 16 mm/m	11 mm/m	Measured tensile strains < predictions	
Compressive Strain	13 - 20 mm/m	15 mm/m	Measured compressive strains < predictions	
Tilt	49 mm/m	48.6 mm/m	Measured tilts < predictions	
Other				

Panel 19A (W= 227.9m; T = 2.6 m)					
100m Cover	Predicted Final Measured Comment				
Subsidence	1.42m	1.261m	Measured subsidence < predictions		
Tensile Strain	8 - 14 mm/m	3 - 12 mm/m	Measured tensile strains < predictions		
Compressive Strain	11 - 18 mm/m	4 - 13 mm/m	Measured compressive strains < predictions		
Tilt	40 mm/m	29 - 48 mm/m	Measured tilts < predictions with only a minor exceedance		
Other					

PANEL 22 (W= 180.3 m; T = 2.8 m)			
125m Cover	Predicted	Final Measured	Comment
Subsidence	150 mm	44 mm	Measured subsidence < predictions
Tensile Strain	2 mm/m	1 mm/m	Measured tensile strains < predictions
Compressive Strain	2 mm/m	1 mm/m	Measured compressive strains < predictions
Other			

PANEL 23 (W= 215 m; T = 2.5 m)			
<130m Cover	Predicted	Final Measured	Comment
Subsidence	1.30m	0.983m	Measured subsidence < predictions
Tensile Strain	30 mm/m	13 mm/m	Measured tensile strains < predictions
Compressive Strain	30 mm/m	13 mm/m	Measured compressive strains < predictions
Other			

PANEL 24 (W= 220 m; T = 2.5 m)			
<130m Cover	Predicted	Final Measured	Comment
Subsidence	1.30m	1.061m	Measured subsidence < predictions
Tensile Strain	30 mm/m	7 mm/m	Measured tensile strains < predictions
Compressive Strain	30 mm/m	9 mm/m	Measured compressive strains < predictions
Other			

PANEL 25 (W= 220 m; T = 2.5 m)			
<130m Cover	Predicted	Final Measured	Comment
Subsidence	1.30m	1.087m	Measured subsidence < predictions
Tensile Strain	30 mm/m	21 mm/m	Measured tensile strains < predictions
Compressive Strain	30 mm/m	9 mm/m	Measured compressive strains < predictions
Other			

	PANEL 26 (W= 220 m; T = 2.5 m)			
<130m Cover	Predicted	Final Measured	Comment	
Subsidence	1.30m	1.130m	Measured subsidence < predictions	
Tensile Strain	30 mm/m	9 mm/m	Measured tensile strains < predictions	
Compressive Strain	30 mm/m	13 mm/m	Measured compressive strains < predictions	
Other				

PANEL 27 (W= 190 m; T = 2.5 m)			
<170m Cover	Predicted	Final Measured	Comment
Subsidence	1.40m	1.005m	Measured subsidence < predictions
Tensile Strain	30 mm/m	2 mm/m	Measured tensile strains < predictions
Compressive Strain	30 mm/m	8 mm/m	Measured compressive strains < predictions
Other			

PANEL 28 (W= 190 m; T = 2.5 m)			
<190m Cover	Predicted	Final Measured	Comment
Subsidence	1.40m	1.319m	Measured subsidence < predictions
Tensile Strain	30 mm/m	1 mm/m	Measured tensile strains < predictions
Compressive Strain	30 mm/m	10 mm/m	Measured compressive strains < predictions
Other			

PANEL 30 (W= 190 m; T = 2.5 m)						
<200m Cover	Predicted	Final Measured	Comment			
Subsidence	1.40m	1.131m	Measured subsidence < predictions			
Tensile Strain	30 mm/m	11 mm/m	Measured tensile strains < predictions			
Compressive Strain	30 mm/m	11 mm/m	Measured compressive strains < predictions			
Other						

PANEL 31 (W= 170 m; T = 2.5 m)						
<200m Cover	Predicted	Final Measured	Comment			
Subsidence	1.40m	0.307 m	Measured subsidence < predictions			
Tensile Strain	30 mm/m	6 mm/m	Measured tensile strains < predictions			
Compressive Strain	30 mm/m	7 mm/m	Measured compressive strains < predictions			
Other						

7 PHOTOGRAPHIC MONITORING AND VISUAL INSPECTION SUMMARY AND ANALYSIS

Dates of photographic monitoring and visual inspections are shown in **Table 3.** No impacts or changes have been noted in either photographic monitoring or visual inspections and these results have been detailed in the Subsidence Management Status Report submitted in September 2018.

No evidence of impacts has been observed or noted during these inspections and monitoring.

Comparison of pre and post mining photographic monitoring did not reveal any evidence of impact.

8 ENVIRONMENTAL MONITORING SUMMARY AND ANALYSIS

Water

Monthly monitoring of regional groundwater levels and quality was undertaken throughout the year in accordance with the Site Water Management Plan and Integrated Monitoring Plan.

A summary of groundwater and surface water quality is provided in Tables 5 and 6.

Sampling Site	рН	EC (μS/cm)	TSS (mg/L)
C	6.59 - 6.96	1,960 - 2,420	18– 134
6	(6.78)	(2,264)	(53)
13	No Access to site	No Access to site	No Access to site
JRD2	6.27 – 7.28	146 – 2,550	<5 – 136
JKDZ	(6.96)	(2,134)	(47)

Table 5 – Summary of Groundwater Quality Monitoring Results 1 January to 31 December 2019.

Sampling Site	рН	EC (μS/cm)	Turbidity (NTU)	TSS (mg/L)
1	5.73 - 7.13	194 - 443	20.9 – 120	<5 – 50
	(6.77)	(326)	(48)	(27.7)
8	6.3 – 7.2	275 – 498	10.9 – 31.2	10 – 26
	(6.64)	(408)	(20.7)	(15.6)
10	6.54 – 7.7	410 – 1,676	5.9 – 45	<5 – 28
10	(7.03)	(953)	(22.8)	(11.9)
11	6.65 - 7.68	160 – 588	0.7 – 32	<5 -38
11	(7.15)	(264)	(7.11)	(10.6)
FMCU	6.7 - 7.22	151 – 314	20 – 48.1	<5 – 28
FIVICO	(6.96)	(199)	(39.5)	(13.6)
FMCD	7.44 – 8.67	148 – 332	5.3 – 16.9	<5 – 68
FIVICD	(7.80)	(238)	(11.3)	(12.5)

Table 6 – Summary of Surface Water Quality Monitoring Results 1 January to 31 December 2019

9 TRENDS IN MONITORING RESULTS

Surface Water

The pH values at all sites were slightly acidic to slightly alkaline. All results were within the upper and lower water quality trigger values for Lowland Rivers in NSW (8.5) outlined in the Guidelines for Fresh and Marine Water Quality (ANZECC 2000). Previously there have been short term declines in pH following significant rainfall events such as in November 2013 (261.8mm rainfall), April 2015 (412mm rainfall) and January 2016 (430.8mm). Overall, during the reporting period there were no significant differences in pH between the upstream and downstream sites.

The electrical conductivity (EC) results range between 148µS/cm and 1,676µS/cm for all sites. There were no occasions were electrical conductivity was recorded outside of water quality trigger values for Lowland Rivers in NSW (125 to 2,200µS/cm) (ANZECC 2000).

Whilst it is expected that rainfall will influence EC results, EC does not appear to be strongly correlated with the monthly rainfall. The average EC values upstream are typically similar or slightly higher than the corresponding downstream values. No other long-term trends in EC are apparent.

Turbidity and total suspended solids (TSS) levels at Sites 1 and FMCU exceeded the water quality trigger values for Lowland Rivers in NSW (6 to 50 NTU) outlined in the Guidelines for Fresh and Marine Water Quality (ANZECC 2000) and industry standard TSS criteria (50mg/L). These exceedances did not correspond to a high rainfall event. Sites 1 and FMCU are upstream monitoring locations and it is not considered that the mine activities contributed to these levels but rather localised conditions.

No long-term trends are apparent within the monitoring data with widely varying results with spikes in turbidity and TSS not necessarily correlated with monthly rainfall. Baseline monitoring results for both upstream and downstream sites have previously recorded significantly elevated TSS which are considered to form part of the natural variation.

Groundwater Levels

Piezometers located within and to the south of the Abel mine area are behaving predictably, with drawdown in the Donaldson Seams and by a lesser amount in most overburden piezometers responding as expected to mining activities. Piezometers to the west of the Abel mine area appear to be influenced by mining activity at Bloomfield Colliery.

Monitoring confirms that there is no evidence of any drawdown response in the alluvium or regolith groundwater. In particular, Piezometers 81A and 81B are located adjacent the Pambalong Nature Reserve.

Monitoring results from 81A (single vibrating wire transducer placed within the Lower Donaldson Seam) showed a drawdown response to mining the Donaldson Seam within the Abel Mine. However, Piezometer 81B is screened within overlying shallow Permian strata with water levels remaining stable. The lack of response in the shallow piezometer indicates there has been no mining impact on the Pambalong Nature Reserve.

Piezometers 63A and B are located to the east of the Abel Mine adjacent to the F3 Freeway and near the Hexham Swamp. However, it appears that the shallow Piezometer 63B has failed or the bore has collapsed. Notwithstanding this, review of the responses from other shallow alluvium and regolith bores is still consistent with there being no impact on the Hexham Swamp.

During the period access to Site 13 was restricted with no access granted by the property owner.

10 MANAGEMENT ACTIONS

Actions taken to ensure adequate management of any potential subsidence impacts due to mining include:

• Various monitoring programs, subsidence surveys, visual inspections, photographic monitoring to detect any impact;

• TARPs (Trigger, Action, Response Plans) forming part of approved Public Safety Management Plans and Environmental Monitoring Programs which include mitigation/remediation options and notification procedures relating to subsidence monitoring, surface cracking on both roads / fire trails and vegetated areas and impacts on rock mass / steep slopes and Aboriginal sites.